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Introduction: Human milk-derived probiotics are beneficial bacteria that provide 
gestational health benefits, for both pregnant women and their offspring. The 
study aims to investigate whether the administration of human milk-derived 
probiotic L. plantarum HM-P2 could effectively influence gestational health.

Methods: The gestational humanized microbiome model was built by fecal 
microbiome transplant from gestational women into germ-free (GF) mice.

Results: HM-P2 was successfully planted and increased the top crypt depth 
of the colon, and microbes such as L. reuteri, Anaerofilum sp. An201, and 
Gemmiger were up-regulated in the HM-P2 group throughout gestation. HM-
P2 significantly promoted the contents of intestinal caproic acid, bile acids, and 
tryptophan catabolites such as serotonin. Gut microbes were associated with 
these bile acids and tryptophans.

Discussion: HM-P2 could modulate the microbial community and microbial 
metabolites in gestational humanized GF mice. This probiotic strain could be a 
potential gestational dietary supplement with health benefits.
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Introduction

The use of probiotics during pregnancy has gained significant attention due to their 
potential health benefits. This can provide benefits to children by reducing instances of 
gastrointestinal disorders (1). Lactiplantibacillus plantarum is one of the most popular 
probiotics, with a versatile species/strain with beneficial qualities that are typically present in 
a wide variety of fermented food products (2). Furthermore, L. plantarum is generally 
considered safe and is commonly used in industrial fermentation and raw food processing.

Lactiplantibacillus plantarum can colonize the mice’s digestive tracts and affect their growth 
and immune responses (3). It can also reduce ulcerative colitis by improving gut inflammation 
and restoring gut microbiota (4). Moreover, it can promote intestinal development in weaning 
piglets by modulating gut microbiota, improving growth, and reducing diarrhea incidence 
compared to antibiotics (5). Especially in germ-free mice, L. plantarum CCFM8610 affects host 
health by affecting various pathways and metabolites (6), prevents diet-induced metabolic 
disorders (7), improves anxiety-like behaviors, and helps alleviate neuropsychiatric disorders 
(8). Mixtures of L. casei and L. plantarum have promising anti-allergenic properties (9).
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Previous studies have revealed that the administration of 
L. plantarum to pregnant women may possess potential benefits (10, 
11). L. plantarum 299v could impact gut structure and function in 
the offspring of rats (10) and may be  a tolerable therapy during 
pregnancy, potentially affecting maternal and neonatal hematological 
and iron status (11).

Although studies have shown that various strains of L. plantarum 
have multiple health benefits for pregnant rats and mice with certain 
diseases, current evidence is still limited about the effect of probiotics 
on gestational health. In this study, we combined the fecal microbiome 
transplant technique with GF mice to create a humanized germ-free 
mice model with the gut microbiome of pregnant women. We then 
explored the effects of the L. plantarum HM-P2 strain (derived from 
human breast milk) on gestational mice. The study analyzed the 
impact of this strain on intestinal morphology, gut microbiome, 
serum metabolome, immune factors, and gut microbial metabolites 
in gestational GF mice (Figure 1).

Materials and methods

Gestational fecal microbiome mixture 
preparation

Nine healthy gestational donors were recruited for the study. They 
were screened and selected based on specific criteria, which included 

being between 30 and 40 weeks of gestation, not having used 
antibiotics or any other medicine within the last 3 months, and not 
experiencing any gastrointestinal symptoms, such as constipation, 
diarrhea, or discomfort. Stools were collected from these donors for 
15 consecutive days and preserved in glycerol prior to freezing. The 
preparation of the fecal bacterial solution was performed under 
anaerobic conditions at different phases of fecal microbiome 
transplant (FMT) and was described in detail previously (12).

Construction of humanized mice model 
using fecal microbiome transplant

Germ-free (GF) C57BL/6 J mice (8-week-old, female, n = 10, 
body weight 18–22 g) were obtained from the GemPharmatech Co., 
Ltd., located in Jiangsu, China. The GF mice were housed in six 
separate isolators with a 12-h light/dark cycle in a temperature-
controlled (22°C ± 1°C) and humidity-controlled (55% ± 10%) room. 
Humanized GF mouse models were generated by performing fecal 
microbiome transplant (FMT) twice a week for three consecutive 
weeks, using a 0.2 mL of fecal sample for each time. In order to prevent 
environmental microorganisms and operational contamination, all 
experimental operations were performed under strict aseptic 
conditions. Subsequently, the models were then evaluated using 16S 
rRNA sequencing, as described previously in reference (12). Protocols 
were approved by the Animal Care and Use Committee of 

FIGURE 1

Diagram of experimental design. GF, germ-free; FMT, fecal microbiota transplant; PBS, phosphate buffered saline; TMAO, trimethylamine-N-oxide; 
SCFAs, short-chain fatty acids.
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GemPharmatech Co., Ltd. (No. GPTAP20220321-1). Experiments 
were performed following the Guide of Experimental Animals of the 
Ministry of Science and Technology (Beijing, China).

Preparation of probiotic Lactiplantibacillus 
plantarum HM-P2

Lactiplantibacillus plantarum HM-P2 (Patent No. CN115491329A) 
was isolated from healthy breast milk, and the strain was stored in the 
China General Microbiological Culture Collection Center.1 Its 
probiotic properties have been disclosed in our granted patents 
“CN115491329A” and summarized in Supplementary material S1.

