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volatile compounds in Zheng’an 
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Background: As albino tea under the geographical protection of agricultural 
products, Zheng’an Bai tea is not only rich in amino acids, polyphenols and other 
beneficial components for the human body, but also its leaf color will turn green as 
the temperature gradually rises, thus causing changes in the quality characteristics 
of tea leaves. However, these changing characteristics have not yet been revealed.

Methods: In-depth quality analysis was carried out on the fresh leaves of Zheng’an 
Bai tea at four different developmental stages and four samples from the processing 
stage through extensive targeted metabolomics and SPME-GC-MS analysis.

Results: In this study, a total of 573 non-volatile metabolites were detected from 
the fresh leaves and processing samples of Zheng’an Bai tea, mainly including 
96 flavonoids, 75 amino acids, 56 sugars and alcohols, 48 terpenoids, 46 organic 
acids, 44 alkaloids, and 39 polyphenols and their derivatives. In fresh leaves, the 
most significant differential metabolites (VIP > 1, p < 0.05) among different samples 
mainly include substances such as ethyl gallate, theaflavin, isovitexin and linalool, 
while the main differential metabolites of samples in the processing stage include 
alkaloids, polyphenols and flavonoids such as zarzissine, methyl L-Pyroglutamate, 
theaflavin 3,3’-digallate, euscaphic acid and ethyl gallate. Overall, substances such 
as sugars and alcohols, alkaloids and polyphenols show the greatest differences 
between fresh leaves and the processing process. Meanwhile, 97 kinds of volatile 
metabolites were detected in these samples, most of which had a higher content 
in the fresh leaves. Moderate spreading is conducive to the release of the aroma 
of tea leaves, but fixation causes a sharp decrease in the content of most volatile 
metabolites. Ultimately, 9 volatile substances including geraniol, linalool, nerolidol, 
jasmone, octanal, 1-Nonanal, heptaldehyde, methyl salicylate and 1-Octen-3-ol 
were identified as the key aroma components (OAV >1) of Zheng’an Bai tea.

Conclusion: In conclusion, this study has for the first time comprehensively 
revealed the quality change characteristics of fresh leaves at different 
developmental stages and during the processing of Zheng’an Bai tea, and 
provided a foundation for further process improvement.
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1 Introduction

The unique taste, pleasant aroma, and abundant nutrients have 
made tea one of the most popular non-alcoholic beverages (1). The 
widespread cultivation of tea plants [Camellia sinensis (L.) O. Kuntze] 
worldwide has made them one of the most important cash crops for 
many countries to increase farmers’ income. China is the origin 
country of tea and has abundant tea tree resources, hundreds or even 
thousands of tea varieties are made into six traditional tea types such 
as green tea and black tea with different flavors according to their 
quality characteristics and different processing procedures (2, 3). 
Meanwhile, in recent years, some naturally mutated tea plant 
resources have attracted increasing attention from researchers due to 
their characteristics such as low caffeine or high anthocyanins (4, 5). 
“Zheng’an Bai tea” is a famous green tea produced in Zheng’an 
County, Guizhou Province, made from the tender buds and leaves of 
the naturally mutated tea cultivar “Baiye 1.” Due to its high amino 
acid content and other characteristics, it has been listed as a Chinese 
National Geographical Indication Product since 2011 (6). Unlike 
other yellowing or purpling tea plant varieties, “Zheng’an Bai tea” 
belongs to the temperature-sensitive variety, whose leaves appear 
white at lower temperatures and gradually turn green as the 
temperature rises. Although many reports have conducted in-depth 
studies on the molecular regulatory basis of albino tea plants, the 
quality of tea is influenced by many factors such as climate, water and 
fertilizer, and processing (7–9). At present, there are no reports on 
the metabolic profiles of different leaf positions and the quality 
change characteristics of fresh leaves during processing.

