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Introduction: Microalgae provide a sustainable basis for protein-rich food production. 
However, human data concerning microalgae ingestion, subsequent postprandial 
amino acid (AA) availability and associated metabolic responses are minimal.

Objectives: We  investigated ingesting Arthrospira sp. (spirulina;SPR), and 
Chlorella sp. (chlorella; in ‘whole cell’ [WCC] and ‘split cell’ [SCC] forms, the 
latter proposed to improve digestibility), compared with a high-quality animal 
derived protein source (milk; MLK).

Subjects/methods: Ten participants (age; 21 ± 1y, BMI; 25 ± 1 kg·m−2) completed a 
randomised, crossover, double-blind study, partaking in 4 counterbalanced (for order) 
experimental visits. At each visit participants ingested SPR, WCC, SCC or MLK drinks 
containing 20 g protein and 75 g carbohydrate. Arterialised venous blood samples, 
indirect calorimetry and visual analogue scales were assessed postabsorptive, and 
throughout a 5 h postprandial period to measure AA, glucose, insulin and uric acid 
concentrations, whole-body energy expenditure and appetite scores, respectively.

Results: Protein ingestion increased plasma AA concentrations (p  <  0.001) to 
differing total postprandial total—and essential—AA availabilities; highest for 
MLK (86.6  ±  17.8  mmol·L−1) and SPR (84.9  ±  12.5  mmol·L−1), lowest for WCC 
(−4.1  ±  21.7  mmol·L−1; p  <  0.05), with SCC (55.7  ±  11.2  mmol·L−1) marginally 
greater than WCC (p  =  0.09). No differences (p  >  0.05) were detected between 
conditions for postprandial glucose or insulin concentrations, whole-body 
energy expenditure or appetite scores, but serum uric acid concentrations 
increased (p  < 0.05) following microalgae ingestion only.

Conclusion: Our data imply that microalgae can present a bioavailable source 
of protein for human nutrition, however, challenges remain, requiring species 
selection and/or biomass processing to overcome.
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1 Introduction

Environmental and ethical concerns surrounding contemporary 
dietary protein production (in particular animal-derived proteins) are 
driving interest in novel and sustainably produced protein sources (1, 
2). By way of example, it has been projected that by 2035, 11% of the 
overall dietary protein market will be made up by alternative proteins 
(compared with 2% in 2020) (3, 4). A particularly promising group of 
alternative, non-animal protein sources are microalgae. Microalgae 
are aquatic photosynthetic microorganisms, and in the present work 
we also include photosynthetic cyanobacteria under the broader term 
of ‘microalgae’. Literature reviews of the suitability of microalgae as a 
food source (5–9) have highlighted that their cultivation systems offer 
more sustainable production of protein compared to terrestrial crops 
and traditional animal agriculture, based on their relatively low land, 
fresh water and fertiliser requirements, as well as low CO2 emissions 
(8). Crucially, although genetically diverse (10), multiple species of 
microalgae are naturally rich in protein, on par with animal- and 
plant-based protein-rich foods or concentrates (35–80% protein) (8, 
11). Two species, Arthrospira sp. (commonly known as spirulina) and 
Chlorella sp. (referred to as chlorella), currently dominate the global 
market of microalgae in human nutrition, emerging from regionally 
traditional foods to modern micronutrient-rich supplements, typically 
consumed in small amounts (12–14). However, both species are also 
naturally high in protein (in some instances up to 70% of their dry 
weight) and, accordingly are now being considered for their potential 
to contribute to widespread human dietary protein requirements (8).

Dietary protein intake is vital to support human health. Following 
protein ingestion, amino acids absorbed into the circulation act as 
signal and substrate for the stimulation of whole-body and tissue-
specific protein synthesis, required to maintain body proteostasis, as 
well as to partly fulfil daily energy requirements (15, 16). However, 
postprandial plasma amino acid kinetics are specific to a given protein 
source, determined by various factors, including protein content of the 
food, amino acid composition, digestibility and intestinal absorption 
(17). Generally, plant-derived protein sources are considered to be of 
lesser quality in terms of human requirements, than animal-derived 
proteins (18, 19), due to typically lower and less balanced essential 
amino acid compositions and/or inferior protein digestion and 
absorption kinetics (18, 20). Microalgae protein compositions are 
typically more similar to animal-derived proteins, in that they are 
protein rich and balanced in all the essential amino acids (i.e., no 
single amino acid deficiencies) (8, 20). However, human data 
investigating the effect of their ingestion on plasma amino acid 
availability are scarce and, as such, how they compare in terms of their 
protein bioavailability is largely unknown. Devi et  al., 2018 (21) 
measured relative ileal digestibility of Arthrospira platensis in vivo in 
humans, using intrinsically labelled [13C]-A. platensis. They reported 
the average ileal digestibility of A. platensis derived essential amino 
acids as ~85%, comparable to milk proteins (22, 23). Similarly, our 
group have directly compared human plasma amino acid 
concentrations following the ingestion of spirulina and milk reporting 
them as comparable, while chlorella proteins were less bioavailable 
than both (24, 25).

A plausible explanation for these data are species differences in the 
cell wall type of spirulina and chlorella. Chlorella possesses a more 
robust cell wall structure, therefore likely less predisposed to human 
digestion (10, 26, 27). In support of a cell wall limitation, biomass 

processing steps (e.g., mechanically breaking the cell wall) have 
indicated improved protein digestibility. In vitro this is demonstrated 
by an increased release of soluble proteins following cell disruption (26, 
28, 29). Rodent models generally concur, demonstrating that chlorella 
protein is better digested (assessed via ileal digestibility and/or faecal 
nitrogen) in cell disrupted vs. unprocessed biomass (30, 31), although 
no marked improvements are observed for spirulina, suggesting that 
monogastric digestive systems may be sufficient to digest spirulina 
regardless (32). However, in the absence of human data, it is currently 
unknown if cell wall disruption methods are also sufficient to improve 
human in vivo amino acid uptakes, with chlorella of most relevance.