Lactiplantibacillus plantarum HM-P2 was selected based on its 
evaluated probiotic functions. This strain exhibits high bile salt 
tolerance, enabling it to withstand the high bile salt environment of 
the human body (such as in the small intestine). It also demonstrates 
strong inhibitory effects against pathogenic Escherichia coli and/or 
Staphylococcus aureus. Therefore, HM-P2 holds promising potential 
for development and application in the food industry. Furthermore, 
this strain has received granted both a domestic invention patent in 
China (CN115491329A) as well as an international PCT (Patent 
Cooperation Treaty) patent (WO2024060768). Therefore, this study 
has selected HM-P2 for a detailed investigation into its mechanisms 
for promoting maternal health during pregnancy.

Probiotic intervention experiment design

This study aims to determine the direct effects of HM-P2 on 
maternal health through intervention in humanized pregnant mice. 
FMT GF mice (n = 10) were randomly assigned to two experimental 
groups, named the control and L. plantarum HM-P2 groups. Both 
groups received standard chow feeding (100 µL phosphate buffered 
saline [PBS] solution) and standard chow + L. plantarum HM-P2, 
separately. Probiotic was pre-tested with three doses (low-1*108, 
middle-1*109, and high-1*1010 CFU/mL), and based on in vitro safety 
evaluations and literature references (see Supplementary material S2), 
the middle dose (1 × 10⁹) was ultimately selected for the FMT 
experiment. Probiotic was fed at a final dose of 1*109 CFU/mL in PBS 
solution by oral gavage (2 days/week, p.o., 3 weeks). The GF mice 
were housed in six separate isolators with a 12-h light/dark cycle in a 
temperature-controlled (22°C ± 1°C) and humidity-controlled 
(55% ± 10%) room. The mice were allowed ad libitum access to germ-
free water throughout the experimental period. Health status was 
monitored daily throughout the experiment; feces were collected at 
0 d, 1 d, 7 d, 14 d, and 18 d of the experiment, and then stored at 
−80°C for short-chain fatty acids (SCFAs), bile acids, tryptophan 
analysis, and metagenome analysis. After delivery, the number of 
offspring was recorded. At the end of the experiment, mice were 
fasted overnight and sacrificed, and the fresh weight of tissues (total 
and left liver, spleen, and kidney) was measured. Blood was collected 
and centrifuged at 3,000 rpm for 10 min and stored in a − 80°C 
environment until further analysis.

1 CGMCC, https://cgmcc.net/, No. 23651.

Evaluation of Lactiplantibacillus plantarum 
HM-P2 colonization

Fecal samples were collected and shotgun metagenomic 
sequenced to verify the colonization of the L. plantarum strain at 0 d, 
1 d, 7 d, 14 d, and 18 d.

Morphological analysis

Small portions of the middle cecum and colon were washed, 
placed in a 10% phosphate-buffered formalin solution, and stored at 
room temperature for histological analysis. The evaluated 
morphological indicators were villi height, top crypt depth, and 
middle crypt depth. Morphologic analysis was performed on 10 well-
oriented and intact villi and 10 crypt foci from each section of the 
cecum and colon.

Determination of cytokine and 
immunoglobulin levels using multiplexed 
bead-based immunoassays

Multiplexed bead-based immunoassays (Luminex 200 system, 
Thermo Fisher Scientific, United States) were performed to detect 
serum levels of cytokines IFN-γ , TGF-β -1, TNF-α , IL-10, IL-8, 
IL-6, IL-4, TGF-α , IL-22, IL-17, IL1-β , and IL1-α , as well as 
immune factors such as IgM and IgG, using mice ELISA kits 
(Cloud-Clone Corp., Katy, TX, United  States) according to the 
manufacturer’s instructions.

Shotgun metagenomic sequencing

Bacterial genomic DNA was extracted from 100 mg of 
homogenized fecal samples using the QIAamp DNA Stool Mini Kit 
(Qiagen, Hilden, Germany) following the manufacturer’s protocol. 
DNA was examined by 0.8% agarose gel electrophoresis, and the OD 
value of 260/280 was determined by spectrophotometry. A 
HiSeq 2,500 (Illumina, CA, United States) with 150 bp paired-end 
reads was used to perform shotgun metagenomic sequencing of all 
the DNA samples. FastQC v0.11.92 was used to check the quality of 
raw sequencing reads. KneadData v0.7.23 was used to trim and 
remove host sequences. MetaPhlAn2 v2.2.0 (13) was performed for 
taxonomy annotation and profiling, and HUMAnN2 v0.11.2 (14) was 
used to perform functional annotation in default settings. After 
we  get the abundances of microbiomes, genes, and metabolic 
pathways, MEGAHIT v1.2.9 (15) was used to construct metagenome-
assembled genomes, Prodigal v2.6.3 (16) was used to predict open 
reading frames, MetaBAT v2.12.1 (17) was used for genome binning, 
genome quality was checked by CheckM v1.1.3 (18), and taxonomy 
was identified by GTDB-Tk v1.0.2 (19).

2 https://www.bioinformatics.babraham.ac.uk/projects/fastqc

3 https://bitbucket.org/biobakery/kneaddata
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Determination of short-chain fatty acids

