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Oxidative balance score is 
associated with the risk of diabetic 
kidney disease in patients with 
type 2 diabetes mellitus: evidence 
from NHANES 2007–2018
Yu Liang , Zhonggao Xu  and Wanning Wang *

Department of Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China

Objective: The oxidative balance score (OBS) is a comprehensive measure of 
oxidative stress that is calculated from the combined prooxidant and antioxidant 
scores of 16 dietary components and four lifestyle factors. This study aimed to 
evaluate the relationship between OBS and the risk of diabetic kidney disease 
(DKD) in individuals with Type 2 diabetes mellitus (T2DM).

Methods: Data were obtained from the NHANES. A cross-sectional study 
was conducted using multiple logistic regression. Covariate effects of this 
relationship were also examined using subgroup analysis.

Results: We evaluated 3,669 T2DM participants, among whom DKD prevalence 
was 30.87%. In a fully adjusted logistic regression model, the risk of DKD among 
participants with OBS, lifestyle OBS, and dietary OBS in the highest quartile group 
was 0.50 times (95% CI: 0.39 to 0.65), 0.54 times (95% CI: 0.41–0.71), and 0.45 
times (95% CI: 0.32–0.63), respectively, than that in the lowest quartile group, 
respectively. In addition, participants who scored in the top quartiles of OBS 
were more likely to possess higher levels of education and income. A stratified 
analysis demonstrated the robustness of these findings.

Conclusion: OBS negatively correlates with the risk of DKD among individuals 
with T2DM.
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1 Introduction

Diabetic kidney disease (DKD) is a common and serious complication of type 2 diabetes 
mellitus (T2DM), and is characterized by proteinuria and a decreased glomerular filtration 
rate. As the leading cause of chronic kidney disease (CKD) and end-stage renal disease 
(ESRD) worldwide (1–3), DKD significantly impairs patients’ quality of life and increases 
the risk of cardiovascular events and premature death. CKD is predicted to become the fifth 
most common cause of death globally by 2040 (4). With an estimated 642 million individuals 
projected to have T2DM globally with approximately 30–40% of them potentially developing 
DKD (5, 6), there is an urgent need for effective strategies to assess and manage DKD risk (7).

Oxidative stress (OS), resulting from an imbalance between pro-oxidants and antioxidants 
(8), plays a pivotal role in the pathogenesis of DKD by promoting excessive production of 
reactive oxygen species (ROS) and inducing inflammation in kidney tissues (9–12). OS is linked 
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to various metabolic factors related to diabetes (13), and modifiable 
exogenous factors such as diet and lifestyle are crucial for maintaining 
oxidative balance. The oxidative balance score (OBS) is a composite 
measure that reflects the overall balance of antioxidants and 
pro-oxidants consumed through diet and lifestyle factors (14–18), 
including nutrient intake, smoking, alcohol consumption, physical 
activity, and body mass index (BMI). Pro-oxidant factors such as 
smoking, alcohol consumption, iron intake, and high-fat diets can 
increase ROS levels (19–22), whereas antioxidants such as vitamin C 
and carotenoids help mitigate oxidative damage (23, 24). While 
epidemiological studies have assessed the association between OBS 
and various diseases—including periodontitis, non-alcoholic fatty liver 
disease, and others (25–27)—its relationship with DKD in patients 
with T2DM remains underexplored.

Previous research has shown that a high OBS is associated with 
better glycemic control (28) and a reduced risk of diabetes, and that 
this association is influenced by sex (29), blood pressure (30), etc. 
Additionally, a close relationship exists between high overall dietary 
quality and low prevalence of T2DM among middle-aged and elderly 
individuals (31). Although some cohort studies have examined the 
impact of dietary quality on CKD development (32–34), none have 
specifically investigated how OBS affects DKD in T2DM patients. 
Therefore, in this cross-sectional study utilizing data from the 
National Health and Nutrition Examination Survey (NHANES) 
2007–2018, we investigated the association between OBS and the 
risk of DKD among individuals with T2DM. By calculating OBS 
based on 16 dietary components and four lifestyle factors, 
we  evaluated the relationship using multiple logistic regression 
models and conducted subgroup analyses to assess the consistency 
of our findings. The elucidation of the association between OBS and 
DKD should help provide a theoretical foundation for early clinical 
identification of DKD.