For novel proteins to be considered for bulk human consumption, 
other aspects of postprandial metabolism should also be evaluated. 
For instance, dietary protein ingested within a mixed meal also plays 
a role in modulating postprandial glycaemia (33), and contributes 
considerably to dietary-induced thermogenesis (34) and feelings of 
satiety (35, 36). Additionally, single-cell protein-rich novel foods (i.e., 
microalgae) fall under the FAO/WHO/UNICEF Protein Advisory 
Group recommendation to limit dietary nucleic acid (DNA and RNA) 
load to 2 g·day−1 (37, 38). A constituent of nucleic acids are purines, 
which are metabolised in the liver forming uric acid. Uric acid, if 
elevated in blood serum, represents a risk factor for various cardio-
metabolic diseases (37, 39). Microalgae are naturally rich in nucleic 
acids (~6.6 g·100 g−1 dry weight), dependent on growth phase, and 
taxonomy (e.g., chlorophyta: ~5.9 g·100 g−1 dry weight, cyanobacteria: 
~9.5 g·100 g−1 dry weight) (40) which raises concerns regarding 
hyperuricemia. Specifically, purine contents of spirulina 
(1076 mg·100 g−1) and chlorella (3182 mg·100 g−1) reported in the 
literature are far in excess of more traditional foods such as cereals and 
beans (< 50 mg·100 g−1), eggs and dairy products (<13 mg·100 g−1), and 
a variety of raw meats (69–285 mg·100 g−1) (41). These aspects of acute 
postprandial metabolism concerned with bulk microalgae ingestion 
have not been comprehensively considered in human studies, and 
such data are crucial to establish whether unprocessed microalgae are 
suitable to support human nutrition.

The primary aim of the present study was to characterise the 
postprandial plasma amino acid response following ingestion of 
isonitrogenous boluses of commercially available spirulina (SPR) and 
chlorella compared with milk protein as a high-quality reference 
protein source (42). We  investigated chlorella in both ‘whole cell’ 
[WCC; referring to the cells being intact (43)] and ‘split cell’ [SCC; 
referring to the cell walls being broken (44)] preparations to also 
assess the influence of the cell wall on postprandial plasma amino acid 
availability. We hypothesised that SCC would have a higher plasma 
amino acid availability comparable to WCC, but that both chlorella 
conditions would be lower than milk and spirulina. A secondary goal 
was to assess the impact of the ingested proteins on serum uric acid 
concentrations, whole-body energy expenditure, subjective appetite 
and postprandial glycaemic control; to achieve the latter carbohydrate 
was co-ingested with each protein bolus (45, 46).

2 Methods

2.1 Participants

Participant recruitment and data collection were carried out in the 
Nutritional Physiology Research Unit at the University of Exeter 

https://doi.org/10.3389/fnut.2024.1487778
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Williamson et al. 10.3389/fnut.2024.1487778

Frontiers in Nutrition 03 frontiersin.org

between August 2021 and May 2022. This study was approved by the 
Sport and Health Sciences Ethics Committee of the University of 
Exeter (21–07-14-A-01) in accordance with the Declaration of 
Helsinki and is registered at ClinicalTrials.Gov (NCT05401591). 
Experimental procedures, potential risks, and the purpose of the study 
were explained to the participants prior to obtaining informed written 
consent. Before their inclusion in the study, participants attended a 
screening session which consisted of assessments of body mass, 
height, blood pressure, body composition (BodPod, Life Measurement, 
Inc.), and the completion of a routine medical screening questionnaire. 
Participants were enrolled in the study after being deemed healthy 
based on these results, with the exclusion criteria of a BMI below 18.5 
or above 30 kg·m−2; high blood pressure (>140/90 mmHg); underlying 
health conditions which might affect metabolic function; known 
allergies or intolerance to drink ingredients; or regular smokers.

Fifteen young, healthy participants (age, 21 ± 1 years; BMI, 
24 ± 1 kg·m2; male:female, 8:7) were initially recruited and consented 
to take part in the present study. Three participants withdrew from the 
study due to adverse effects (vomiting) following the ingestion of a 
microalgae drink, one participant became uncontactable after their 
first visit and therefore did not complete all conditions, and one 
further participant completed the study but due to an incomplete data 
set were not used for analysis. Therefore, excluding the above 
mentioned, 10 young, healthy participants (age, 21 ± 1 years; BMI, 
25 ± 1 kg·m2; male:female, 7:3) completed this study and comprise the 
dataset. Participants’ characteristics (n = 10) are presented in Table 1.

Participants were monitored by a researcher throughout each 
of their study test days for signs of adverse events. If a participant 
had an adverse event, the test day was immediately ended to manage 
participant comfort and avoid the adverse event influencing data 
collected during the postprandial period. Where an adverse event 
occurred and the participant had not completed all other test 
conditions, the entire data set was excluded (i.e., the three 
participants who withdrew). Adverse events (vomiting) occurred in 
an additional four participants who were included in the analysis. 
The onset of these adverse events occurred after >210 min of the test 
day had been completed, missing data analysis was applied for the 
remaining data points, accounting for <4% of data sets. For three of 
these participants the adverse event was during their final visit, and 
for one participant it occurred on their third visit, however, they 
were able to return for the final condition. A flowchart of the 
described timings of adverse events for all participants (including 
those withdrawn) are detailed in Supplementary material 1. Overall, 
two adverse events occurred following SPR ingestion, five following 
WCC, and one following SCC.

2.2 Study design

In a randomised, double-blind, crossover and counterbalanced 
(for order) design, participants completed four experimental test days. 
Randomisation was performed by an independent researcher using a 
computerised randomiser. During each visit, participants ingested a 
beverage containing 20 g protein derived from milk (MLK), spirulina 
(SPR), or chlorella in a whole cell (WCC) or split cell (SCC) form. 
Arterialised-venous blood samples were collected in the 
postabsorptive state and at regular time intervals over a 5 h 
postprandial period to assess circulating amino acid, glucose, insulin, 

and uric acid concentrations. Indirect calorimetry and visual analogue 
scales (VAS) were used at regular intervals to determine energy 
expenditure, and subjective appetite and palatability scores, 
respectively. Test days for a given participant were separated by at least 
7 days to allow for complete digestion, absorption, and metabolism of 
the test proteins, and return to habitual dietary habits.

