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Objective: This meta-analysis explores the impact of vitamin D supplementation 
on antibiotic utilization.

Methods: We systematically searched for relevant randomized controlled trials 
(RCTs) in PubMed, Web of Science, EMBASE, and Science Direct from inception 
to April 2024. These trials compared antibiotic use rates between groups 
receiving vitamin D supplements and placebo.

Results: We included seven RCTs involving 35,160 participants. There was no 
significant difference in antibiotic use between the two groups in the general 
population (Odds Ratio [OR]  =  0.98, p  =  0.232), including elderly participants 
(OR  =  0.98, p  =  0.295). However, antibiotic use was lower in the intervention 
group compared to the placebo group among participants under 70  years of 
age (OR  =  0.95, p  =  0.015), those with relative vitamin D deficiency [25(OH)
D  <  75  nmol/L, OR  =  0.95, p  =  0.024; 25(OH)D  <  50  nmol/L, OR  =  0.96, p  =  0.026], 
and those with respiratory tract infections (RTIs) (OR  =  0.51, 95% CI: 0.24–1.08, 
p  =  0.080), although these differences were not statistically significant for RTIs.

Conclusion: Vitamin D supplementation does not affect antibiotic use in the 
general population. However, it does reduce antibiotic utilization in individuals 
with RTIs, relative vitamin D deficiency, or aged below 70  years.

Systematic review registration: This meta-analysis adheres to the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 
and is registered with the International Prospective Register of Systematic 
Reviews (PROSPERO), registration number CRD42024543246.
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Introduction

A spatial modeling study published in 2021 reported that global antibiotic consumption 
increased by 46% from 2000 to 2018, peaking at 40.1 defined daily doses (DDDs) in 2018 (1). 
Antibiotics, pivotal in reducing the morbidity and mortality associated with many infectious 
diseases, are considered life-saving drugs. However, their widespread availability and perceived 
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cost-effectiveness have led to increased irrational and misuse (2). This 
is compounded by a lack of adequate awareness among both the 
public and medical professionals. Such overuse has accelerated the 
development of drug-resistant bacteria, posing a significant threat to 
global health due to the ensuing antibiotic resistance (3).

In response to the critical issue of antibiotic resistance, no effective 
alternatives have been developed, which necessitates the continuous 
development of new antibiotics (4). Recent studies suggest that combining 
antibiotics with non-antibiotic compounds could improve treatment 
outcomes against multi-resistant bacteria by possibly aiding in 
antibacterial action or repairing metabolic defects (5). For instance, it has 
been demonstrated that the addition of substrates like glucose or alanine 
can enhance the tricarboxylic acid cycle, thereby increasing bacterial 
uptake of antibiotics and improving their efficacy (6). Additionally, 
existing studies have suggested that vitamin D deficiency also played an 
important impact on extra-skeletal diseases, especially on respiratory tract 
infections (RTIs) such as bacterial pneumonia and acute respiratory 
infections (ARIs) (7). Notably, vitamin D has been recognized for its 
substantial immunomodulatory effects, such as activating immune cell 
chemotaxis, enhancing phagocytic capabilities of macrophages (8), and 
inducing the production of antimicrobial peptides (9). These properties 
suggest that vitamin D could serve as a supportive antimicrobial agent. A 
prior meta-analysis involving 25 randomized controlled trials (RCTs) 
indicated that vitamin D supplementation could lower the incidence of 
ARIs (10). Moreover, a prospective observational study in Sweden showed 
that vitamin D supplementation was associated with a reduction in 
antibiotic usage days (11). There was, in addition, a cohort study shown 
that low serum vitamin D levels were an independent predictor of adverse 
outcomes of COVID-19 and might result in higher levels of inflammation 
and more serious tissue damage in patients with severe or non-severe 
cases (12). Despite these findings, there were no meta-analyses that 
explore the effect of vitamin D supplementation on antibiotic use. In light 
of these considerations, this study aims to review published RCTs to 
perform a meta-analysis assessing the relationship between vitamin D 
supplementation and antibiotic usage frequency in adults.