For fecal samples at 0 d, 1 d, 7 d, 14 d, and 18 d, and cecum content 
samples at the end of the experiment (18 d), seven SCFAs (acetic acid, 
butyric acid, caproic acid, propionic acid, isovaleric acid, isobutyric acid, 
and valeric acid) were determined using a Trace 1,310 gas chromatograph 
coupled with an ISQ LT (Thermo Fisher Scientific, United States) (20). 
Briefly, 100 mg of sample was extracted in 50 μL of 15% phosphoric acid 
with 100 μL of 125 μg/mL 4-methyl valeric acid solution as an internal 
standard and 400 μL of ether and was centrifuged at 4°C for 10 min at 
12000 rpm after vortexing for 1 min, and the supernatant was transferred 
into the vial before GC–MS analysis. An Agilent HP-INNOWAX 
(30 m × 0.25 mm ID × 0.25 μm) column was used. Helium was used as 
the carrier gas at 1 mL/min. Injection was made in split mode at 10:1 
with an injection volume of 1 μL and an injector temperature of 
250°C. The temperatures of the ion source and interface were 300°C and 
250°C, respectively. The column temperature was programmed to 
increase from an initial temperature of 90°C, followed by an increase to 
120°C at 10°C/min, to 150°C at 5°C/min, and finally to 250°C at 25°C/
min, which was maintained for 2 min (total run time of 15 min). Mass 
spectrometric detection of metabolites was performed on ISQ LT 
(Thermo Fisher Scientific, United States) with electron impact ionization 
mode. Single ion monitoring (SIM) mode was used with an electron 
energy of 70 eV. Quantification was made using external standard curves.

Measurement of tryptophan catabolites

For fecal samples at 0 d, 1 d, 7 d, 14 d, and 18 d, and cecum 
content samples at the end of the experiment (18 d), 30 tryptophan 
catabolites were determined using a Vanquish UHPLC (Thermo 
Fisher Scientific, Haverhill, MA) coupled with ABI Sciex 5,000 mass 
spectrometer (ABI Sciex, Concord, ON, Canada) according to 
previous work (21). Briefly, the sample was extracted in 100 μL of 
80% methanol aqueous solution, grinding for 60 s, then 900 μL of 
10% methanol aqueous solution, grinding for 120 s. Centrifugation 
was carried out at 12,000 rpm at 4°C for 10 min, and the supernatant 
was filtered; an equal amount of the internal standard solution was 
added and then transferred into the vial for analysis. An ACQUITY 
UPLC HSS T3 column (150 × 2.1 mm, 1.8 μm) (Waters, Milford, 
MA, United  States) was used for chromatographic separation at 
40°C. The mobile phase was composed of solvent A (0.1% formic 
acid in water) and solvent B (0.1% formic acid in methanol). The 
gradient was: 0 ~ 2 min, 1% B; 2 ~ 3 min, 1 ~ 30% B; 3 ~ 3.5 min, 
30% B; 4.5 ~ 8 min, 30 ~ 50% B; 8 ~ 10 min, 50 ~ 95% B; 10 ~ 11 min, 
95% B; 11 ~ 17 min, 95 ~ 1% B. The injection volume was 3 μL. The 
mass parameters were set as the following: 45 arbitrary units (AU), 
13 AU, 1 AU, 350°C, and 350°C for sheath gas, aux gas, sweep gas, 
ion transfer tube, and vaporizer temperature, respectively. The ion 
source was operated using heated electrospray ionization (ESI) with 
an ion spray voltage set at 5500 V in positive ion mode. Polarity 
switching and scheduled selected reaction monitoring (SRM) were 
employed. Quantification was made using external standard curves.

Bile acid analysis

For fecal samples at 0 d, 1 d, 7 d, 14 d, and 18 d, and colonic 
content samples at the end of the experiment (18 d), 39 bile acids were 

determined using an LC-30 (Shimadzu Corporation, Kyoto, Japan) 
tandem ABI Sciex 6,500 Plus mass spectrometry (ABI Sciex, Concord, 
ON, Canada) according to previous work (22). Briefly, the sample was 
extracted in 400 μL of methanol, vortexing and shaking for 60 s, 
adding 100 mg of glass beads, and grinding at 55 Hz for 60 s. Repeat 
the above operation at least twice: ultrasonic at room temperature for 
30 min, centrifuged at 12,000 rpm at 4°C for 10 min, and 200 μL of 
supernatant mixed with 400 μL of water. Take 200 μL of supernatant 
and add 400 μL of water; vortex for 30 s; take 300 μL of supernatant 
and filter it through a 0.22 μm membrane; vortex for 30 s. After 
centrifugation, take 20 μL of supernatant and dilute it 10 times with 
180 μL of 30% methanol solution, and add it to the assay vial. An 
ACQUITY UPLC® BEH C18 column (2.1 × 100 mm, 1.7 μm) (Waters, 
Milford, MA, United States) was used for chromatographic separation 
at 40°C. The injection volume was 5 μL. The mobile phase was 
composed of solvent A (0.01% formic acid in water) and solvent B 
(100% acetonitrile [ACN]). The gradient was 0 ~ 9 min, 30% B; 
9 ~ 14 min, 30 ~ 36% B; 14 ~ 18 min, 36 ~ 38% B; 18 ~ 24 min, 
38 ~ 50% B; 24 ~ 32 min, 50 ~ 75% B; 32 ~ 33 min, 75 ~ 90% B; 
33 ~ 35.5 min, 90 ~ 30% B. The flow rate was 5 μL/min. The mass 
parameters were set as the following: the temperature of the ion source 
was 500°C, curtain gas (CUR) 30 psi, source gas 1 (GAS1) 30 psi, and 
source gas 2 (GAS2) 35 psi. The ion source was operated using heated 
electrospray ionization (ESI) with an ion spray voltage set at −4,500 V 
in negative ion mode. Multiple reaction monitoring (MRM) was 
employed. Quantification was made using external standard curves.