2.3 Participant diet and physical activity

Prior to taking part in the trial, participants completed a 3-day 
food record to assess habitual dietary intake on two weekdays and one 
weekend day. Records were analysed for energy and macronutrient 
intake using dedicated software (Nutritics Ltd.). Data are presented in 
Table 1. Participants were instructed to refrain from vigorous physical 
activity and alcohol consumption for 24 h before each test day. The 
evening before each test day, participants were provided with a 
standardised meal. Participants were allowed to choose between 2 
standardised meals (energy, kJ/ carbohydrate, g/ fat, g/ protein, g: Meal 
1: 1916/49/20/19, Meal 2: 2235/64/17/27) and had to adhere to the 
same choice prior to each experimental test day.

2.4 Experimental protocol

An overview of the experimental protocol is shown in Figure 1. 
On all test days, participants reported to the laboratory at 08:00 h after 
a > 12 h overnight fast and were asked to rest semi-supine on a hospital 
bed. A Teflon cannula was inserted retrograde into a dorsal hand vein, 

TABLE 1 Participant characteristics and their habitual dietary intake.

Characteristic Mean  ±  SEM (n  =  10)

Sex (m:f) 7:3

Age (years) 21.3 ± 0.9

Body mass (kg) 71.6 ± 3.3

Height (m) 1.7 ± 0.0

BMI (kg·m2) 24.5 ± 1.2

Lean mass (kg) 56.2 ± 3.4

Body fat (%) 20.5 ± 2.9

Systolic blood pressure (mmHg) 117.6 ± 3.1

Diastolic blood pressure (mmHg) 64.7 ± 1.9

Energy intake (MJ·d−1) 9.3 ± 0.8

Carbohydrate intake (g·d−1) 247.1 ± 22.5

Carbohydrate intake (g·kg BW−1·d−1) 3.5 ± 0.3

Carbohydrate intake (En %) 44.5 ± 1.3

Protein intake (g·d−1) 131.2 ± 16.8

Protein intake (g·kg BW−1·d−1) 1.9 ± 0.2

Protein intake (En %) 23.5 ± 2.5

Fat intake (g·d−1) 81.1 ± 10.4

Fat intake (g·kg BW−1·d−1) 1.1 ± 0.1

Fat intake (En %) 31.8 ± 2.3

BMI, body mass index, BW, body weight, En, energy.
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attached to a 0.9% saline infusion for patency (infusion rate 
20 mL·h−1), and placed in a heated hand unit (55°C) for subsequent 
arterialised-venous blood sampling (47). Participants completed a 
visual analogue scale (VAS) to assess subjective feelings of appetite. 
These 100 mm paper-based scales included questions regarding 
hunger, satisfaction, fullness and prospective food consumption (48). 
Afterwards, indirect calorimetry (Cortex Metalyzer 2R gas analyser; 
Cortex) measurements were collected for 20 min to record resting 
metabolic rate. A postabsorptive blood sample was then collected 
(t = 0). Participants consumed one of the four protein beverages in a 
randomised and counterbalanced (for order) manner. They were 
instructed to consume the beverages within 5 min, and drink 
completion indicated the start of the postprandial period. 
Consumption of the beverage was followed by a 5 h postprandial 
period during which 11 further arterialised venous blood samples 
were collected at t = 15, 30, 45, 60, 90, 120, 150, 180, 210, 240 and 
300 min, while subjects remained in a semi-supine position 
throughout. Further appetite VAS recordings were collected at t = 5, 
60, 120, 180, 240 and 300 min, with additional beverage palatability 
questions assessing taste, aftertaste, texture and overall palatability at 
t = 5 min. The same researcher analysed VAS scales each time to 
minimise discrepancies, with collected data used to calculate 
individual and composite appetite and palatability scores as previously 
reported (25, 49) (see section “Calculations”). Resting metabolic rates 
were determined hourly at t = 45, 105, 165, 225, 285 for 15-min 
intervals. Analysis of the last 5 min of each period was used to obtain 
average V̇ O2 and V̇ CO2 values to determine energy expenditure 
following test drink ingestion using the modified Weir equation (50) 
(see section “Calculations”).

2.5 Experimental beverage preparation

Spirulina; SPR (Bulk™, United Kingdom), whole cell chlorella; 
WCC (eChlorial®, France), and split cell chlorella; SCC (Golden Greens 
Organic Ltd., United Kingdom) were purchased in dried powder form 
from commercial suppliers. Specific growing conditions of the biomasses 

were not provided by the suppliers. Obtainable pertinent information 
was as follows: WCC was cultivated in glass tubes and the cell walls kept 
intact (43), whereas SCC was grown in pools and after drying their cell 
walls broken (44). The dried microalgae powders were used as received 
by commercial suppliers with no additional processing performed 
before beverage preparation (see below). Thorough validation of cell 
wall disruption was not possible; however, a qualitative optical 
microscopy approach was taken and provided below (see “Qualitative 
microscopy”). All protein sources were independently analysed (Premier 
Analytical Services, United Kingdom) for energy, macronutrient and 
amino acid compositions, with the details presented in Table 2. Protein 
content was calculated as nitrogen (N) × 6.25 (N determined via the 
Kjehdal method by Premier Analytical Services, United  Kingdom). 
While the presence of non-protein nitrogen-containing factors 
potentially introduces a small amount of error, we consider this to be in 
line with what is typically accepted within the food industry (51) and 
similar studies within the literature (24, 25, 52). To ensure isonitrogenous 
and isovolumetric conditions could be achieved across beverages, the 
milk protein beverage consisted of commercially obtained instant full 
cream milk powder (Nestlé UK Ltd., United Kingdom) dissolved in 
skimmed milk (Tesco Stores Ltd., United Kingdom).