2 Materials and methods

2.1 Study sample

Data were obtained from the National Health and Nutrition 
Examination Survey (NHANES), a nationally representative, multi-
stage research initiative administered by the National Center for 
Health Statistics that evaluates the health and diet of Americans. This 
research program involves the collection of data using a combination 
of laboratory and physical examinations and the administration of 
questionnaires in various populations. Informed consent was provided 
by all participants in writing. Comprehensive datasets are available via 
the NHANES platform, hosted on https://www.cdc.gov/nchs/nhanes/.

Our study included 59,842 individuals who participated in six 
consecutive 2-year NHANES survey cycles performed during 2007 
to 2018 were considered for inclusion in the present study. The 
exclusion criteria comprised: (1) age < 20 years (n = 25,072); (2) 
incomplete data regarding dietary and lifestyle OBS components 
(3,981 participants for whom dietary OBS information was missing, 
320 for whom no body mass index (BMI) data were available, 5,736 
for whom alcohol consumption data were missing, 58 for whom 
physical activity information was missing, and 1,033 for whom no 
cotinine data were available); (3) the absence of T2DM (n = 19,524); 
(4) missing urinary albumin/creatinine ratio (n = 65) or creatinine 
(n = 42) data; and (5) missing information regarding covariates 

(n = 342). After the application of these criteria, data from 3,669 
participants remained for analysis (Figure 1).

2.2 Exposures

The OBS was calculated using the method used in previous studies, 
using pro-oxidant and antioxidant data derived from 16 dietary 
components and four other lifestyle factors (35). The 16 dietary factors 
were fiber, β-carotene, riboflavin, niacin, vitamin B6, total folate, 
vitamin B12, vitamin C, vitamin E, calcium, magnesium, zinc, copper, 
selenium, total fat, and iron, which were derived from the mean intakes 
of nutrients identified using 24-h dietary recall interviews. Nutrients 
obtained from supplements, antacids, and medication were not 
included. Two dietary recall interviews were conducted, one that was 
conducted face-to-face at the Mobile Examination Center, and another 
that was telephonically administered within a window of 3 to 10 days 
thereafter. The four lifestyle factors were physical activity, BMI, alcohol 
consumption, and smoking habits. Of these 20 components, total fat, 
iron, alcohol, BMI, and smoking are classified as pro-oxidants, while 
the rest are classified as antioxidants. Smoking habits were assessed 
through the measurement of serum cotinine concentration.

Alcohol consumption was categorized according to the amount 
consumed, with heavy drinkers (≥15 g/d for females and ≥ 30 g/d for 
males), non-heavy drinkers (0–15 g/d for females and 0–30 g/d for 
males), and non-drinkers assigned scores of 0, 1, and 2, respectively 
(36). Physical activity was quantified using metabolic equivalents 
(METs) as low (<400 MET minutes per week), moderate (400–1,000 
MET minutes per week), or high (>1,000 MET minutes per week) 
(37), with 0, 1 and 2 points being awarded, respectively.

With the exception of physical activity, the participants were 
allocated to sex-specific tertiles according to each variable. The score 
of each element was added to calculate the total OBS. Antioxidant 
exposure was scored as 0 to 2 points, for tertiles 1 to 3 respectively, and 
pro-oxidant exposure was scored in the reciprocal fashion. Thus, a high 
OBS score indicated more substantial antioxidant exposure (Table 1).

2.3 Outcome

The criteria used for the diagnosis of T2DM were as follows: a 
previous diagnosis of diabetes made by a doctor or healthcare 
professional, a fasting glucose concentration ≥ 7.0 mmol/L, a 
glycosylated hemoglobin (HbA1c) level of 6.5% or higher, or the 
contemporaneous administration of insulin or antidiabetic 
medication. Individuals with T2DM met the criteria for a diagnosis of 
DKD if their urinary albumin/creatinine ratio (UACR) was ≥30 mg/g 
and/or their estimated glomerular filtration ratio (eGFR) was <60 mL/
min/1.73 m2 (38). eGFR was determined using the CKD Epidemiology 
Collaboration (CKD-EPI) equation (39).