Serum choline derivatives

For serum samples at the end of the experiment (18 d), five 
choline derivatives (choline, betaine, trimethylamine N-oxide 
[TMAO], creatinine, and L-carnitine) were determined using a Jasper 
HPLC with SCIEX 4500MD Triple Quadrupole mass spectrometry 
(ABI Sciex, Concord, ON, Canada) according to previous work (23). 
Briefly, samples were added to a 2 mL centrifuge tube; 10 μL of 
internal standard solution, then add 750 μL of 1% formic acid-
acetonitrile solution, vortex, centrifuge for 10 min at 12,000 rpm at 
4°C, and then resolve and filter the supernatant by 0.22 μm membrane 
for analysis. An ACQUITY UPLC® BEH HILIC column 
(2.1 × 100 mm, 1.7 μm) (Waters, Milford, MA, United States) was 
used for chromatographic separation at 40°C. The injection volume 
was 5 μL. The mobile phase was composed of solvent A (10 mM 
ammonium formate) and solvent B (100% ACN). The gradient was 
0 ~ 1 min, 80% B; 1 ~ 2 min, 80 ~ 70% B; 2 ~ 2.5 min, 70% B; 
2.5 ~ 3 min, 70 ~ 50% B; 3 ~ 3.5 min, 50% B; 3.5 ~ 4 min, 50 ~ 80% B; 
4 ~ 6 min, 80% B. The flow rate was 0.4 mL/min. The mass parameters 
were set as the following: The temperature of the ion source was 
500°C, CUR 30 psi, GAS1 5 psi, and GAS2 50 psi. The ion source was 
operated using heated ESI with an ion spray voltage set at 5000 V in 
positive ion mode. Multiple reaction monitoring (MRM) was 
employed. Quantification was made using external standard curves.

Serum untargeted metabolome analysis

For serum samples at the end of the experiment (18 d), untargeted 
metabolome was determined using a Vanquish UHPLC System with 
Orbitrap Exploris 120 MS (Thermo Fisher Scientific, United States) (24). 
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Briefly, samples were thawed at 4°C, vortexed for 1 min, and mixed 
evenly; then they were transferred into a centrifuge tube and vortexed 
for 1 min after adding 0.4 mL methanol; then they were centrifuged for 
10 min at 12,000 rpm at 4°C, and the supernatant was dried and 
resolved using 0.15 mL 2-chloro-l-phenylalanine (4 ppm) solution, and 
then filtered by 0.22 µm membrane and detected by LC–MS. An 
ACQUITY UPLC HSS T3 column (150 × 2.1 mm, 1.8 μm) (Waters, 
Milford, MA, USA) was used for chromatographic separation at 
40°C. The flow rate and injection volume were set at 0.25 mL/min and 
2 μL, respectively. For LC-ESI+-MS analysis, the mobile phases consisted 
of (B2) 0.1% formic acid in acetonitrile (v/v) and (A2) 0.1% formic acid 
in water (v/v). Separation was conducted under the following gradient: 
0 ~ 1 min, 2% B2; 1 ~ 9 min, 2% ~ 50% B2; 9 ~ 12 min, 50% ~ 98% B2; 
12 ~ 13.5 min, 98% B2; 13.5 ~ 14 min, 98% ~ 2% B2; 14 ~ 20 min, 2% 
B2. For LC-ESI-MS analysis, the analytes were carried out with (B3) 
acetonitrile and (A3) ammonium formate (5 mM). Separation was 
conducted under the following gradient: 0 ~ 1 min, 2% B3; 1 ~ 9 min, 
2% ~ 50% B3; 9 ~ 12 min, 50% ~ 98% B3; 12 ~ 13.5 min, 98% B3; 
13.5 ~ 14 min, 98% ~ 2% B3; 14 ~ 17 min, 2% B3. The MS system with 
a heated electrospray ionization (ESI) source was operated in both 
positive and negative ion modes. The parameters were as follows: 
3.50 kV and −2.50 kV for ESI+ and ESI− source voltage and 325°C 
capillary temperature. Capillary voltages for negative and positive 
ionization modes were set at 2500 and 3,500 V, respectively. MS1 range 
was 100–1,000 m/z, and the number of data-dependent scans per cycle 
was 4; MS/MS resolving power was 15,000 FWHM, normalized 
collision energy was 30%, and dynamic exclusion time was automatic.

The raw MS data were first converted to mzXML format by 
MSConvert in the ProteoWizard software package (v3.0.8789) (25). 
and processed using XCMS (26) for feature detection, retention time 
correction, and alignment. The metabolites were identified by accurate 
mass (< 30 ppm) and MS/MS data, which were matched with HMDB,4 
Massbank,5 LipidMaps,6 mzCloud,7 and KEGG.8

Statistical analysis

Data were analyzed by R language (Version 4.3.1) (27). 
Nonparametric tests of independent variables (tissue weights, immune 
factors, and morphological and SCFAs) between the two groups were 
performed using the Wilcoxon test.

Relative abundance of gut microbial genera, α -diversity, β
-diversity, LEfSe differential analysis, and correlation analysis were 
performed in the R library “microeco” (version 0.5.1) (28). Functional 
profiling of metagenomes was analyzed using MicrobiomeAnalyst 2.0 
(29).9 Untargeted metabolome, SCFAs, bile acids, and tryptophan were 
analyzed and visualized for differential analysis and PLS-DA, and 
enrichment analysis of targeted metabolites was performed in 
MetaboAnalyst 5.0 (30).10 Only metabolites present in >50% of the 

4 http://www.hmdb.ca

5 http://www.massbank.jp/

6 http://www.lipidmaps.org

7 https://www.mzcloud.org

8 http://www.genome.jp/kegg/

9 https://www.microbiomeanalyst.ca/

10 https://www.metaboanalyst.ca/

samples were kept for further analysis and then log2 normalized and 
Pareto-scaled before further statistical analysis. Association analysis 
of microbial abundance, contents of SCFA, bile acids, tryptophan 
metabolites, and morphological indexes was performed and visualized 
in the Hmisc package and heatmap package in R using Spearman rank 
correlation. All statistical analyses were considered significant at an 
adjusted p value less than 0.05 level unless specifically noted.