Protein beverages were prepared the evening before test days by 
adding the amount of powder required (43, 32, 36, and 34 g for MLK, 
SPR, WCC and SCC, respectively) to provide 20 g protein to 200 mL 
water, or 200 mL skimmed milk (MLK condition). Maltodextrin 
(Myprotein, United Kingdom) was added to make each drink up to a 
total of 75 g of carbohydrates. Fifteen mL of artificial energy-free 
vanilla flavouring (Jordan’s Skinny Mixes, UK) and 10 mL of green 
energy-free food colouring (Tesco Stores Ltd., United Kingdom) were 
added for blinding purposes (making all drinks a dark green colour) 
and mixed for approximately 2 min using a food blender. Following 
drink consumption by the participant, an additional 100 mL was 
added to ‘rinse’ the bottle and ensure that all protein had been 
consumed, making a total fluid volume of 400 mL consumed by 
participants on each occasion. Double-blinding of the drinks was 
achieved by having a different researcher to the one performing the 
experiment prepare the drinks in a metal, non-transparent bottle ready 

FIGURE 1

Schematic representation of the experimental protocol. VAS, visual analogue scale.
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for consumption. Drinks were refrigerated at 4°C until use. Following 
ingestion of each drink, volunteers were asked to identify which 
condition they thought they had received which was noted down 
without feedback. The overall success rate for volunteers correctly 
identifying the condition was 60%. Individual successful identification 
rates were as follows: SPR, 40%; MLK, 100%; SCC, 40%; WCC, 60%, 
implying partially successful blinding, with the exception of MLK.

2.6 Blood sampling and subsequent 
analysis

Eight mL of arterialised venous blood were collected into a 
syringe at each sampling point. For each blood sample a 20 μL 

plastic capillary was filled and immediately analysed for blood 
glucose concentrations (Biosen C-Line GP+, EKF diagnostics). 
The remaining whole blood was split equally into serum separator 
tubes (BD Vacutainer SST II tubes, BD Diagnostics), and lithium 
heparin-containing tubes (BD Vacutainer LH; BD Diagnostics). 
The blood tubes were handled according to the manufacturer’s 
instructions (serum separator tubes were left at room temperature 
for 30 min to clot prior to centrifugation, lithium-heparin tubes 
were centrifuged immediately). Following centrifugation (1,300 ×
g at 4°C for 10 min) the resulting blood serum and blood plasma 
supernatants were aliquoted and stored at −80°C until 
subsequent analysis.

Serum uric acid concentrations were measured enzymatically via 
colorimetry on a Cobas 8,000 automated analyser (Roche Diagnostics) 
as described previously (37). Serum insulin concentrations were 
determined using a commercially available ELISA assay kit (DRG 
Insulin ELISA, EIA-2935, DRG International Inc., United  States) 
following the manufacturer’s instructions.

Plasma concentrations of alanine, glutamic acid, glycine, histidine, 
isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, 
threonine, tyrosine, and valine were determined by GC–MS with 
electron impact ionisation (Agilent) as previously described (25, 52). 
Briefly, to prepare samples for GC–MS, 10 μL of 2 mM norleucine were 
added as an internal standard to 500 μL of plasma and deproteinised 
on ice with 500 μL of 15% w/v 5-sulfosalcylic acid. Samples were then 
vortexed and centrifuged at 4000 × g for 10 min at 4°C. The 
supernatant was then loaded onto cation-exchange columns. Columns 
were filled with ddH2O, followed by 6 mL 0.5 M acetic acid and then 
washed 5 more times with ddH2O. Amino acids were then eluted from 
the columns with 2 mL of 6 M ammonium hydroxide. The eluate was 
dried using a Speed-Vac at 60°C and then derivatised via the addition 
of 50 μL of N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide1% 
tertbutyl-dimethylchlorosilane and 50 μL of acetonitrile, followed by 
heating at 95°C for 45 min. Derivatized samples were subsequently 
analysed on a GC–MS as previously described (25, 52).

2.7 Qualitative microscopy

Optical brightfield microscopy was used to qualitatively observe any 
differences in the commercial suppliers described whole cell- and split 
cell-chlorella preparations. See Supplementary material 2 for details.

2.8 Calculations

Modified Weir equation (50):
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TABLE 2 Nutritional content of the prepared test drinks.

MLK SPR SCC WCC

Macronutrient content

Energy (kJ) 1991.0 1681.8 1739.3 1770.4

Energy (kcal) 471.3 396.4 410.3 417.9

Protein (g) 20.0 20.0 20.0 20.0

Carbohydrate (g) 75.0 75.0 75.0 75.0

Fat (g) 10.1 0.8 2.1 2.6

Fibre (g) 0.0 2.9 4.5 5.8

Amino acid content (g)

Alanine 0.7 1.6 1.4 1.3

Arginine 0.7 1.4 1.0 1.0

Aspartic Acid 1.8 2.1 1.5 1.6

Cysteine – – 0.2 0.2

Glutamic Acid 4.7 2.8 2.0 1.8

Glycine 0.4 1.0 0.9 0.9

Histidine 0.6 0.3 0.3 0.4

Isoleucine 1.1 1.1 0.4 0.5

Leucine 2.2 1.8 1.2 1.2

Lysine 1.9 1.0 1.3 1.6

Methionine – – 0.4 0.4

Phenylalanine 1.1 0.9 0.7 0.7

Proline 2.0 0.7 0.8 0.8

Serine 1.3 1.0 0.7 0.7

Threonine 1.0 1.1 0.7 0.8

Tryptophan – – – –

Tyrosine 1.0 0.9 0.6 0.6

Valine 1.4 1.3 0.7 0.7

EAA 9.2 7.6 5.8 6.2

NEAA 12.7 11.5 9.1 9.0

TAA 21.8 19.1 14.9 15.2

MLK, milk; SPR, spirulina; SCC, split cell chlorella; WCC, whole cell chlorella; EAA, 
essential amino acids; NEAA, non-essential amino acids; TAA, sum of measured amino 
acids.
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2.9 Statistical analysis

Based on previous research using a similar randomised cross-over 
design (53, 54), sample size was calculated with differences in 
postprandial plasma essential amino acid (EAA) incremental area 
under the curve (iAUC) between protein sources as the primary 
outcome measure. A sample size of 12 participants was calculated with 
a power of 80% and a significance level of 0.05 to detect a relevant 
difference in EAA iAUC between protein sources.

For each parameter, all four conditions were compared within the 
same statistical test and analysed by a two-way ANOVA with repeated 
measures (with condition and time as factors). In the event of a 
significant main effect, Tukey’s multiple comparisons tests were 
applied to locate individual differences. Or, where the iAUC was 
calculated, a one-way ANOVA was performed to detect significant 
effects of condition. If a significant main effect was detected, Tukey’s 
multiple comparisons tests were again applied to locate individual 
differences. Statistical significance was set at p < 0.05. N = 10 unless 
stated otherwise, with missing data handled using expected-
maximisation algorithm. All statistical analysis were performed by 
using GraphPad Prism version 10 (GraphPad Software). All data are 
expressed as means with their standard errors.