2.4 Covariates

A literature review and clinical observations informed the inclusion 
of covariates that could influence the relationship between OBS and DKD 
(40–42) (refer to Supplementary Tables S2–S4). These covariates included 
sex, education level, race, poverty-to-income ratio (PIR), hypertension, 
and hyperlipidemia. High blood pressure (HBP) was defined based on a 
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healthcare professional’s diagnosis, the contemporaneous administration 
of medication for hypertension, a mean systolic blood pressure (SBP) 
≥140 mmHg, and/or a mean diastolic blood pressure (DBP) ≥90 mmHg. 
Hyperlipidemia was defined based on a self-reported previous diagnosis 
of hyperlipidemia by a physician or healthcare professional or abnormal 
circulating lipid concentrations (total cholesterol ≥6.216 mmol/L, 
low-density lipoprotein-cholesterol ≥4.144 mmol/L, triglycerides 
≥2.26 mmol/L, and/or HDL-cholesterol <1.036 mmol/L).

2.5 Statistical analysis

The baseline characteristics of the participants, stratified according 
to OBS quartile, were studied. To calculate the combined sample 
weights for participants included in the present analysis, NHANES 
Analytic Guidelines were followed. In particular, the 2-year dietary 
subsample weights were divided by 6 (the number of cycles included 
from 2007 to 2018) to create 12-year weights. For continuous data, the 
study-weighted mean (95% CI) and p-value obtained using study-
weighted linear regression are quoted. The categorical variables are 
reported using a survey-weighted percentage (95% CI) and p-value 
obtained using study-weighted Chi-square test. To measure the impact 
of missing data on the results, we included and excluded missing values 
for sensitivity analysis to determine whether the results were consistent. 
After adjustment for potential confounders, the relationship between 
the risk of DKD among patients with diabetes and OBS was analyzed 

using three multivariate logistic regression models. The application of 
the variance inflation factor in the adjusted models precluded any 
possibility of collinearity. Model 1 was unadjusted; Model 2 was 
adjusted for sex, age, and ethnicity; and Model 3 was adjusted for these 
variables plus educational level, PIR, hypertension, and hyperlipidemia. 
To further examine the robustness of the findings, a stratified analysis 
was performed to explore the coherence of the results among distinct 
subgroups. Furthermore, a restricted cubic spline model with three 
knots was used in order to more accurately determine whether there is 
a nonlinear dose–response relationship between OBS and DKD.

Analysis was conducted with R packages (R Foundation for 
Statistical Computing, Vienna, Austria, version 4.2.0) and Empowerment 
software.1 p < 0.05 was regarded as indicating statistical significance.

3 Results

3.1 Baseline characteristics of the participants

We analyzed data from 3,669 eligible participants that represented 
a weighted US population of 121,497,866, with men accounting for 

1 www.empowerstats.net, X&Y Solutions, Inc.

FIGURE 1

Flowchart describing the study sample. NHANES, National Health and Nutrition Examination Survey; OBS, oxidative balance score; BMI, body mass 
index; UACR, urinary albumin/creatinine ratio.
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56.69% of the number. Of these, 30.87% had been diagnosed with 
DKD. The participants were allocated to groups according to the 
quartile of OBS as follows: Q1, Q2, Q3, and Q4 included 865, 904, 977, 
and 923 participants, respectively. Those in Group Q1 had 4–13 
points, those in Group Q2 had 14–19 points, those in Group Q3 had 
20–25 points, and those in Group Q4 had 26–36 points. As the 
quartile number increased, the risk of the participants with DKD 
decreased. The characteristics of the participants, grouped into 
quartiles based on their OBS, are shown in Table 2. Among the OBS 
quartiles, race, educational level, and PIR significantly differed (all 
p < 0.001). The majority of the participants were non-Hispanic white 
and male. Individuals in the top quartile group of OBS had a higher 
level of educational attainment and higher PIR than those in the 
bottom quartile.