Diagrams of the experiment design and mechanism were 
visualized using icons from Bioicons11 and Flaticon,12 and graphs were 
paneled using Inkscape 1.3.13

Results

Colonization of Lactiplantibacillus 
plantarum HM-P2 in humanized GF mice

Lactiplantibacillus plantarum HM-P2 treatment significantly 
increased (p = 0.032) the relative abundance of fecal L. plantarum of 
mice at 7 d of gestation, compared with the control group (Figure 2A). 
This showed that L. plantarum HM-P2 successfully colonized the gut 
of GF mice at this stage of gestation.

Lactiplantibacillus plantarum HM-P2 
administration altered fecal metagenome 
composition and pathway

Germ-free mice were fecal microbiota transplanted with stool 
from healthy pregnant women and were fed a diet supplemented with 
L. plantarum HM-P2 from gestation to delivery (0–18 d). The 
composition and dynamic changes of the stool microbiome after 
HM-P2 treatment were studied using shotgun metagenomic 
sequencing. A total of 13,636,188,396 bp raw sequences were obtained 
from 50 samples. The average raw data of 272,723,767.9 bp was 
obtained, and then the data were assigned to 5 kingdoms, 104 phyla, 
85 classes, 163 orders, 348 families, 1,315 genera, and 5,786 species.

Composition analysis showed that Firmicutes (~50%), Bacteroids 
(~20%), Verrucomicrobia (~15%), Proteobacteria (<5%), 
Actinobacteria (<5%), Fusobacteria, and so on, were the dominant 
phyla in all samples (Figure 2B). At the genus level, Akkermansia, 
Bacteroids, Lactobacillus, Clostridium, Bifidobacterium, Roseburia, 
Eubacterium, Phascolarctobacterium, Butyricimonas, and Blautia 
were the dominant genera (Figure 2C).

𝛼-diversity indexes (Shannon) from 0 to 18 d of gestation 
showed that no significant difference was found between the HM-P2 
and control groups (Figure  2D). Principal coordinate analysis 
(PCoA) showed that there was a moderate separation of the HM-P2 
group and control group, and PC1 and PC2 together explained 
57.1% of the total difference (Figure 2E). Bray-Curtis distance was 
not significantly different between the HM-P2 group and the control 
group (Figure 2F).

11 https://bioicons.com

12 https://www.flaticon.com

13 https://inkscape.org
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Differential analysis by linear discriminant analysis Effect 
Size (LefSe) (“Group” as the main effect and “Phase” as the 
sub-effect) showed that L. reuteri, Anaerofilum sp. An201, and 
Gemmiger were significantly higher (adjusted p < 0.05) in the 
HM-P2 group, while Bacteroides thetaiotaomicron sp. CAG:40, 
Bacteroides sp.  1_1_14, Bacteroides fragilis, Subdoligranulum 
sp.  4_3_54A2FAA, and Ruthenibacterium lactatiformans were 
significantly higher in the control group (adjusted p < 0.05) 
(Figure 2G).

A total of 89 metagenomic genes were differentially expressed in 
the HM-P2 group compared with the control group at 18 d. These 
differentially expressed genes were significantly (p < 0.05) enriched 
in starch and sucrose metabolism (see Supplementary Table S1).

Lactiplantibacillus plantarum HM-P2 
treatment altered colon and cecum 
morphology

The influence of human breast milk-derived L. plantarum 
HM-P2 on the morphometric indices of the cecum and colon was 
measured (Figure 3A). In the colon, top crypt depth was significantly 
higher in the HM-P2 group than the control group (Figure 3B); 
colon middle crypt depth showed no significant difference between 
the two groups (Figure  3C). In the cecum, crypt depth was 
significantly higher in the control group compared with the HM-P2 
group (Figure 3D).

Lactiplantibacillus plantarum HM-P2 
administration changed microbial bile 
acids and tryptophan metabolites in fecal

In fecal samples, the contents and changes of microbial bile acids 
are shown in Figure 4A. Among them, the contents of primary bile 
acids (unconjugated, ursocholic acid [UCA; Figure 4B), allo-cholic 
acid (ACA; Figure  4C)] and secondary bile acids [unconjugated, 
isolithocholic acid (isoLCA; Figure  4D)] showed significant 
differences between the HM-P2 and control groups. Other bile acids 
were not significantly different between the two groups.

In fecal samples, the contents and changes of 21 tryptophan 
metabolites are shown in Figure 4E. Among them, the concentration of 
serotonin (5-hydroxytryptamine, 5-HT) revealed a significant difference 
between the HM-P2 and control groups (Figure  4F). The other 
tryptophan metabolites were not significant between the two groups.

Lactiplantibacillus plantarum HM-P2 
administration altered microbial 
short-chain fatty acids and bile acids in 
cecum contents

The contents of short-chain fatty acids (SCFAs) in cecum contents 
are shown in Figure 5A. Compared to the mice in the control group, 
caproic acid significantly increased in the HM-P2 group at 18 d of 
gestation (Figure 5B), and other SCFAs (acetic acid, propionic acid, 

FIGURE 2

Effects of L. plantarum HM-P2 administration on gut metagenome of GF mice at 0, 1, 7, 14, and 18 d of gestation. (A) Relative abundance of L. 
plantarum. (B) Composition and changes of gut microbiome at phylum level. (C) Composition and changes of gut microbiome at the genus 
level. (D) Change of α-diversity (Shannon) index. (E) Principal coordinate analysis (PCoA) plot. (F) β-diversity index (Bray-Curtis distance). 
(G) Significant difference in microbes by linear discriminant analysis Effect Size. p-values of the Wilcoxon tests are labeled. “ns,” not significant (at 
p < 0.05 level).
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FIGURE 3

Effects of L. plantarum HM-P2 treatment on intestinal morphology. (A) Hematoxylin and eosin (H&E) images of the cecum and colon of GF mice. 
Bars = 50 μm. (B) Colon top crypt depth. (C) Colon middle crypt depth. (D) Cecum crypt depth. p-values of the Wilcoxon tests are labeled. “ns,” not 
significant (at p < 0.05 level).