Methods

Search strategy

This meta-analysis adheres to the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines (13), and 
is registered with the International Prospective Register of Systematic 
Reviews (PROSPERO), registration number CRD42024543246. 
We conducted a systematic search for RCTs examining the effects of 
vitamin D supplementation on antibiotic use from inception to April 
2024. Searches were performed using PubMed, Web of Science, 
EMBASE, and Science Direct, with keywords including (vitamin D) 

AND (antibiosis OR antibiotic OR antibiotics OR anti-infection OR 
infection). A secondary search was conducted through the references 
of all identified studies to ensure the comprehensiveness of our search.

Selection and exclusion criteria

The inclusion and exclusion of studies were guided by the PICOS 
(participants, intervention, comparison, outcomes, and study design) 
framework (14). The inclusion criteria were as follows: (1) participants: 
adults aged 16 years or older, or those at high risk of antibiotic use due 
to certain diseases (excluding tuberculosis); (2) intervention: oral 
administration of vitamin D in the intervention group; (3) 
comparison: placebo given to the control group; (4) outcomes: 
measures related to antibiotic use; (5) study Design: only RCTs 
were considered.

Exclusion criteria included: (1) studies where relevant data could 
not be extracted or were unsuitable for statistical analysis; (2) studies 
where the full text was unavailable; (3) studies not published in 
English; (4) studies with outdated or superseded publications, where 
articles with the most recent and comprehensive data were 
given preference.

Data extraction and quality assessment

Data extraction was performed independently by two investigators 
using a predefined form. This form captured essential information 
including the authors, year of publication, country, clinical trial 
number, participant characteristics (age, number, recruitment year, 
physical condition, and vitamin D supplementation regimen), and 
antibiotic-related outcomes.

Risk of bias was assessed according to the guidelines provided 
by the Cochrane Collaboration Network (15). The assessment 
covered several domains: (1) random sequence generation (to 
address selection bias), (2) allocation concealment (to address 
selection bias), (3) blinding of participants and personnel (to 
mitigate performance bias), (4) blinding of outcome assessment (to 
mitigate detection bias), (5) completeness of outcome data (to 
address attrition bias), (6) selective reporting (to address reporting 
bias), and (7) other potential biases. Each domain was rated as 
‘high risk,’ ‘low risk,’ or ‘unclear risk’. Disagreements between 
investigators were resolved through discussion to reach 
a consensus.

Statistical analysis

Statistical analyses were conducted using Stata Software version 12.0 
(Stata Corporation LLC, College Station, United States). The impact of 
vitamin D supplementation on antibiotic use was evaluated using odds 
ratios (ORs) and 95% confidence intervals (CIs). Heterogeneity among 
the studies was assessed with a chi-square test and quantified using the 
I2 statistic. I2 values over 50% were considered indicative of significant 
heterogeneity, values between 25 and 50% indicated moderate 
heterogeneity, and values below 25% indicated low heterogeneity (16).

Due to potential variations among study participants and 
differences in study protocols, analyses were performed using a 

Abbreviations: DDDs, Defined Daily Doses; RTIs, Respiratory Tract Infections; ARIs, 

Acute Respiratory Infections; RCTs, Randomized Controlled Trials; OR, Odds Ratio; 

CI: Confidence Interval; COPD, Chronic Obstructive Pulmonary Disease; VDR, 

Vitamin D Receptor; PRRs, Pattern Recognition Receptors; IL, Interleukin; CAMP, 

Cathelicidin Antimicrobial Peptide; Defb2, Human β2-Defensins; NO, Nitric Oxide; 

mTOR, Mammalian Target of Rapamycin; ROS, Reactive Oxygen Species; 

No, Number.
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random-effects model to enhance the reliability of the results. Subgroup 
analyses were conducted to explore the sources of heterogeneity further. 
Publication bias was assessed using Begg’s test, and sensitivity analyses 
were performed to verify the stability of the findings. All statistical tests 
were two-sided, with a significance threshold set at p < 0.05.