3.2 Relationship between OBS and the risk 
of DKD in patients with T2DM

Table 3 shows the relationship between OBS and the risk of DKD 
in patients with T2DM using three multivariate linear regression 
models. The VIF for all covariates was below 10, indicating that there 
was no significant multicollinearity (refer to Supplementary Table S5) 
(43). The primary aim of the present investigation was to characterize 

the relationship between OBS and the risk of DKD in patients with 
T2DM using OBS as both a continuous and a categorical variable. 
After accounting for the impact of missing data, the findings remain 
consistent, as illustrated in the Supplementary Table S1. The findings 
indicate that a high OBS is associated with a reduced risk of DKD in 
Model 3 (odds ratio (OR), 0.97; 95% confidence interval (CI) 0.96–
0.98). Specifically, for each unit increase in OBS, the likelihood of 
DKD in patients with T2DM decreases by 3%. When OBS was used 
as a categorical variable, the relationship remained significant. The risk 
of DKD decreased with increasing quartile in all the models. In Model 
3, individuals with the highest OBS quartile had a 50% lower risk of 
DKD than those with the lowest OBS (OR 0.50; 95% CI 0.39–0.65).

Similarly, in patients with T2DM, we evaluated the protective 
effects of lifestyle and OBS using weighted logistic regression models. 
Individuals with T2DM in the second (OR 0.65, 95% CI 0.51–0.84), 
third (OR 0.64, 95% CI 0.49–0.85), and uppermost (OR 0.54, 95% CI 
0.41–0.71) quartiles of dietary OBS had 35, 36, and 46% reduced 
risks of DKD, respectively, and dietary OBS was significantly 
associated with a lower risk of the presence of DKD. A similar 
relationship was found to exist between lifestyle OBS and DKD of 
patients with T2DM. In order to evaluate the potential influence of 
outliers on the outcomes of our analysis, we constructed a scatter plot 
of OBS versus DKD. No significant outliers were identified (refer to 
Supplementary Figure S1). The results are robust.

TABLE 1 Oxidative balance score allocation scheme.

OBS components Male Female

0 1 2 0 1 2

Dietary OBS components

Dietary fiber (g/d) <12.5 12.5–19.85 ≥19.85 <10.6 10.6–16.45 ≥16.45

Carotene (RE/d) <48.83 48.83–161.25 ≥161.25 <50.04167 50.04167–170.875 ≥170.875

Riboflavin (mg/d) <1.622 1.622–2.325 ≥2.325 <1.2945 1.2945–1.843 ≥1.843

Niacin (mg/d) <20.263 20.263–29.0615 ≥29.0615 <15.3565 15.3565–21.712 ≥21.712

Vitamin B6 (mg/d) <1.542 1.542–2.3185 ≥2.3185 <1.2005 1.2005–1.75 ≥1.75

Vitamin B12 (mcg/d) <3.205 3.205–5.53 ≥5.53 <2.445 2.445–4.165 ≥4.165

Vitamin C (mg/d) <37.25 37.25–86 ≥86 <36.1 36.1–84.25 ≥84.25

Vitamin E (ATE) (mg/d) <5.54 5.54–9.05 ≥9.05 <4.735 4.735–7.435 ≥7.435

Calcium (mg/d) <659.5 659.5–1,023 ≥1,023 <563 563–856 ≥856

Magnesium (mg/d) <237.5 237.5–337 ≥337 <194 194–271 ≥271

Zinc (mg/d) <8.89 8.89–13.2 ≥13.2 <6.63 6.63–9.78 ≥9.78

Copper (mg/d) <0.961 0.961–1.376 ≥1.376 <0.806 0.806–1.128 ≥1.128

Selenium (mcg/d) <94.55 94.55–62.955 ≥62.955 <71.65 71.65–101.5 ≥101.5

Iron (mg/d) ≥17.01 11.645–17.01 <11.645 ≥13.46 9.23–13.46 <9.23

Total fat (g/d) ≥95.27 63.03–95.27 <63.03 ≥74.005 48.755–74.005 <48.755

Total folate (mcg/d) <289 289–451 ≥451 <240 240–353.5 ≥353.5

Lifestyle OBS components

Physical activity (MET-minute/week) <400 400–1,000 >1,000 <400 400–1,000 >1,000

Alcohol (g/d) ≥ 30 0–30 non-drinkers ≥15 0–15 non-drinkers

Body mass index (kg/m2) ≥33.4 28.27–33.4 <28.27 ≥36.6 30.25–36.6 <30.25

Cotinine (ng/mL) ≥0.259 0.019–0.259 <0.019 ≥0.118 0.016–0.118 <0.016

OBS, oxidative balance score; RE, retinol equivalent; ATE, alpha-tocopherol equivalent; MET, metabolic equivalent.
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3.3 Results of the stratified analysis