Compared with common tea varieties, naturally mutated tea 
varieties often have unique quality characteristics. For example, 22 
anthocyanins were identified in purple tea varieties such as “Zijuan” 
or “Ziyan,” and their contents reached more than 1 μg/g (dry weight) 
(10); while in the yellow-leaf tea variety, the theanine content of 
“Zhonghuang 2 (yellow-leaf tea)” was significantly higher than that of 
“Longjing 43 (normal tea)” (11). For tea varieties with albino leaves, 
both light-sensitive and temperature-sensitive varieties have the 
characteristics of low polyphenol content and high amino acid content, 
which gives the tea soup a higher freshness (12). Many studies have 
shown that with the development of tea leaves, the secondary 
metabolite profiles such as catechins, caffeine, theanine, and 
anthocyanins will undergo significant changes (13). For “Zheng’an Bai 
tea,” the amino acid content gradually decreases with the development 
of the leaves, the contents of catechin (EGC), epicatechin gallate 
(ECG), epicatechin (EC), catechin (C), epigallocatechin gallate 
(EGCG), and gallocatechin (GC) in albino or yellowing variegated 
leaves were significantly lower than those in normal leaves (14). But 
due to factors such as altitude and unique climate, the metabolic 
profile characteristics of different leaf positions still need to be revealed.

Although volatile components account for only 0.01% of the dry 
weight of tea, they contribute to the main aroma quality of tea (15, 
16). Many studies have conducted in-depth analysis of the volatile 
metabolites and aroma changing characteristics in tea. For example, 
Xia et al. (17) analyzed the influence of three fixation methods on the 
aroma quality of “Anji Bai tea” (albino tea), identified 9 key 
components that caused the aroma changes of Anji Bai tea, and 
proved that linalool and geraniol contribute to the formation of floral, 
fruity and honey aromas of tea; the analysis of harvest seasons and 
etiolated varieties revealed that the relative content of volatile 

compounds in steamed green tea was significantly negatively 
correlated with the season (p < 0.05). The contents of volatile 
compounds such as (+)-δ-cadinene, farnesyl acetone, carvone, trans-
β-ionone and nerolidol were higher in spring tea. However, the 
differences in the total volatile compounds among the three albino 
varieties of steamed green tea were not significant (p > 0.05) (18). 
Compared with “Yinghong 9,” the “Huangyu” variety contains higher 
levels of α-farnesene, β-cyclocitral, nerolidol and trans-
geranylacetone, which have been confirmed to be  related to the 
flower and fruit aroma in the fermented leaves (19). It was found in 
the study of purple tea that anaerobic treatment facilitated the 
accumulation of 2-heptanol, (E)-2-hexenal, ethyl salicylate, 
phenylethyl alcohol and (E, E)-2, 4-decadienal, but inhibited the 
formation of (Z)-3-hexenyl acetate and methyl jasmonate (20). 
Furthermore, Gao et  al. also detected and analyzed the volatile 
substances in the flowers of three albino tea plants and one normal 
tea plant, and discovered that acetophenone and (R)-1-phenylethanol 
were positively correlated with the sweet flavor, while methyl 
salicylate, 2-heptanol, (E)-2-hexenal, nonanal and 2-pentanol were 
positively correlated with the green smell (21). The above studies 
mainly focused on the change characteristics of volatile metabolites 
in specific process conditions or tissues, and there were no studies on 
the change trend of volatile metabolites/aroma in tea leaves at 
different development stages and during the whole processing 
process. Therefore, the revelation of aroma changes of “Zheng’an Bai 
tea” still needs to be strengthened (22–24).

In this study, we focused on exploring the dynamic changes of 
non-volatile/volatile metabolites throughout the entire process from 
the fresh leaves, the processing, to the finished tea of “Zheng’an Bai 
tea.” A total of eight stages of samples, including buds (BUD), the first 
leaf (FL), the second leaf (SL), the first bud and the first leaf (FBFL), 
spreading for 3 h (TF3h), spreading for 6 h (TF6h), fixation (SQ) and 
drying (DRY), were detected and analyzed by widely targeted 
metabolomics and GC–MS techniques to comprehensively reveal the 
metabolic profile and key aroma components of “Zheng’an Bai tea.” 
This will help us recognize and understand the formation basis of the 
quality of “Zheng’an Bai tea” and the influence brought by the 
processing techniques.