Results

Study selection

From four electronic databases, a search identified 55,352 records 
under the specified research strategy. No additional records were 
identified through other sources. After removing duplicates, 18,740 
records remained. Screening of titles and abstracts led to the exclusion 
of 18,715 records due to low relevance, leaving 25 full-text articles for 
detailed evaluation. Out of these, 18 articles were excluded for the 
following reasons: 5 were non-RCTs, 1 had insufficient data, and 12 
did not report antibiotic-related outcomes. Ultimately, 7 studies met 
the inclusion criteria and were included in the meta-analysis. The 
detailed retrieval process is illustrated in Figure 1.

Characteristics and quality assessment of 
included studies

The 7 RCTs (17–23), spanning from 2007 to 2022 and cited as 
references, investigated the relationship between vitamin D 
supplementation and antibiotic use, involving 35,160 participants 
from five countries (Sweden, United Kingdom, Australia, Netherlands, 
New Zealand). The intervention groups in these studies received oral 
vitamin D supplementation, while control groups were administered 
a placebo. Six (17, 18, 20–23) of the studies involved oral cholecalciferol 
and one (19) involved oral D-Peals capsules produced in Denmark. 
Duration of intervention varied: three studies (17, 20, 23) had 
durations exceeding 1 year, and the remaining four (18, 19, 21, 22) 
were conducted for 1 year or less.

Participants’ physical conditions varied across studies: one (18) 
involved participants with antibody deficiencies or frequent RTIs; one 
(19) included individuals with 25(OH)D levels below 75 nmol/L; one (21) 
focused on patients with a history of chronic obstructive pulmonary 
disease (COPD) exacerbation within the last 12 months and 25(OH)D 
levels below 50 nmol/L; one (17) targeted patients with low trauma and 
osteoporotic fractures; and three (20, 22, 23) included elderly individuals 

FIGURE 1

Flow chart of study selection.
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from the general community. Further characteristics and details of the 
included studies are presented in Table 1 and Supplementary Table S1.

The risk of bias was assessed for each study using the Cochrane 
Collaboration’s tool, as depicted in Supplementary Figures S1, S2. One 
study (19) was deemed to have a high risk of selection and performance 
bias due to inadequate concealment of treatment allocation and lack of 
stratified randomization. Another study (21) was identified as having a 
high risk of bias due to not achieving the designed sample size. Three 
studies (18, 22, 23) presented challenges in determining other biases. 
Overall, the studies were considered to be of high quality (Table 2).

Analysis of the primary result

Pooling the results from seven RCTs (17–23), no significant 
difference in antibiotic use was observed between the intervention 
group receiving vitamin D supplementation and the placebo group 
(OR = 0.98, 95% CI: 0.94–1.02, p = 0.232, Figure 2). However, there was 
moderate heterogeneity among the studies (I2 = 40.9%).

Subgroup analysis

Subgroup analyses were conducted based on participant age 
thresholds. For participants aged ≥70 years, no statistical difference in 

antibiotic use was observed between the intervention and control groups 
(OR = 0.99, p = 0.731). Conversely, among participants aged <70 years, the 
intervention group exhibited a reduced use of antibiotics compared to the 
control group (OR = 0.95, p = 0.015). Additional subgroup analysis among 
older adults similarly showed no significant differences in antibiotic use 
between the groups (OR = 0.98, p = 0.295).

Vitamin D concentration levels of less than 75 nmol/L or 
50 nmol/L were considered relatively inadequate (24). Among 
participants with 25(OH)D levels <75 nmol/L, four RCTs (19–21, 23) 
indicated reduced antibiotic use in the intervention group compared 
to the control group (OR = 0.95, p = 0.024). For participants with 
25(OH)D levels <50 nmol/L, results from three RCTs (17, 18, 22) 
demonstrated that the vitamin D-receiving group used fewer 
antibiotics than the placebo group (OR = 0.96, p = 0.026), with no 
significant heterogeneity (I2 = 0%).

Regarding vitamin D dosage, participants were categorized based 
on daily intake exceeding 2000 IU (high-dose supplementation group) 
or not (low-dose supplementation group). Neither the high-dose 
group (OR = 0.95, p = 0.765) nor the low-dose group (OR = 0.88, 
p = 0.111) showed significant differences in antibiotic use. Similarly, 
based on the duration of supplementation, no significant differences 
were found either for durations greater than 1  year (OR = 0.99, 
p = 0.109) or less than or equal to 1 year (OR = 0.77, p = 0.205).