We performed subgroup analyses to determine whether the 
association between OBS and the risk of DKD in patients with T2DM 
was consistent across participant categories. The P for the interaction 
was >0.05 for age, sex, ethnicity, educational level, and hypertension. 
However, hyperlipidemia had a significant effect on the association 
between OBS and DKD (P for interaction <0.05; Table 4). In T2DM 
with hyperlipidemia, OBS was associated with a lower risk of DKD 
(OR 0.96, 95% CI 0.95, 0.97), for patients without hyperlipidemia, 
although this trend was also observed, no statistical significance was 
found for the association (OR 0.98, 95% CI 0.96, 1.00).

Following the adjustment for all covariates, the RCS curve 
demonstrates a linear negative correlation between OBS and DKD 
(Figure 2).

4 Discussion

In the present study, we conducted a cross-sectional analysis of 
data from the 2017–2018 NHANES to characterize the association 

between OBS and the risk of DKD among individuals with T2DM. As 
far as we are aware, this is the first such investigation of this risk in 
people with T2DM. After controlling for potential confounding 
variables and separately evaluating the independent relationships of 
lifestyle OBS and dietary OBS with DKD, we  obtained the same 
results: that a high OBS score is inversely associated with the risk of 
DKD in patients with T2DM. This finding emphasizes the importance 
of the consumption of a diet rich in antioxidants and the adoption of 
healthy habits by individuals with diabetes to reduce the risk of 
developing renal complications. Consequently, by evaluating the 
dietary habits and lifestyle factors of patients with T2DM and 
calculating their OBS, healthcare professionals can gain insight into 
their risk of developing DKD. To provide a foundation for the 
personalized management strategy for patients with T2DM.

Overall, the present findings are similar to those of previous 
studies. These studies (31, 32) were most frequently conducted in the 
general population and were cross-sectional in nature. An association 
between CKD risk and OBS quartile was found by Wu et al. (29). 
However, they did not identify a significant effect of dietary OBS on the 
risk of CKD. In addition, there have also been studies of the relationship 
between specific components of OBS and DKD in patients with 

TABLE 2 Baseline data of the participants, categorized according to OBS quartile.

Total Q1 (4–13) Q2 (14–18) Q3 (19–24) Q4 (25–35) P-value

Sample number 3,669 865 904 977 923

Weighted number 121,497,866 23,720,928 27,317,317 32,885,551 37,574,070

Age (years) 58.40 (57.78, 59.02) 59.04 (57.47, 60.60) 58.93 (57.84, 60.02) 58.45 (57.23, 59.67) 57.56 (56.55, 58.57) 0.284

Sex, % 0.181

  Male 56.69 (54.12, 59.22) 51.80 (45.97, 57.59) 56.14 (51.62, 60.57) 58.18 (53.82, 62.42) 58.86 (54.20, 63.36)

  Female 43.31 (40.78, 45.88) 48.20 (42.41, 54.03) 43.86 (39.43, 48.38) 41.82 (37.58, 46.18) 41.14 (36.64, 45.80)

Ethnicity, % <0.001

  Mexican American 9.08 (7.27, 11.28) 6.68 (4.79, 9.24) 10.18 (7.75, 13.28) 8.91 (6.88, 11.45) 9.93 (7.65, 12.79)

  Other Hispanic 5.25 (4.23, 6.51) 5.58 (4.04, 7.66) 6.37 (4.69, 8.61) 5.25 (4.09, 6.72) 4.23 (3.18, 5.60)

  Non-Hispanic White 65.44 (62.00, 68.73) 60.66 (54.97, 66.07) 62.39 (56.85, 67.63) 66.20 (62.11, 70.06) 70.02 (65.38, 74.29)

  Non-Hispanic Black 13.39 (11.39, 15.68) 20.29 (16.73, 24.39) 15.04 (12.01, 18.67) 12.32 (9.98, 15.12) 8.77 (7.07, 10.83)

  Other Ethnicities 6.84 (5.72, 8.16) 6.79 (4.64, 9.83) 6.01 (4.49, 8.02) 7.33 (5.61, 9.52) 7.05 (5.04, 9.77)