3 Results

3.1 Plasma amino acid concentrations

Postabsorptive (i.e., t = 0) and postprandial plasma total amino 
acid (TAA), essential amino acid (EAA), and non-essential amino acid 
(NEAA) concentrations following protein drink ingestion are shown 
in Figures 2A,C,E. From similar postabsorptive levels, plasma TAA, 
EAA and NEAA concentrations all increased following drink 
ingestion (time effects; all p < 0.001), although to different extents 
between groups (time x condition interactions; all p < 0.001).

Postabsorptive plasma TAA concentrations (Figure 2A) for MLK, 
SPR, WCC and SCC were 1,544 ± 105, 1,514 ± 127, 1,666 ± 144 and 
1,507 ± 109 μmol·L−1, respectively (p = 0.38). Post drink ingestion, 
plasma TAA concentrations reached peaks of 2,361 ± 121, 2,344 ± 88, 
2002 ± 99 and 2093 ± 126 μmol·L−1 after 72 ± 26, 78 ± 8, 57 ± 13 and 
81 ± 7 min, in MLK, SPR, WCC and SCC, respectively. For SCC there 
was a ‘double peak’ around 45 min and again at 105 min. These data 
translated to different postprandial TAA availabilities between 
conditions, reflected by postprandial iAUC (above the baseline value) 
varying significantly (Figure  2B, p = 0.002) depending on protein 
source (MLK; 86.6 ± 17.8, SPR; 84.9 ± 12.5, WCC; −4.1 ± 21.7, SCC; 
55.7 ± 11.3 mmol·L−1). Specifically, TAA iAUC following SPR and 
MLK ingestion were similar (p = 0.99), but both were higher than 
WCC (p < 0.05) but not SCC (p > 0.05). SCC showed a trend for higher 
TAA iAUC compared with WCC (p = 0.09).

A similar pattern was seen with plasma EAA (Figure 2C), where 
from similar postabsorptive plasma concentrations (MLK 698 ± 41; 
SPR 681 ± 48; WCC 744 ± 54; SCC 665 ± 42 μmol·L−1, p = 0.39), peak 
EAA concentrations differed (p < 0.05) between MLK and SPR 
(1,171 ± 64 and 1,139 ± 52 μmol·L−1, respectively) vs. WCC and SCC 
(881 ± 48 and 894 ± 48 μmol·L−1, respectively). This translated to 
different postprandial EAA availabilities, reflected by iAUC varying 
significantly (Figure  2D, p = 0.0002) depending on protein source 

(MLK; 45.0 ± 10.0, SPR; 42.7 ± 8.6, WCC; −11.8 ± 9.9, SCC; 
14.3 ± 4.9 mmol·L−1). Specifically, EAA iAUC following SPR and MLK 
ingestion were similar (p = 0.99), both were higher than WCC 
(p < 0.001), but not SCC (p > 0.05). No differences were detected 
between chlorella conditions (p = 0.19).

For the NEAA (Figure 2E), postabsorptive plasma concentrations 
were similar across conditions (MLK 846 ± 63; SPR 832 ± 79; WCC 
922 ± 90; SCC 842 ± 66 μmol·L−1, p = 0.64) and the peak NEAA 
concentrations did not differ (1,221 ± 73, 1,250 ± 59, 1,156 ± 57 and 
1,224 ± 87 μmol·L−1 for MLK, SPR, WCC and SCC, respectively, 
p > 0.05). The NEAA postprandial iAUC (Figure 2F) varied depending 
on protein source (MLK; 41, 0.7 ± 8.6, SPR; 42.1 ± 8.9, WCC; 7.6 ± 12.5, 
SCC; 41.3 ± 7.1 mmol·L−1, p = 0.046); however, multiple comparisons 
did not detect individual differences between drinks.

The iAUC for WCC was negative when calculated for the entire 
5 h postprandial period for TAA and EAA (not NEAA). However, 
when the postprandial period was split into 0–2.5 h and 2.5–5 h 
periods the WCC iAUC was positive for the first half of the 
postprandial period. For 0–2.5 h significant differences were detected 
(p > 0.05) for TAA between WCC compared with all other conditions 
(MLK, SPR and SCC). This is illustrated in Supplementary material 3.

Data showing the postprandial plasma responses of each 
measured individual amino acid are displayed in 
Supplementary material 4. All individual amino acid plasma 
concentrations reported a time effect (p < 0.05), except glutamic acid 
(p = 0.19). Differences between conditions (p < 0.05) were only 
detected for isoleucine, leucine, methionine and tyrosine. Time ×  
condition interactions were reported for all the measured individual 
amino acid plasma concentrations, except histidine (p = 0.25) and 
lysine (p = 0.13).

3.2 Blood glucose and serum insulin 
concentrations

From similar postabsorptive values, blood glucose concentrations 
(Figure 3A) increased after drink ingestion (time effect; p < 0.001) but 
with no differences between conditions (condition and time ×  condition 
interaction; p = 0.20 and 0.99, respectively). Postprandial blood glucose 
iAUC did not differ between conditions (Figure 3B, p = 0.91).

Postabsorptive and postprandial serum insulin concentrations are 
presented in Figure 3C. From similar postabsorptive concentrations 
(MLK, 11 ± 2; SPR, 14 ± 2; WCC, 14 ± 3; SCC, 15 ± 2 mU·L−1; p = 0.74), 
serum insulin concentrations increased following drink ingestion 
(time effect; p < 0.001), but with no differences between conditions 
(condition and time ×  condition interaction; p = 0.89 and 0.40, 
respectively). Postprandial insulin iAUC also did not differ between 
conditions (Figure 3D, p = 0.89).