For participants suffering from RTIs in two RCTs (18, 19) the 
intervention group exhibited a lower rate of antibiotic utilization 

TABLE 1 Characteristics of all the studies included in the meta-analysis.

Author Year Country No. of participants Participant characteristics Dosage and 
duration of 
Vitamin DVitamin D Placebo Age (year) Physical 

condition

Male/Female

Bergman, Peter 2012 Sweden 18/52 20/50 18–75
Antibody deficiency 

or frequent RTIs

4,000 IU daily for 

1 year

Jolliffe, David A. 2022 UK

498/1052

1040/2060 ≥16 25(OH)D < 75 nmol/L

800 IU daily for 

6 months

506/1044
3,200 IU daily for 

6 months

Pham, Hai 2022 Australia 5336/4426 5327/4408 60–84 /
60,000 IU monthly 

for 5 years

Rafiq, R. 2022 Netherlands 46/28 55/26 ≥40

A COPD 

exacerbation in the 

last 12 months before 

screening, 25(OH)

D < 50 nmol/L

16,800 IU weekly 

for 1 year

Tran, Bich 2014 Australia

113/97

110/95 60–84 /

30,000 IU monthly 

for ≤12 months

109/96
60,000 IU monthly 

for ≤12 months

Wu, Zhenqiang 2021 New Zealand 1512/1046 1457/1093 50–84 /

100,000 IU monthly 

for a median of 

3.3 years

Avenell, A. 2007 UK 1737 1703 ≥ 70
Low trauma, 

osteoporotic fracture

800 IU daily for 

18 months

RTIs, respiratory tract infections; No, number; COPD, chronic obstructive pulmonary disease.
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compared to the control group, though the difference was not 
statistically significant (OR = 0.51, 95% CI: 0.24–1.08, p = 0.080).

Publication bias and sensitivity analysis

Publication bias was assessed using Begg’s test, which indicated 
no significant bias in the results related to the effect of vitamin D on 
antibiotic use (p = 0.230, Supplementary Figure S3). Sensitivity 
analysis was conducted by sequentially excluding each study, 
confirming that the results remained stable (Supplementary Figure S4).

Discussion

In this meta-analysis of seven RCTs (17–23), no significant 
association was observed between vitamin D supplementation and the 
risk of antibiotic use, encompassing elderly participants and various 
subgroup analyses concerning dosage and duration of vitamin D 
supplementation. However, among participants under 70 years of age, 
those with relative vitamin D deficiency, or those suffering from RTIs, 
vitamin D supplementation appears to reduce antibiotic usage.

Vitamin D, recognized as a multifunctional health-promoting 
molecule (25), is absorbed into the bloodstream and converted in the 
kidneys to its active form, 1,25(OH)2D3, via the catalytic action of 
1α-hydroxylase (26). It primarily exerts its effects through interaction 
with the vitamin D receptor (VDR), facilitating the receptor complex’s 
migration to the nucleus and modulating the expression of numerous 
genes related to immune regulation and infection control (27). The 
immunomodulatory mechanisms of vitamin D include enhancing 
phagocytosis and chemotaxis of innate immune cells such as 
macrophages and monocytes, thereby improving pathogen clearance 
(28); inducing dendritic cell tolerance through the expression of 

CYP27B1, which enhances localized concentrations of active vitamin 
D at infection sites (29); and integrating with pattern recognition 
receptors (PRRs) to detect microbial signals and activate downstream 
infection-fighting pathways (30). Additionally, vitamin D helps 
regulate inflammatory responses by inhibiting pro-inflammatory 
cytokines like interleukin-2 (IL-2) and promoting the production of 
anti-inflammatory cytokines such as IL-10 (31).