Educational level, % <0.001

  < High school diploma 20.02 (18.30, 21.86) 32.62 (28.65, 36.85) 22.15 (18.91, 25.76) 19.38 (16.66, 22.41) 11.09 (9.12, 13.43)

  High school diploma 24.31 (22.42, 26.30) 25.21 (21.58, 29.22) 27.86 (24.00, 32.08) 21.71 (18.07, 25.85) 23.44 (20.14, 27.09)

  ≥Some college 55.67 (53.40, 57.92) 42.17 (37.60, 46.88) 49.99 (45.43, 54.56) 58.92 (54.76, 62.95) 65.47 (61.19, 69.51)

  PIR 2.89 (2.80, 2.97) 2.28 ± 1.52 2.69 ± 1.60 2.99 ± 1.60 3.33 ± 1.55 <0.001

Hypertension, % 0.020

  Yes 69.19 (66.88, 71.42) 72.38 (67.39, 76.87) 72.73 (68.73, 76.40) 68.72 (64.98, 72.23) 65.03 (60.52, 69.27)

  No 30.81 (28.58, 33.12) 27.62 (23.13, 32.61) 27.27 (23.60, 31.27) 31.28 (27.77, 35.02) 34.97 (30.73, 39.48)

Hyperlipidemia, % 0.995

  Yes 75.63 (73.70, 77.46) 75.97 (72.55, 79.08) 75.88 (70.96, 80.20) 75.28 (71.82, 78.44) 75.54 (71.24, 79.38)

  No 24.37 (22.54, 26.30) 24.03 (20.92, 27.45) 24.12 (19.80, 29.04) 24.72 (21.56, 28.18) 24.46 (20.62, 28.76)

Diabetic kidney disease, % <0.001

  Yes 30.87 (28.98, 32.82) 42.75 (38.44, 47.16) 33.70 (29.82, 37.80) 28.66 (25.18, 32.42) 23.25 (20.19, 26.61)

  No 69.13 (67.18, 71.02) 57.25 (52.84, 61.56) 66.30 (62.20, 70.18) 71.34 (67.58, 74.82) 76.75 (73.39, 79.81)

SD, standard deviation; PIR, family income-to-poverty ratio. For categorical variables: survey-weighted percentage (95% CI). For continuous variables: survey-weighted mean (95% CI).
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diabetes (44). Through interaction testing, we found that hyperlipidemia 
is a confounder of the association between OBS and 
DKD. Hyperglycemia and hyperlipidemia cause OS, which results in 
an increase in the circulating concentration of advanced glycation 
end-products through multiple mechanisms and can speed up DKD 
progression (45, 46). This suggests that T2DM patients with 
hyperlipidemia should strive to maintain a higher OBS to decrease the 
risk of DKD. Furthermore, hyperlipidaemia exacerbates oxidative stress 
via its effect on lipid peroxidation and ROS production. Excess ROS can 
directly damage renal cells and result in inflammation and fibrosis. 
Hyperlipidaemia also impacts mitochondrial function and causes 
endoplasmic reticulum stress, further contributing to oxidative stress. 
Therefore, further investigation is required to elucidate the precise 
mechanism via which hyperlipidaemia influences the risk of DKD.

Hyperglycemia is the principal cause of DKD (47). High glucose 
concentration damages mitochondria, which increases the production 
of ROS (48), and OS develops when the generation of ROS surpasses 
the innate capacity of cells to clear antioxidants, leading to significant 
local tissue damage (9, 11).

OS is regarded as a key cause of complications related to T2DM, 
and especially renal complications (49). The impact of most 
components of the OBS on DKD was previously discussed. The 
ingestion of fiber affects the composition of the intestinal microbiota, 
resulting in greater microbial fermentation and the production of 
short-chain fatty acids, which reduce the inflammation and fibrosis 
associated with DKD (50, 51). This mechanism may provide a new 
perspective for reducing the risk and managing DKD.