3.3 Whole body energy expenditure

Resting whole-body energy expenditure in the postabsorptive 
state and at regular intervals during the 5 h postprandial period is 
displayed in Figure 4. Postabsorptive resting energy expenditure was 
equivalent between conditions (MLK, 61 ± 5 [1,475 ± 113]; SPR 66 ± 3 
[1,585 ± 74]; WCC, 67 ± 3 [1,609 ± 77]; SCC, 66 ± 5 [1,588 ± 110] kcal· 
h−1 [kcal·24 h−1]; p = 0.78). Drink ingestion resulted in a significant 
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FIGURE 2

Plasma total (A), total essential (C) and total non-essential (E) amino acid concentrations in the fasting state (t  =  0) and at regular intervals during a 5-h 
postprandial period following the ingestion of 20  g milk protein (□, MLK), spirulina protein (Δ, SPR), whole cell chlorella protein (●, WCC), or split cell 
chlorella protein (○, SCC) in healthy young adults (n  =  10). Values are means, with their standard errors represented by vertical bars. Time course data 
were statistically analysed with a two-way repeated measures ANOVA, significant p values are written in bold font. Tukey’s multiple comparisons test 
was applied where appropriate to locate individual differences: a, b, c, d and e indicate values significantly different (p  <  0.05) between SPR vs. WCC, 
SPR vs. SCC, SPR vs. MLK, MLK vs. SCC, and MLK vs. WCC, respectively. Data are also expressed as iAUC for the total 5-h postprandial responses for 
total (B), total essential (D) and total non-essential (F) amino acids. These data were analysed for a main effect with a one-way ANOVA, and Tukey’s 
multiple comparisons test applied to locate individual differences: * indicate values significantly different (p  <  0.05) from each other for MLK, SPR, WCC 
and SCC conditions.
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FIGURE 3

Whole blood glucose (A) and serum insulin (C) concentration in the fasting state (t  =  0) and at regular intervals during a 5-h postprandial period 
following the ingestion of 20  g milk protein (□, MLK), spirulina protein (Δ, SPR), whole cell chlorella protein (●, WCC), or split cell chlorella protein (○, 
SCC) in healthy young adults (n  =  10). Data are also expressed as incremental area under the curve (iAUC) for the total 5  h postprandial response for 
whole blood glucose (B) and serum insulin (D). Values are means, with their standard errors represented by vertical bars. Time course data were 
analysed with a two-way repeated measures ANOVA, iAUC data were analysed for a main effect with a one-way ANOVA. Significant p values (p <  0.05) 
are written in bold font.

increase in energy expenditure from postabsorptive values (time 
effect; p < 0.001), and for the entire duration of the postprandial 
period for MLK (p < 0.05), and for 2 h following the ingestion of WCC 
and SCC (p < 0.05). However, no differences between conditions were 
detected (condition and time ×  condition interaction; p = 0.94 and 
0.10, respectively).

3.4 VAS responses

Participants’ subjective composite appetite scores during the 
experimental trials are presented in Figure 5A. Individual ratings of 
hunger, fullness, prospective food intake, and desire to eat are 
presented in Supplementary material 5. Following drink ingestion, 
main effects of time for all appetite variables were observed (all 
p < 0.001), but no condition effect (p = 0.83) or time x condition 
effects (p = 0.90).

A subjective ‘overall palatability’ score for each condition is 
presented in Figure 5B, with values recorded of MLK 72 ± 6 mm, SPR 
30 ± 7 mm, WCC 26 ± 7 mm and SCC 36 ± 5 mm. Palatability scores for 
taste, smell, aftertaste, and texture are presented in 
Supplementary material 6. Scores of each palatability variable, 
including overall palatability, differed between protein sources 
(condition effect; all p < 0.05). Across all variables, except texture, 
MLK scored higher than all microalgae drinks (p < 0.02), and there 
were no differences between the microalgae drinks (p > 0.05). For 
texture, the only difference detected was MLK scoring higher than 
WCC (p < 0.03).

3.5 Serum uric acid concentration

Serum uric acid concentrations in the postabsorptive state and 
over the 5 h postprandial period are shown in Figure 6. Postabsorptive 
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serum uric acid concentrations were similar in all conditions (MLK, 
314 ± 15; SPR, 313 ± 22; WCC, 316 ± 22; SCC, 286 ± 17; p = 0.68). There 
was a significant time (p < 0.0001) and time ×  condition interaction 
(p < 0.0001), but no significant effect of the condition alone (p = 0.21). 
In the MLK condition, serum uric acid concentrations decreased 
steadily across the postprandial period, whereas for the microalgae 
conditions (SPR, WCC and SCC) serum uric acid concentrations 
increased by 1 h and remained elevated for the duration of the 
postprandial period, such that at 300 min post drink ingestion, 
differences were detected between MLK and all microalgae conditions 
(p < 0.05; with no individual differences postprandially between 
microalgae conditions).

3.6 Qualitative cell disruption

See Supplementary material 2 for optical brightfield microscopy 
images of whole cell- and split cell-chlorella. Observationally, fewer 
cell clusters were observed in the split cell compared with the whole 
cell-chlorella preparation.

4 Discussion

In the present study, we  assessed the postprandial metabolic 
responses of 10 healthy young adults to the ingestion of isonitrogenous 
(20 g protein) (55, 56) and carbohydrate matched (75 g) (46) boluses 
of the cyanobacteria, spirulina, and the microalgae, chlorella (in a 
whole cell and split cell preparation), in comparison with milk protein 
as a commonly studied reference protein (57, 58). We first confirmed 
that commercially available spirulina, whole cell- and split cell-
chlorella were rich in protein (62, 56 and 58% of total dry mass, 
respectively) and essential amino acids (EAA; 40, 41 and 39% of total 
protein, respectively). We  then show broadly similar postprandial 
metabolic responses (e.g., diet induced thermogenesis, plasma glucose 
clearance, satiety etc.) following ingestion of all these protein sources, 
with the exception of postprandial circulating amino acid and uric 
acid concentrations. Specifically, total postprandial amino acid 
availability was greater with milk and spirulina compared with 
chlorella, though split cell chlorella tended to be higher than whole 
cell chlorella. Finally, irrespective of microalgae/cyanobacteria species, 
their ingestion raised serum uric acid concentrations to near clinically 
significant levels, while milk did not.