Beyond immune regulation, vitamin D also plays a significant role 
in anti-infection processes: it promotes the production of host defense 
peptides, including cathelicidin antimicrobial peptide (CAMP) and 
human β2-defensins (Defb2) (32), with vitamin D response elements 
directly influencing their gene expression (33). It mediates the 
synthesis of nitric oxide (NO), which enhances antimicrobial activity 
(34) and may reduce the viability of Streptococcus pneumoniae and the 
emergence of antibiotic resistance (35). Furthermore, vitamin D 
reduces the activity of mammalian target of rapamycin (mTOR), 
supports the recruitment of ATG16L1 by NOD2 to induce autophagy, 
and aids in the elimination of intracellular bacteria (36). The 
antioxidant properties of vitamin D help eliminate harmful reactive 
oxygen species (ROS), moderating inflammation and maintaining 
mitochondrial function, which is crucial in reducing TNF-α-induced 
lung epithelial inflammation and mitochondrial autophagy (37, 38). 
In conclusion, while vitamin D’s role in reducing antibiotic use was 
not uniformly observed across all study participants, its various 
immunomodulatory and antibacterial properties theoretically support 
the reduction of antibiotic usage, particularly in certain subpopulations.

Although the mechanisms discussed were not substantiated across 
all participants in our study, several factors could explain these findings. 
Firstly, certain disease states and environmental factors might suppress 
antimicrobial peptide levels, thus diminishing the anti-infective efficacy 
of vitamin D. Studies have demonstrated that diabetes can down-regulate 
the expression of antimicrobial peptides (39), and prolonged exposure 
to polluted air reduces these peptide levels in mice (40). Secondly, genetic 
variations in the VDR genes affect individual responsiveness to vitamin 
D. A meta-analysis has shown that genotypes with the TaqI 
polymorphism and the FF variant in the FokI gene are more responsive 
to vitamin D supplementation (41). Thirdly, in individuals who are not 
deficient in vitamin D, additional supplementation may lead to inefficient 
binding of the vitamin to its receptors, as excess vitamin D is converted 
to 1,24,25(OH)2D3, which has minimal affinity for VDR (42). This 
hypothesis is supported by subgroup analysis indicating that high-dose 
vitamin D supplementation does not significantly reduce the risk of 
antibiotic use. This is consistent with a single-center RCT finding that 
additional vitamin D supplementation did not decrease hospital-
acquired infection rates among sepsis patients (43), suggesting that 
vitamin D supplementation may not universally contribute to reduced 
antibiotic use.

Moreover, while one study suggested that high doses of vitamin D 
could decrease inflammation levels and enhance anti-infection 
capabilities (44), our subgroup analysis found no significant benefits 
from either low or high doses of vitamin D supplementation in 
reducing antibiotic use. Possible explanations include: (1) active 
vitamin D maintains a dynamic equilibrium in the body, with excess 
being converted to an inactive form that cannot be effectively utilized 
(42); (2) variability in the effectiveness of different vitamin D 
supplementation regimens; and (3) the prevalence of adequate serum 
vitamin D levels among our study participants, which could obscure 
any potential benefits for those with insufficient vitamin D levels. 

TABLE 2 Subgroup analysis of the effect of vitamin D supplementation on 
antibiotic use.

Subgroup No. of 
studies

OR (95% 
CI)

P I2

Age

  Older adults 4 0.98 [0.96, 1.01] 0.295 31.8%

  ≥70 3 0.99 [0.96, 1.03] 0.731 23.7%

  <70 2 0.95 [0.91, 0.99] 0.015 0.0%

25(OH)D concentration

  <75 nmol/L 4 0.95 [0.92, 0.99] 0.024 0.0%

  <50 nmol/L 3 0.96 [0.92, 0.99] 0.026 0.0%

Doses of vitamin D

  > 2000 IU/day 4 0.95 [0.66, 1.36] 0.765 49.4%

  ≤2000 IU/day 4 0.88 [0.75, 1.03] 0.111 39.0%

Supplementation time of vitamin D

  >1 years 3 0.99 [0.97, 1.00] 0.109 0.0%

  ≤1 year 4 0.77 [0.52, 1.15] 0.205 38.7%

Infection type

  RTIs 2 0.51 [0.24, 1.08] 0.080 22.4%

RTIs, respiratory tract infections; OR, odds ratio; CI, confidence interval; No, number.
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Previous studies have demonstrated that vitamin D supplementation 
had a more phenomenal impact on participants with vitamin D 
deficiency (45).