Vitamin B is principally obtained through the diet and has 
antioxidant effects, thereby protecting against OS (52). Alam et al. 
found that the OS of diabetic mice is significantly ameliorated by 
Vitamin B2 (riboflavin) supplementation, leading to a reduction in 
renal tissue damage (53). Another study showed that Vitamin B3 
(niacin) supplementation reduces the serum phosphate concentrations 
of patients with renal failure who are undergoing hemodialysis, 
including those with DKD (54). The deficiency of Vitamin B6 
(pyridoxine) in patients with diabetes predisposes toward DKD 
through various mechanisms, such as an increase in ROS formation 
and microvascular damage (52, 55). In addition, cobalamin 
insufficiency may lead to decreased antioxidant enzyme activity, 
which increases oxidative stress and exacerbates the progression of 
DKD (52, 56). Chan et al. also reported that folic acid deficiency may 
worsen the inflammation associated with CKD and exacerbate renal 
fibrosis (57). Omar et al. discovered that vitamin C has a protective 
effect against lipid peroxidation, which may reduce OS and 
inflammation in patients with CKD who are undergoing hemodialysis 
(58). Vitamin E, and especially its tocotrienol isomers, has potent 
antioxidant and anti-inflammatory properties (59), and dietary 
supplementation with tocotrienol-rich vitamin E for 12 months has 
been shown to slow the progression of DKD (60).

Alcohol consumption, smoking, and obesity are known to cause 
increases in OS and mitochondrial damage. In addition, the importance 
of physical activity in patients with DKD has also been studied (61). 
Each of these modifiable factors associated with lifestyle (physical 
activity, diet, alcohol consumption, and smoking) individually affect 

TABLE 3 Results of the weighted logistic regression analysis of the relationship between OBS and the risk of DKD.

Number of participants Model 1 OR (95% CI) Model 2 OR (95% CI) Model 3 OR (95% CI)

OBS continuous 3,669 0.96 (0.94, 0.97) 0.96 (0.95, 0.97) 0.97 (0.96, 0.98)

Categories

  Q1 865 1.00 (ref) 1.00 (ref) 1.00 (ref)

  Q2 904 0.68 (0.54, 0.85) 0.68 (0.54, 0.86) 0.71 (0.56, 0.90)

  Q3 977 0.54 (0.41, 0.70) 0.55 (0.43, 0.71) 0.61 (0.47, 0.79)

  Q4 923 0.41 (0.32, 0.52) 0.44 (0.34, 0.55) 0.50 (0.39, 0.65)

p for trend <0.001 <0.001 <0.001

Dietary OBS (continuous) 3,669 0.96 (0.95, 0.98) 0.97 (0.95, 0.98) 0.97 (0.96, 0.99)

Category

  Q1 789 1.00 (ref) 1.00 (ref) 1.00 (ref)

  Q2 937 0.64 (0.51, 0.81) 0.63 (0.49, 0.80) 0.65 (0.51, 0.84)

  Q3 1,021 0.57 (0.43, 0.76) 0.59 (0.44, 0.77) 0.64 (0.49, 0.85)

  Q4 922 0.43 (0.32, 0.57) 0.47 (0.36, 0.61) 0.54 (0.41, 0.71)

p for trend <0.001 <0.001 <0.001

Lifestyle OBS (continuous) 3,669 0.87 (0.83, 0.92) 0.86 (0.81, 0.91) 0.89 (0.84, 0.95)

Category

  Q1 397 1.00 (ref) 1.00 (ref) 1.00 (ref)

  Q2 1,307 0.77 (0.56, 1.07) 0.72 (0.52, 1.01) 0.72 (0.52, 1.00)

  Q3 779 0.74 (0.52, 1.05) 0.67 (0.47, 0.96) 0.67 (0.47, 0.96)

  Q4 1,192 0.50 (0.36, 0.69) 0.45 (0.32, 0.63) 0.45 (0.32, 0.63)

p for trend <0.001 <0.001 0.002

Model 1 was unadjusted. Model 2 was adjusted for sex, year, and ethnicity. Model 3 was adjusted for sex, year, ethnicity, PIR, HLP, HBP, and educational level. OR, odds ratio; CI, confidence 
interval. OBS, oxidative balance score. Education level has six missing values (0.15%), and PIR has 336 missing values (8.40%).
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REDOX homeostasis in the body, thereby having an effect on the 
progression of DKD (62, 63). Thus, lifestyle interventions that help 
manage the risk CKD, including DKD, include increasing physical 
activity, reducing alcohol consumption, and quitting smoking (64). To 
establish a causal relationship between OBS and DKD, future research 
should prioritize large-scale longitudinal studies that monitor changes 
in OBS over time and examine their association with the incidence and 
progression of DKD. Furthermore, it will be crucial to examine the 
influence of interventions designed to increase OBS, such as dietary 
modifications that boost antioxidant intake and lifestyle modifications 
that minimize exposure to pro-oxidants, on kidney disease outcomes. 
The evaluation of these strategies may provide valuable insights for the 
prevention and management of DKD.