Postprandial metabolism is affected by dietary protein ingestion 
beyond just the provision of amino acids as precursors for protein 
synthesis, by contributing towards insulin secretion, glycaemic 
control, dietary induced thermogenesis and appetite regulation (33–
36, 59). Establishing these responses to microalgae ingestion is 

FIGURE 4

Energy expenditure in the fasting (t  =  0) state and at hourly intervals 
during the 5  h postprandial period following the ingestion of 20  g 
milk protein ( MLK), spirulina protein ( SPR), whole cell chlorella 
protein ( WCC), or split cell chlorella protein ( SCC) in healthy 
young adults (n  =  9). Values are means, with their standard errors 
represented by vertical bars. Data were analysed with a two-way 
repeated measures ANOVA and Tukey’s multiple comparisons test to 
locate individual differences: * indicates values significantly different 
from their corresponding fasting value (p  <  0.05).

FIGURE 5

(A) Participant subjective appetite scores measured by Visual Analogue Scale in the fasting state (t  =  0) and at regular intervals during a 5  h postprandial 
period following the ingestion of 20  g milk protein (□, MLK), spirulina protein (Δ, SPR), whole cell chlorella protein (●, WCC), or split cell chlorella 
protein (○, SCC) in healthy young adults (n  =  10). Values are means, with their standard errors represented by vertical bars. For this time course data, all 
conditions were statistically analysed with a two-way repeated measures ANOVA. Significant p values (p <  0.05) are written in bold font. (B) Overall 
drink palatability scores of participants were recorded by Visual Analogue Scale, 5  min following the ingestion of 20  g milk protein (□, MLK), spirulina 
protein (Δ, SPR), whole cell chlorella protein (●, WCC), or split cell chlorella protein (○, SCC) in healthy young adults (n  =  10). All conditions were 
statistically analysed with a one-way ANOVA (p  <  0.0001) and Tukey’s multiple comparison test applied to locate individual differences. * indicates 
significant difference (p  <  0.05).

https://doi.org/10.3389/fnut.2024.1487778
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Williamson et al. 10.3389/fnut.2024.1487778

Frontiers in Nutrition 10 frontiersin.org

FIGURE 6

Serum uric acid concentration in the fasting state (t  =  0) and at 
intervals (60, 180 and 300  min) during the 5-h postprandial period 
following the ingestion of 20  g milk protein (□, MLK), spirulina protein 
(Δ, SPR), whole cell chlorella protein (●, WCC), or split cell chlorella 
protein (○, SCC) in healthy young adults (n  =  10). Values are means, 
with their standard errors represented by vertical bars. All conditions 
were statistically analysed with a two-way repeated measures 
ANOVA and Tukey’s multiple comparison test applied to locate 
individual differences (p  <  0.05): a, b and c indicate values significantly 
different between SPR vs. MLK, MLK vs. SCC, and MLK vs. WCC, 
respectively.

paramount before progressing them as a viable protein source. Hence, 
to examine any potential role of differing amino acid compositions, 
macro- and micro-nutrient contents, and food matrices between the 
diverse food sources on glycaemic control, we  added simple 
carbohydrate to the drinks to a total of 75 g, a strategy that mimics a 
mixed meal tolerance test (33, 45, 46). Though the potent insulin 
response to simple carbohydrates likely masked our ability to detect 
differences in the insulinotropic potential of the different protein 
sources, it did allow us to show that the postprandial glucose responses 
did not differ between conditions, indicating similar levels of 
glycaemic control. Furthermore, we  report that the microalgae 
conditions appropriately induced a dietary thermogenic effect, and 
satiety response, to the same extent as milk protein. It is therefore 
reasonable to assume that microalgae, as a bulk source of protein and 
under mixed meal conditions, are able to regulate postprandial 
metabolism in the same way as more traditional proteins (i.e., milk).

We then assessed microalgae protein in terms of its ability to 
deliver amino acids to the circulation (i.e., bioavailability). In line with 
our assumption of milk as an appropriate high quality animal protein 
to use as a control condition, the milk protein drink used in the 
present work was EAA rich (42%), and its ingestion resulted in rapid 
increases in blood concentrations of all amino acids, followed by a 
gradual decline across the postprandial period. This response is in line 
with previous work (15, 42, 58, 60) and is indicative of a high quality 
and bioavailable dietary protein source (42, 61). Spirulina ingestion 
elicited similar peak plasma total amino acid responses (both in speed 
[milk; 72, spirulina; 78 min] and magnitude [milk; 1,544, spirulina; 
1,514 μmol·L−1]), and plasma availability of total amino acids, EAAs 
and non-EAAs across the 5 h postprandial period (indicated by 
iAUC). These data are in line with recent work (21, 24, 25), and 
confirmed our hypothesis that spirulina represents a viable protein 
source that appears to be effectively digested and absorbed and, as a 
result, implies a similar amino acid bioavailability to milk protein. The 
present literature typically describes plant derived proteins as less 
bioavailable than animal proteins, which limits their ability to 

stimulate muscle protein synthesis (18) and the adaptive response to 
exercise training (19, 62). Therefore, our data of a more amino acid 
balanced, non-animal protein source, and achieving equivalent amino 
acid bioavailability to milk (a high-quality animal derived protein 
source) shows promise for microalgae to occupy a role in supporting 
a sustainable food future.

Chlorella ingestion, on the other hand, resulted in lower total 
postprandial plasma amino acid availabilities compared with milk and 
spirulina, albeit with small improvements noted in split vs. whole cell 
preparations. Although whole cell chlorella ingestion resulted in the 
quickest postprandial plasma amino acid peak (57 min) of all the 
protein sources, it also exhibited the smallest magnitude peak 
(2002 μmol·L−1) and had the lowest 5 h total amino acid availability. In 
fact, we reported an overall negative total plasma amino acid and EAA 
availability for whole cell chlorella across the 5 h postprandial period, 
driven by negative values from 2.5–5 h after protein ingestion 
compared to baseline (but not at 0–2.5 h). This suggests that 
postprandial plasma amino acid disappearance (i.e., protein synthesis 
and oxidation, stimulated as a result of rises in circulating amino acids 
and insulin) was greater than the exogenous appearance from the 
chlorella (15, 16), underlining its poor digestibility.