Emerging evidence underscores the association between low 
serum vitamin D levels and increased infection risk (46–48). The 
Third National Health and Nutrition Examination Survey 
demonstrated an inverse relationship between serum vitamin D levels 
and recent upper respiratory tract infections in the American 
population (49). Furthermore, a meta-analysis confirmed that vitamin 
D deficiency heightens susceptibility to serious infections (50). Our 
subgroup analysis for participants with low serum vitamin D levels 
(25(OH)D < 50 nmol/L or <75 nmol/L) corroborates these findings, 
suggesting that vitamin D deficiency may compromise neutralizing 
antibody production and immune cell function (51). Therefore, 
vitamin D supplementation could potentially enhance immune 
responses and infection resistance.

Specifically, studies indicate that antibiotic usage is more prevalent 
among the elderly, women (52), and individuals in poorer health (53). 
Despite the theoretical benefits of vitamin D in boosting immunity 
among the elderly to combat infections, our findings did not support 
this hypothesis for participants aged ≥70 years. This discrepancy may 
be  attributable to several factors: (1) age-related decline in organ 
function associated with calcium metabolism may lead to decreased 
expression of VDR, resulting in inefficient utilization of vitamin D (54); 
(2) the prevalence of chronic kidney disease in older adults impairs the 
kidneys’ ability to activate vitamin D (55); (3) parathyroid hormone, 
known to enhance the synthesis of 1α-hydroxylase (56)—which 
converts vitamin D to its active form—is often diminished in older 
women, as evidenced by higher rates of hypoparathyroidism in this 
group (57); (4) comorbid conditions such as diabetes can negatively 
affect antimicrobial peptide production (39). A meta-analysis involving 

41,552 elderly patients revealed that vitamin D supplementation did 
not significantly reduce the incidence of ARIs or lower respiratory 
infections (58), further supporting our observations.

Conversely, vitamin D supplementation was found to be beneficial 
in participants under 70 years of age. Possible explanations include: (1) 
younger individuals often engage in higher levels of physical activity, 
which may enhance vitamin D metabolism in adipose tissue (59); (2) 
higher physiological requirements and lower dietary intake of vitamin 
D in younger populations may lead to more pronounced deficiencies 
(60, 61), which supplementation can effectively address.

As for the type of infection, many studies available now have 
confirmed that vitamin D can relieve the symptoms of infection or 
reduce the onset of RTIs. This was consistent with our findings. The 
reasons may be as follows: (1) vitamin D can promote the repair of 
epithelial cells and inhibit the apoptosis of epithelial cells, thereby 
improving lung function (62); (2) vitamin D can enhance mucosal 
immunity including respiratory mucosa (63); (3) existing study 
showed that daily supplementation of vitamin D could increase the 
antibacterial activity of airway surface fluids (37); (4) RTIs activated 
T and B lymphocytes and significantly up-regulated the expression of 
VDR (64, 65). Thus, vitamin D supplementation can conduce to the 
promotion of the ability to fight infection and reduce the risk of 
antibiotic use in people suffering from RTIs.

For all we know, this was the first meta-analysis to conduct a 
comprehensive and systematic exploration of the relationship between 
the antibiotic use and the supplementation of vitamin D. It could 
provide a reference value for the field of antibiotic use. Importantly, 
the meta-analysis was based on the RCTs with high quality. 
Nevertheless, there were some limitations in the present meta-
analysis. Firstly, the number of studies was limited. Besides, on 
account of the limited data, we could not perform further subgroup 

FIGURE 2

Forest plot of the effect of vitamin D supplementation on antibiotic use (p  =  0.232).
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analysis including the sex or the body mass index. Moreover, certain 
heterogeneity was produced due to the different physical conditions 
of the subjects and various programs of vitamin D supplementation.

Conclusion

This meta-analysis revealed that vitamin D supplementation does 
not significantly impact antibiotic usage in the general population, 
including elderly individuals. The regimen of vitamin D 
supplementation also showed no effect on antibiotic use. However, 
vitamin D supplementation may be beneficial in reducing antibiotic 
use among individuals under 70 years of age, those with relative 
vitamin D deficiency, or those suffering from RTIs. To substantiate 
these findings, more multicenter RCTs on a larger scale are necessary.
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