FIGURE 4

Effects of L. plantarum HM-P2 administration on fecal metabolites of GF mice at 0, 1, 7, 14, and 18 d of gestation. (A) Heatmap of microbial bile acids. 
(B) Ursocholic acid (UCA). (C) Allo-cholic acid (ACA). (D) Isolithocholic acid (isoLCA). (E) Heatmap of microbial tryptophans. (F) Serotonin. p-values of 
the Wilcoxon tests are labeled. “ns,” not significant (at p < 0.05 level).
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isovaleric acid, valeric acid, and isobutyric acid) showed no significant 
difference between the two groups at 18 d of gestation.

The contents of bile acids in the cecum contents are shown in 
Figure 5C. Among 30 identified bile acids, allolithocholic acid was 
significantly higher in the HM-P2 group at 18 d of gestation compared 
with the control group (Figure  5D). Other bile acids were not 
significantly different between the two groups.

Lactiplantibacillus plantarum HM-P2 
administration changed serum 
metabolome

Untargeted metabolites of serum samples at 18 d of gestation 
were analyzed in both positive and negative modes. A total of 448 
(287 positive modes and 161 negative modes) serum metabolites 
were identified and quantified, with the top  30 most abundant 

metabolites presented in Figure  6A. Sparse partial least-squares 
discriminant analysis (sPLS-DA) showed that there were clear 
differences between these two groups (Figure 6B). There were 17 
positive and 6 negative metabolites significantly different in the 
control and HM-P2 groups. Enrichment analysis of significant 
difference metabolites showed that they were enriched mainly in fatty 
acid biosynthesis, glycerophospholipid metabolism (Figure 6C).

In addition, compared with the control group, oral 
administration of L. plantarum HM-P2 during gestation of 
humanized GF mice showed no significant differences on the 
offspring numbers (See Supplementary Figure S1), and the fresh 
weight of five types of tissues (liver, left lobe of liver, left and right 
kidney, and spleen; See Supplementary Table S2), and SCFAs of fecal 
(See Supplementary Figure S2), and tryptophan of cecum contents 
(See Supplementary Figure S3), and serum immune factors, such as 
immunoglobulin M (IgM), and immunoglobulin G (IgG), and 
inflammatory cytokine factors, such as interferon-gamma (IFN-γ), 

FIGURE 5

Effects of L. plantarum HM-P2 administration on metabolites of cecum contents of GF mice at 18 d of gestation. (A) Heatmap of SCFA. (B) Caproic 
acid. (C) Heatmap of bile acids. (D) Allolithocholic acid. p-values of the Wilcoxon tests are labeled. “ns,” not significant (at p < 0.05 level).
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transforming growth factor-beta-1 (TGF-β-1), tumor necrosis factor 
alpha (TNF-α), interleukin-10 (IL-10), interleukin-8 (IL-8), 
interleukin-6 (IL-6), interleukin-4 (IL-4), transforming growth 
factor-alpha TGF-α, interleukin-22 (IL-22), interleukin-17 (IL-17), 
interleukin 1-beta (IL1-β), interleukin 1-alpha (IL1-α; See 
Supplementary Table S3), and the serum choline derivatives 
(choline, trimethylamine N-oxide (TMAO), betaine, creatinine, and 
carnitine; See Supplementary Figure S4).

SCFA-encoding genes were associated 
with SCFA contents

Spearman correlation showed that microbial genes encoding 
SCFA biosynthesis were significantly correlated with SCFA contents. 
Fecal microbial acyl-CoA dehydrogenase (acdA) was negatively 
correlated with the content of fecal acetic acid, butyrate kinase 
(buk) was positively correlated with the content of fecal butyric acid 
(p < 0.05, rho = 0.685) and isobutyric acid (p < 0.05, rho = 0.77), 
while 3-sulfolactaldehyde reductase (yihU) showed an opposite 
relationship (p < 0.05, rho = −0.72) with butyric acid; propionate 
catabolism operon regulatory protein (prpR) was negatively 
correlated with the content of fecal propionic acid (p < 0.05, 
rho = −0.673; Figure 7A).

Association of gut microbiome, microbial 
metabolites, and intestinal morphometric 
indices

To further confirm probiotic effects on gut microbiome, microbial 
metabolites, and intestinal morphometric indices, Spearman 
correlation analysis was performed. Results showed that gut microbes 
were associated with those significantly different bile acids and 
tryptophans. Subdoligranulum sp. 4–3-54A2FAA and Ruthenibacterium 
lactatiformans were negatively correlated with cecum caproic acid 
(p < 0.05, both rho = −0.74), and B. bifidum was positively correlated 
with fecal serotonin (p < 0.05, rho = 0.48; Figure 7B).

Discussion

The experiment investigating the effects of L. plantarum HM-P2 on 
the intestinal morphology, microbiome, serum metabolome, immune 
factors, and gut microbial metabolites of gestational humanized germ-free 
mice has provided valuable insights into the potential health benefits of 
probiotic administration during pregnancy. The results of this study 
contribute to our understanding of the effects of L. plantarum HM-P2 on 
the microbial metabolism and health of pregnant mice (Figure 8). The 
results of the experiment revealed several significant outcomes.