In conclusion, maintaining oxidative balance is paramount for 
managing the risk of DKD. OS is regarded as a key cause of T2DM-
associated complications, and especially renal complications (49). The 
impacts of most components of the OBS on DKD were previously 
discussed. The ingestion of fiber affects intestinal microbiota 
composition, resulting in increased microbial fermentation and the 
production of short-chain fatty acids, which reduce the inflammation 
and fibrosis associated with DKD (50, 51). This may provide a new 
perspective for reducing the risk and managing DKD.

However, the mechanisms by which individual OS-related defects 
affect the progression of DKD is not fully understood. For example, 
the specific relationship between vitamin B deficiency and OS in 
patients with DKD has not been characterized. Copper  and zinc 

homeostasis is tightly regulated, and an imbalance in these minerals 
can result in insulin resistance and OS. Nevertheless, the mechanisms 
underlying the protective or harmful effects of copper and zinc in 
diabetes and DKD are complex (65).We believe that it is more 
important to focus on OBS than its individual elements. Therefore, 
we  used OBS to comprehensively assess the pro-oxidant and 
antioxidant exposure status of the participants and to investigate the 
overall effect on the risk of DKD in patients with T2DM.

In addition to those already mentioned above, the present study 
has several other strengths. First, the sample size was large and 
representative of a wide population, and second, we adjusted the data 
for potential confounding covariates to improve the robustness of the 
findings. However, the study also has some limitations. First, the 
effects of unknown or unmeasured confounders cannot be eliminated. 
Second, the potential impact of interventions targeting OBS on the 
risk of DKD was not explored, and we did not have access to long-
term follow-up data. Finally, the study design was cross-sectional, 
which limited its ability to infer causal relationships.

5 Conclusion

In summary, the present cross-sectional study has revealed 
negative associations of lifestyle OBS and dietary OBS with the risk of 
DKD in patients with diabetes. Nevertheless, further prospective 
studies are warranted to validate the findings.

TABLE 4 Results of the subgroup analysis of the relationship between OBS and the risk of DKD.

Characteristic Number of participants OR (95% CI) p for interaction

Sex 0.4242

  Male 2,136 0.96 (0.95, 0.97)

  Female 1,533 0.97 (0.96, 0.98)

Age, years 0.2213

  <40 294 1.00 (0.97, 1.04)

  41–60 1,241 0.98 (0.96, 0.99)

  ≥60 2,134 0.96 (0.95, 0.97)

Ethnicity 0.4462

  Mexican American 627 0.96 (0.94, 0.99)

  Other Hispanic 390 0.98 (0.95, 1.01)

  Non-Hispanic White 1,404 0.97 (0.95, 0.98)

  Non-Hispanic Black 927 0.96 (0.94, 0.98)

  Other Ethnicities 321 0.95 (0.92, 0.98)

Hypertension 0.4844

  Yes 2,606 0.96 (0.95, 0.97)

  No 1,063 0.98 (0.96, 1.00)

Hyperlipidemia 0.0382

  Yes 2,712 0.96 (0.95, 0.97)

  No 957 0.98 (0.96, 1.00)

Education 0.277

  < High school diploma 1,104 0.96 (0.94, 0.97)

  High school diploma 857 0.98 (0.96, 1.00)

  ≥Some college 1,708 0.96 (0.95, 0.98)

OR, odds ratio; CI, confidence interval.
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FIGURE 2

The RCS curve of the association between OBS and DKD. RCS regression was adjusted for sex, year, ethnicity, PIR, HLP, HBP, and educational level. 
OBS, oxidative balance score; RCS, restricted cubic spline; CI, confidence interval.
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