This interpretation extends to most (grouped) amino acids 
we observed; for instance, the differences in EAA content between 
milk and split cell chlorella, and milk and whole cell chlorella were 37 
and 33% respectively, yet the differences in plasma EAA 5 h iAUC 
were 68 and 126%, respectively. Similarly, the difference in leucine 
contents between milk and split cell chlorella or whole cell chlorella 
were 45%, yet 64 and 153% differences existed in its postprandial 
availability, respectively. These data are broadly in line with our 
previous work (24, 25) though here seemingly less (statistically at 
least) striking. This reduced effect size may be explained by the present 
work serving a smaller protein dose minimising differences between 
species, including the co-ingestion of carbohydrate likely slowing 
digestion and/or absorption allowing for greater intestinal microvilli 
transit exposure (63), or using different commercial suppliers and 
therefore different algal cultivation and processing. Collectively, the 
present work paired with our previous data (24, 25) indicate that, 
despite chlorella being a protein and essential amino acid rich 
potential food source, it is considerably less bioavailable than a range 
of other protein sources including plant proteins such as pea and 
lupin. Though we have previously reported that this does not appear 
to limit its potential to acutely stimulate muscle protein synthesis rates 
(24), it does imply chlorella may be sub-optimal as a future protein 
source applied more broadly within human nutrition.

Notably, our ability to observe small in vivo differences in 
postprandial amino acid availability of different chlorella preparations, 
with commercially reported ‘intact cells’ (43) or ‘broken cell walls’ (44) 
is encouraging that further optimisation is possible. For instance, in 
Supplementary Figure 2 we detail our qualitative efforts to explore the 
effectiveness of the reported cell disruption with basic microscopy; 
fewer cell clusters were observed in split cell chlorella compared with 
whole cell chlorella  - cell clusters in both preparations are likely 
formed during (spray) drying (64). This suggests some disruption to 
the crude biomass, but visually most cells still appear intact. Since 
chlorella possesses a complex multi-layered cell wall consisting of 
various insoluble and indigestible polysaccharides (10, 26), more 
vigorous cell disruption techniques may increase the fragmenting of 
cell walls, thereby improving chlorella digestibility. This is supported 
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by experiments performed in vitro and in animal models, where 
optimising cell disruption methods improve indirect measures (e.g., 
protein yields, faecal protein calculations etc.) of digestibility (26–28, 
30). Such processing appears unnecessary for spirulina as it is evidently 
more digestible likely due to its less robust gram-negative cell wall type.

In addition to cell wall structures, the divergent postprandial 
amino acid responses following chlorella or spirulina ingestion may 
also be  influenced by other species differences, such as differing 
inherent protein types. For example, spirulina contains the light 
harvesting pigment-protein complex phycocyanin, which does not 
occur in green algae (e.g., chlorella). Phycocyanin accounts for ~20% 
of spirulina protein, is soluble in water and, importantly, is rapidly 
digested by pepsin (65), making human digestion feasible. 
Contrastingly, 20% of chlorella proteins (including light harvesting 
membrane proteins) are bound to the cell wall (27, 66), which may 
be speculated to reduce bioaccessibility to the amino acids. Finally, 
in these preparations, spirulina had roughly half the fat and fibre 
content compared to both chlorella preparations (Table 2). Higher 
content of these macronutrients are generally reported to delay 
protein digestibility (67–69), possibly contributing to differing 
postprandial amino acid concentrations. Future food science 
approaches designed to exploit microalgae as a bulk protein source 
for human nutrition should therefore consider these inherent 
species differences.

Aside from challenges associated with improving microalgae 
(specifically chlorella) protein bioavailability, our data raised broader 
issues concerning the suitability for human consumption, previously 
unaddressed due to only small quantities being ordinarily consumed. 
For example, the 20 g serving of microalgae protein increased 
concentrations of serum uric acid to near clinically significant levels 
(i.e., >420 and > 360 μmol·L−1 for men and women, respectively) (37, 
70) for the entire 5 h postprandial period. Mean maximum uric acid 
concentrations following spirulina, split cell chlorella and whole cell 
chlorella ingestion reached 397, 361, and 403 μmol·L−1 for male 
participants and 332, 330, and 318 μmol·L−1 in female participants, 
respectively. Similar elevations of circulating uric acid have only been 
previously reported across multi-day microalgae ingestion studies 
(39, 71). Although it is yet to be  determined if these short-term 
elevations directly translate to impairments in longer term health, 
there is an established association between circulating uric acid 
concentrations and various cardio-metabolic conditions (38, 39, 71). 
This therefore poses a potential barrier to recommendations of 
widespread human consumption of microalgae protein. Processing 
techniques have previously been applied in other foods to obviate 
these concerns (e.g., heat treatment reducing nucleic acid content in 
mycoprotein) (37), and so analogous approaches should be explored 
for potential algal based foods. Furthermore, we also report clear 
palatability issues with microalgae, both with respect to acceptability 
(e.g., low taste and smell scores) and frequency of adverse responses 
(vomiting). The apparent >2 h onset required for adverse responses 
to manifest may imply the co-ingestion of carbohydrate and the 
previously mentioned consequent delay in amino acid absorption 
may also alter the metabolism and transit of other noxious (micro)
nutrients. The observation that no such events took place in previous 
work (24, 25) that did not co-ingest carbohydrate supports this 
interpretation. Whether this would remain a problem if microalgae 
were incorporated into future foods remains to be established.

5 Conclusion

We conclude that microalgae/cyanobacteria may represent a 
bioavailable source of dietary protein in vivo in humans, although 
consideration to species selection and/or biomass processing is 
required. Our data confirm that spirulina is comparable in its ability to 
provide postprandial systemic amino acids with a high-quality animal 
protein, and therefore its incorporation into human diets should 
be considered as a sustainable protein alternative. Chlorella protein 
however, appears less bioavailable than milk and spirulina, with some 
improvement apparent when consumed after the disruption of its cell 
wall. It is clearly desirable for future work to optimise microalgae cell 
wall disruption methods such that they can maximise nutritional 
potential, yet be carried out in a scalable and environmentally and 
economically sustainable manner. In addition, both spirulina and 
chlorella demonstrated some challenges in their palatability, tolerability, 
and elevation of serum uric acid concentrations post ingestion, which 
all represent significant hurdles for their utility in the food industry. 
These areas require addressing from multidisciplinary angles prior to 
viewing microalgae as a bulk protein source for incorporation into 
human diets to ensure food safety and consumer uptake.

Despite these challenges that our work has identified, this proof-
of-concept data show that with further development, microalgae offer 
promise as a sustainable alternative protein source that can contribute 
to future protein requirements of human diets.
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