FIGURE 6

Effects of L. plantarum HM-P2 administration on serum metabolites of GF mice at 18 d of gestation. (A) Heatmap of top-30 significantly different 
metabolites of both positive and negative modes. (B) Sparse partial least-squares discriminant analysis scores plot. (C) KEGG enrichment dot plot of 
significantly different metabolites. The size of the dots represents the number of metabolites, and the color intensity indicates the p-value.
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Firstly, the administration of L. plantarum HM-P2 led to 
alterations in the gut morphology and gut microbiota composition, 
promoting the top crypt depth of the colon and the abundance of 
L. reuteri, Anaerofilum sp. An201 (Ruminococcaceae family), and 

Gemmiger of gestational GF mice. This effect has also been reported 
for other Lactobacillus species. For example, L. paracasei has also been 
shown to decrease crypt depth in the gut, which is associated with 
improved gut morphology and barrier function. L. rhamnosus GG 

FIGURE 7

Association analysis of intestinal morphology, microbes, microbial genes, and microbial metabolites. (A) Spearman correlation and heatmap of gut 
microbial SCFA-biosynthesis genes and fecal SCFAs. (B) Spearman correlation and heatmap of the gut microbiome with intestinal morphology and 
microbial metabolites. Cell color represents values of Spearman rho. *, p < 0.05; **, p < 0.01; and ***, p < 0.001.
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supplementation increased the ratio of villus height to crypt depth, 
indicating a positive effect on gut morphology (31). L. reuteri is a 
commensal microbe in the gut of humans and animals, and it could 
modulate the microbial composition and diversity of preterm infants 
and promote the development of the piglets’ intestinal mucosal 
system (32, 33). Gemmiger is a butyrate-producing microbe with 
anti-inflammatory and mucosal barrier-maintaining properties (34). 
Several other strains of L. plantarum have been shown to significantly 
influence the intestinal microbiome. L. plantarum FZU3013 could 
make structural changes in the intestinal microbiome of the mice, in 
particular by modulating the relative abundance of some function-
related microbial phylotypes (35). LP9010 reorganized the gut 
microbiome by increasing the relative abundance of Bacteroidetes 
and Firmicutes and decreasing the relative abundance of 
Proteobacteria and Verrucomicrobia (36). Lp082 improved the 
biological barrier by increasing the diversity, optimizing the species 
composition and the structure of the gut microbiota, and increasing 
bacteria production of SCFAs. L. plantarum DP189 reshaped the gut 
microbiota in Parkinson’s disease mice by reducing the number of 
pathogenic bacteria (Proteobacteria and Actinobacteria) and 
increasing the abundance of probiotics (Lactobacillus and Prevotella) 
(37). However, other strains showed no significant effects on gut 
microbiome. Oral administration of L. plantarum over 14 days did 
not change the gut microbiota composition, indicated by no 
significant difference in α and β diversities (38). Also, the digestion of 
L. plantarum resulted in higher levels of Lactobacillus in the digestive 
tract but did not result in global alterations to the intestinal 
microbiome (39). These changes in the microbiome are indicative of 
the probiotic’s ability to modulate the gut environment and promote 
a more favorable microbial balance.

SCFAs are the primary constituents of the intestinal tract and are 
important metabolites of gut microbiota, but their impact on 
metabolism during pregnancy is still less reported. Numerous studies 
have demonstrated the immunomodulatory properties of SCFAs, as 

well as their ability to lower pro-inflammatory factor expression and 
the inflammatory response. Administration of L. plantarum HM-P2 
could increase caproic acid in the cecum of GF mice. Previous studies 
showed that the content of propionic and linear caproic acids might 
be a crucial factor in maintaining lower anthropometric measurements 
during pregnancy (40). SCFAs can protect the intestinal epithelial 
barrier, encourage mucin secretion in goblet cells, and preserve the 
integrity and permeability of intestinal epithelial cells (41). This 
implied that L. plantarum HM-P2 could potentially improve intestinal 
health by modulating the contents of caproic acid during pregnancy.

Bile acids are crucial signaling molecules that have a tight 
connection to the metabolism of cholesterol. Several studies showed 
that the biotransformation of primary bile acids by intestinal bacteria 
can decrease blood lipid levels and prevent fat accumulation in the 
liver (42). Previous studies have shown that several probiotic 
L. plantarum strains, such as HAC01, could alleviate hyperglycemia 
and type 2 diabetes mellitus by regulating glucose metabolism in the 
liver. L. plantarum HAC01 led to an increase in butyric acid, which 
could have a beneficial effect in the diabetic model (43). L. plantarum 
H-87 could inhibit liver fat deposition, insulin resistance, and lipid 
digestion by changing bile acid enterohepatic circulation and 
eventually alleviate high-fat-diet-induced obesity (44). L. plantarum 
69–2 and galactooligosaccharides could activate the hepatic 
AMP-activated protein kinase and the histone/protein deacetylase 
SIRT1 signaling pathway by regulating the gut microbiota and 
metabolites through the liver-gut axis to restore the hepatic 
antioxidant activity to alleviate aging (45). In this study, administration 
of L. plantarum HM-P2 could increase fecal primary bile acids and 
secondary bile acids both in the cecum and fecal, showing their 
potential benefits in regulating host lipid metabolism.