2 Materials and methods

2.1 Plant materials and reagents

The samples of buds (BUD), the first leaf (FL), the second leaf 
(SL), the first bud and the first leaf (FBFL) of “Baiye 1” and samples at 
different processing stages (spreading for 3 h, TF3h; spreading for 6 h, 
TF6h; fixation, SQ; drying, DRY) were collected. All these samples 
were collected from the tea garden of Zhongguan Town, Zheng’an 
County, Guizhou Province (28°43´ N, 107°61´ E). Some of the 
collected fresh samples were transported to the laboratory in dry ice 
and stored in a − 80°C refrigerator for later use, while the other 
portion was processed into dry tea according to the following process: 
The first buds and first leaf collected was placed in a well-ventilated 
room at room temperature for 6 h of spreading. The tea was turned 
over 2–3 times during spreading to maintain a humidity level between 
75 and 85%. After spreading, the tea was quickly straightened in a tea 
straightening machine and then fixed at 230°C for 4–5 min. Finally, it 
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was dried at 110°C for 1.5 h in a dryer. Deionized water was produced 
using a Milli-Q water purification system (Millipore, Billerica, 
Massachusetts). Methanol, acetonitrile, and ammonium acetate (LC–
MS grade) were obtained from Merck (Darmstadt, Germany), and 
formic acid was obtained from TCI (TCI America). All the samples 
were stored in a − 80°C refrigerator until they were detected.

2.2 Sample preparation and extraction

Before the samples were formally prepared, all the tea leaves were 
freeze—dried for 24 h first to ensure the consistency of water content. 
Then, weigh 50 mg of the freeze-dried sample and add 1 ml of the 
extraction solution (methanol:acetonitrile:water volume ratio = 2:2:1). 
Vortex the centrifuge tube containing the sample for 30 s to ensure 
sufficient mixing. Then, add steel balls, perform ultrasonic treatment 
at 45 Hz for 10 min, followed by low temperature ultrasonic treatment 
for 10 min, and then stand at −20°C for 1 h (25, 26). After standing, 
the sample was centrifuged at 12,000 rpm for 15 min at 4°C, and 500 μl 
of the supernatant was taken and dried in a vacuum concentrator. Add 
160 μl of extraction solution (acetonitrile:water volume ratio 1:1) to 
dissolve the metabolites; vortex for 30 s, and ultrasonicate for 10 min 
in an ice-water bath; centrifuge the sample at 12,000 rpm for 15 min 
at 4°C; carefully remove 120 μl of the supernatant into a 2 ml injection 
bottles for testing. All samples included three replicates.

2.3 UPLC-ESI-MS/MS analysis

A Waters UPLC Acquity I-Class PLUS ultra-high performance 
liquid chromatography was coupled to an AB Sciex Qtrap 6,500+ mass 
spectrometer system for the detection of metabolites (UPLC-ESI-MS/
MS). The specific UPLC conditions are as follows: C18 column 
(1.8 μm, 2.1 mm × 100 mm, Acquity UPLC HSS T3), mobile phase A 
is a mixture of 0.1% formic acid and 5 mM ammonium acetate aqueous 
solution, and mobile phase B is 0.1% formic acid acetonitrile. The flow 
rate is 350 μl/min. The gradient elution conditions are: 98:2 v/v at 
0 min, hold for 1.5 min, 50:50 v/v at 5 min, 2:98 v/v at 9 min, hold for 
1 min; 98:2 v/v at 11 min, hold for 3 min, and the injection volume is 
2 μl. The temperature of the electrospray ionization (ESI) source was 
set at 550°C, and the ion source gases I (GSI), gas II (GSII), and curtain 
gas (CUR) were set at 50, 55, and 35 psi, respectively. The collision-
induced ionization parameters were set to medium. For more detailed 
methods, please refer to the research of Shi et al. (27). Based on the 
GB-PLANT commercial database, qualitative/quantitative mass 
spectrometry analysis was performed on the metabolites of the 
samples. The characteristic ions of each substance were screened out 
by triple quadrupole, and the signal intensity of the characteristic ions 
was obtained in the detector. After obtaining the metabolite mass 
spectrometry analysis data of different samples, the peak area 
integration was performed on all the mass spectrometry peaks, and the 
integration correction was performed on the mass spectrometry peaks 
of the same metabolite in different samples. Based on KEGG databases, 
the identified metabolites were classified and pathway analyzed.1