Tryptophan is obtained mainly from the diet and is necessary to 
the human body. Current evidence supports the fact that tryptophan 
metabolite derived from gut microbiota is essential for the mucosal 
immune system. In this study, the administration of L. plantarum 

FIGURE 8

Graphical summary of the effects of oral administration of human milk probiotic L. plantarum HM-P2 on gestational health of humanized GF mice.
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HM-P2 could also increase fecal serotonin. Serotonin is a broadly 
distributed neurotransmitter in brain regions and affects a variety of 
functions, including affective mood, impulsivity, learning and 
memory, attention, sleep, aggression, and neurovegetative control 
(46). Serotonin showed increased concentration in pregnant women, 
and it plays an important role in maintaining pregnancy and 
promoting the health of newborns (47). Previous studies also showed 
that L. plantarum LP9010 supplementation inhibited 
neuroinflammation by up-regulating the levels of neurotransmitters, 
especially serotonin, niacin, and 5-hydroxyindole acetic acid (36). 
The level of indole-3-acetic acid, an important tryptophan metabolite 
in the liver, serum, and colon, was elevated after Lactobacillus + Trp 
treatment (48), and indole-3-lactic acid in L. plantarum DPUL-
S164-TM plays a key role in improving intestinal barrier function and 
alleviating inflammation (49). Probiotics can promote the synthesis 
of neurotransmitters such as serotonin precursor tryptophan and 
gamma-aminobutyric acid (GABA), thereby contributing to 
emotional stability. Low levels of tryptophan can lead to reduced 
serotonin and GABA production, increasing the risk of depression 
(50). All the pieces of evidence above indicate the potential gestational 
benefits of HM-P2  in maintaining pregnancy and promoting 
neonatal health.

TMAO, a typical uremic toxin, is related to the consumption of 
quaternary amines, which are well-known bacterial osmoprotectants 
and are frequently found in fruits, vegetables, meat, and seafood. 
These amines include betaine, choline, and L-carnitine, and they are 
highly correlated with the risks of atherosclerosis and cardiovascular 
disease. Although no significance was found in this study, other 
L. plantarum strains have been found to reduce serum TMAO levels 
in mice challenged with choline, with L. plantarum LP1145 showing 
a significant effect (51).

Furthermore, although several L. plantarum strains have been 
shown to have anti-inflammatory effects, this experiment showed that 
L. plantarum HM-P2 did not influence immune factors. Oral 
administration of L. plantarum-12 down-regulated pro-inflammatory 
factors tumor necrosis factor-α, IL-8, and IL-1β levels and up-regulated 
anti-inflammatory factor IL-10 level of mice (52). L. plantarum DP189 
increased the levels of superoxide dismutase, glutathione peroxide, and 
IL-10 and decreased the levels of malondialdehyde, reactive oxygen 
species, TNF-α, IL-6, and IL-1β (37). Lp082 optimized the immune 
barrier by reducing the content of IL-1β, IL-6, TNF-α, myeloperoxidase, 
and IFN-γ and increasing IL-10, TGF-β1, and TGF-β2, playing a 
protective role by protecting the intestinal mucosal barrier, attenuating 
the inflammatory response, and regulating microbial imbalance (53).

L. plantarum has been shown to significantly influence the serum 
metabolome of germ-free mice. Huang et  al. (6) identified key 
metabolites affected by L. plantarum CCFM8610, including 
L-methionine, D-tryptophan, indoleacrylic acid, DL-acetylcarnitine, 
and L-norleucine. This was further supported by Marco et al. (3), who 
found that L. plantarum adapts to the gut habitat by upregulating genes 
involved in carbohydrate transport and metabolism. L. plantarum also 
showed regulatory effects on glucose and lipid metabolism (54, 55). This 
study also showed that L. plantarum HM-P2 impacted the serum 
metabolome in several metabolic pathways, such as phosphonate and 
phosphinate metabolism, valine, leucine, and isoleucine biosynthesis, 
glycerophospholipid metabolism, and fatty acid biosynthesis, suggesting 
that L. plantarum HM-P2 may have broader systemic effects beyond the 
gut, potentially influencing overall metabolic health.

Probiotic supplementation during pregnancy has been shown 
to have potential clinical benefits for both the mother and the baby. 
It may reduce the risk of preterm delivery, perinatal infections, and 
functional gastrointestinal diseases (1); increase the levels of 
immune markers in cord blood and breast milk (56); help restore 
gut microbiota balance (57); and may reduce the risk of metabolic 
syndrome in the future (58). Although research on the effects of 
L. plantarum probiotic supplementation during pregnancy in mice 
is limited, studies on other probiotic strains have shown potential 
benefits. For example, L. rhamnosus GG and L. gasseri K7 
supplementation during pregnancy and lactation in mice can 
modulate the microbiota of the mesenteric lymph nodes and 
mammary gland (59), maternal administration of L. acidophilus and 
B. infantis probiotics can promote gut development in mouse 
offspring (60), and L. fermentum CECT5716 supplementation 
during pregnancy and lactation in rats can impact the lipid profile, 
immune system, and microbiota of both the mother and offspring 
(61). These studies collectively suggest that probiotic 
supplementation during pregnancy can have beneficial effects, 
including its neuroprotective and cognitive health-promoting 
effects, but more research is needed to specifically investigate the 
effects of L. plantarum.

Limitations of the study

Due to the limited number of GF mice used in this study, the 
effects of L. plantarum HM-P2 on the offspring’s health were not 
investigated. Future studies may include examining the effects of 
L. plantarum HM-P2 on offspring gut microbial metabolism and 
health of humanized GF mice. Additionally, we may increase the 
sample size and explore the effects of L. plantarum HM-P2  in 
clinically controlled trials of gestational and gastrointestinal 
diseases such as gestational diabetes mellitus (GDM) and irritable 
bowel syndrome, functional gastrointestinal disorders, and 
necrotizing enterocolitis.
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