1 https://www.genome.jp/kegg/

2.4 Extraction of volatile compounds

The volatile substances in tea were enriched by the method of 
automatic solid-phase microextraction (SPME) (28). After freeze-
drying the tea samples, use a ball mill to grind the freeze-dried tea 
samples into powder, take 0.100 g and place it in a 15 ml gas 
chromatography–mass spectrometry glass bottle, and add 5 μl of ethyl 
decanoate at 1 μg/ml as an internal standard. Adsorption was 
conducted using the SPME Arrow of model 36SP05T3 (C-WR/PDMS 
80/10-P3) from Thermo Scientific, and its adsorption phase was 
mainly PDMS (Polydimethylsiloxane). Place the sample bottle at 
60°C, adsorb for 50 min, and then use GC–MS to detect volatile 
substances. GC conditions: Inlet temperature of 250°C, thermal 
desorption of volatile components for 10 min, separation using a 
fused silica chromatographic column (DB-5, 
30 m × 0.25 mm × 0.25 μm, Folsom, USA). Carrier gas: Helium at a 
flow rate of 1 ml/ min; the starting temperature of the column oven is 
50°C, maintained for 2 min, raised to 80°C at a rate of 2°C/min, 
maintained for 1 min; raised to 100°C at a rate of 3°C/min, maintained 
for 4 min; raised to 130°C at a rate of 3°C/min, maintained for 4 min; 
raised to 150°C at a rate of 5°C/min, maintained for 0 min; raised to 
200°C at a rate of 10°C/ min, maintained for 0 min; raised to 240°C 
at a rate of 20°C/min, maintained for 3 min. Mass spectrometry 
conditions: Ion source EI, electron energy 80 eV, full ion scan mode, 
mass scan range 41–350 m/z. Finally, the volatile metabolites were 
identified based on the National Institute of Standards and Technology 
(NIST) mass spectrometry database and retention index (RI) (24, 
29, 30).

2.5 Semi-quantitation and calculation of 
odor activity values

The concentration of volatile compounds was calculated based on 
their peak areas and the peak area of the internal standard compound. 
The odor activity value (OAV) of the volatiles was obtained by dividing 
the concentration by their odor threshold (15, 31–37). Furthermore, 
some flavor thresholds were obtained through the online data of VCF 
(Volatile Compounds in Food; https://www.vcf-online.nl/VcfHome.
cfm). In addition, it should be noted that all metabolite detections 
were entrusted to Biomarker Technologies Co., Ltd.

2.6 Statistics analysis

The original peak area information of each substance is 
normalized according to the total peak area of the sample (38). And 
PCA analysis and Spearman correlation analysis were performed to 
verify the reproducibility of the intra-group samples and control 
samples. Based on the grouping information, the fold change of 
metabolites between different groups was calculated and compared, 
and the significance p-value of each compound was calculated using 
the T-test. At the same time, the (O)PLS-DA model was constructed 
based on the online analysis toolbox BMKCloud.2 The screening 

2 https://international.biocloud.net/zh/software/agriculture/list
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criteria for different metabolites were p < 0.05, and VIP > 1 (39). In all 
(O)PLS-DA analyses, the values of R2Y and Q2 of the model are both 
greater than 0.9.

3 Results and discussion

3.1 Overall view of non-volatile metabolites 
in Zheng’an Bai tea

A total of 573 non-volatile metabolites were detected in fresh 
leaves at different development stages and samples at different 
processing stages of “Zheng’an Bai tea,” including 96 flavonoids and 
their derivatives, 75 amino acids and their derivatives, 56 saccharides 
and alcohols, 48 terpenoids and their derivatives, 46 organic acids, 44 
alkaloids and their derivatives, 39 polyphenols and their derivatives, 
13 phenylpropanoids and 12 lignans and coumarins (Figure 1A). 
While Wang et  al. (40) identified a total of 527 non-volatile 
metabolites in green tea, including 109 flavonoids, 89 phenolic acids, 
81 lipids, 64 amino acids and their derivatives, 37 organic acids, 25 
alkaloids, and 12 sugars and alcohols. In comparison, Zheng’an Bai 
tea contains fewer flavonoids and a greater variety of amino acids. 
Meanwhile, Spearman Rank Correlation analysis showed that there 
was good biological reproducibility among the samples within each 
group, which indicated that the data in this study had good 
reproducibility and reliability (Supplementary Figure S1).

Metabolites interact with each other in organisms to form 
different pathways. By annotating all identified metabolites through 
the KEGG database, the top 20 annotation information indicates that 
a large number of secondary metabolites such as amino acids and 
flavonoids are enriched, reflecting the abundant content of these 
substances in “Zheng’an Bai tea” (Figures  1B,C). Based on the 
metabolomics data of 573 non-volatile metabolites 
(Supplementary Table S1), PCA analysis was performed using an 
unsupervised pattern. The results showed that these samples were 
clearly classified into 9 different groups, suggesting that there may 
be  significant differences in non-volatile metabolism between 
different groups (Figure 1D). The first principal component and the 
second principal component explained 32.9 and 16.5% of the 
variation results, respectively. Compared with other samples, the 
fixing and drying samples were closely clustered together, indicating 
that the metabolic differences between these samples were 
relatively small.

3.2 The content changes of non-volatile 
metabolites in different tissues

Polyphenols are one of the most important components of tea 
tree leaves (41). Overall, the buds of “Zhengan Bai tea” contain a 
relatively large amount of polyphenols and terpenoids, and 
ultimately show a lower content in the dried samples (Figure 2). The 

FIGURE 1

Overview of non-volatile metabolites. (A) Classification of non-volatile metabolites, (B) heatmap analysis of non-volatile metabolites, (C) the main 
enrichment pathway for non-volatile metabolites, (D) PCA analysis based on non-volatile metabolites.
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FIGURE 2

The changing trends of different types of non-volatile metabolites in eight tissues (the relative contents were calculated based on the peak areas of 
metabolites in the widely targeted metabolomics).
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contents of sugars, alcohols and vitamins in tea leaves after 
spreading are all lower than those in fresh leaves. In addition, the 
lipid content gradually decreases during the processing process, 
which is similar to the research results of Li et  al. (42). While 
substances such as alkaloids, lignins and nucleotides generally 
showed an increasing trend during the processing. Amino acids, 
organic acids and flavonoids are important taste substances and 
beneficial components in tea (27, 43). Their contents change slightly 
in fresh leaves at different stages and during the processing. 
Furthermore, Figure  2 also shows the dynamic change 
characteristics of substances such as tannins, ketones, aldehydes, 
acids and coumarins in different tissues. Compared with other 
stages, the high temperature in the fixation stage leads to the most 
drastic changes in metabolites, which is consistent with the previous 
research results (17, 40).

3.3 The non-volatile differential 
metabolites among the fresh leaves

Many studies have shown that the quality characteristics of 
different leaf positions of tea plants are significantly different (1, 
44, 45). For Zheng’an Bai tea, 133,165,114 differential metabolites 
were detected in the FL (first leaf), SL (second leaf) and FBFL (first 
bud and first leaf) compared to the bud, respectively 
(Figures 3A–C). A total of 88 and 99 differential metabolites were 
identified between the first and second leaves and first buds and 
first leaf, respectively. At the same time, a total of 114 differential 
metabolites were found between the FBFL and the SL 
(Figures 3D–F). For fresh leaves at different stages of development, 
the metabolites with top 20 fold changes values contain a large 
number of sugars, alcohols, organic acids, amino acids, 
polyphenols, flavonoids and alkaloids (Figures  3G–L; 
Supplementary Figures S2A–F). In addition, many terpenes, 
alkaloids and polyphenols also showed diverse variation 
characteristics at different leaf positions. Further KEGG 
enrichment analysis showed that flavonoids and flavonoid 
biosynthesis pathways were enriched in fresh leaves of tea plants at 
different developmental stages (Supplementary Figures S2G–L). 
Among the top 20 metabolites with the largest fold changes, ethyl 
gallate, theaflavic acid, isovitexin, linalool and vincetoxicoside B 
were the most common. All the differential metabolites and 
OPLS—DA model information are presented in 
Supplementary Table S2 and Supplementary Figure S3, respectively.

3.4 Characteristics of the quality change of 
non-volatiles in the processing process

The quality of tea beverages is not only related to fresh leaves, 
but also the processing technology can also significantly affect the 
quality of dry tea (31, 46). At different stages of processing, the 
content of many non-volatile metabolites in Zheng’an Bai tea 
changed significantly. Compared with the TF3h, 117, 192, and 207 
different metabolites were identified in the TF6h, SQ, and DRY 
stages, respectively (Figures 4A–C; Supplementary Figures S3A–C). 
Compared with TF6h stage, SQ and DRY identified 142 and 168 

different metabolites, respectively. However, after fixation, 
enzymatic reactions in tea decreased significantly, and only 77 
different metabolites were identified compared to the DRY tea 
(Figures 4D–F; Supplementary Figures S4D–F) (47). The above 
results indicate that the fixation and drying processes are very 
important for the formation of tea quality (9, 38). Among these 
different metabolites, there are a large number of flavonoids, 
polyphenols, terpenoids, sugar alcohols, and organic acids 
(Supplementary Figures S3G–L). Similar to the research results of 
Chen et al. in large-leaf black tea (30), during specific processing 
stages, some alkaloids such as zarzissine, methyl L-Pyroglutamate, 
piperidine, flavonoids such as theaflavin 3,3′-digallate, terpenoids 
such as euscaphic acid, and polyphenols such as ethyl gallate 
changed significantly. KEGG enrichment analysis showed that 
during different spreading stages, many plant hormones such as 
salicylic acid and a large amount of amino acids such as arginine 
were enriched. The different metabolites between the spreading 
samples (including TF3h and TF6h) and the SQ and DRY samples 
are all significantly enriched in the flavonoid metabolic pathway. 
Previous studies have shown that the spreading process can 
promote the hydrolysis of some proteins to increase the content 
of amino acids, accompanied by a decrease in the content of tea 
polyphenols, soluble sugars, and others (40, 48). While the 
different metabolites between the SQ and DRY samples are mainly 
enriched in the amino sugar and amino acid pathways 
(Figures 4G–L).

3.5 Total volatiles metabolites in Zheng’an 
Bai tea

A total of 97 volatiles components were detected in the samples 
of different developing tissues and processing stages of Zheng’an Bai 
tea (Supplementary Table S3). This number is more than the 47 in 
Longjing tea and the 91 in Fudingdabai tea (35, 49). However, this 
may be because leaves at different developmental stages are included 
in this study. Among them, the number of aroma components 
detected in the samples of BUD and TF6h was the highest, both of 
which were 72, while the number of aroma components in the 
samples of TF3h and SQ was the least, which was 58 (Figure 5A). 
This once again proves that moderate spreading is beneficial for the 
release of tea aroma (35). Among the 97 volatile components in 
these samples, benzyl alcohol, geraniol, nonanal, methyl salicylate, 
cis-jasmone, hexanal, nonanal and linalool oxide are common 
characteristic volatile substances in tea (30, 50). All volatiles 
substances are classified into 7 categories, among which alcohols 
and esters have the largest number, both being 27, followed by 
alkanes and aldehydes, with 21 and 12, respectively, (Figure 5B). 
This result is slightly different from the study of black tea by Yin 
et al. (51). Similar to the results of the widely-target metabolome 
analysis, all samples were well divided into eight groups by PCA 
analysis based on volatiles substances, and the interpretation rates 
of the first principal component and the second principal 
component reached 40.1 and 15.2%, respectively (Figure  5C). 
Meanwhile, similar to the research results of Wang et al. (40), most 
of the volatiles substances decreased sharply in the fixing stage 
(Figure 5D).
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3.6 Key aroma compounds identified using 
OAVs in the Zheng’an Bai tea

Aroma is one of the important flavor characteristics of tea, 
which is not only related to the quality of fresh leaves, but also 
affected by processing technology (2). The odor activity value 
(OAV) is an important index for objectively evaluating the 
contribution of volatile substances to aroma and is widely used in 
many studies (52, 53). Volatile components with an OAV value 
greater than 1 are usually considered to have an important 
contribution to the aroma (47). For example, Qin et  al. (29) 
identified 11 OAV > 1 key aroma compounds in steamed green tea 

through OAV analysis. In this study, we conducted OAV analysis on 
all volatile components based on the odor threshold values 
(Supplementary Table S4). As shown in Table  1, the volatile 
metabolites with an OAV value greater than 1 in at least one tissue 
are presented in detail. The results indicate that the contents of most 
volatile metabolites are relatively high in fresh leaves and during the 
spreading stage, but they decrease sharply or are difficult to 
be detected after fixation. Nine key aroma components of OAV >1 
were identified in the dried tea samples, including 1-Octen-3-ol, 
nerolidol, linalool, methyl salicylate, jasmone, geraniol, 
heptaldehyde, 1-Nonanal, and octanal. Among them, 1-octen-3-ol, 
linalool, methyl salicylate, nonanal and geraniol have odors such as 

FIGURE 3

Differential metabolites of different fresh leaf samples. (A–F) Represent the number of differential metabolites in BUD vs. FL; BUD vs. SL; BUD vs. FBFL; 
FL vs. SL; FL vs. FBFL, and SL vs. FBFL, respectively; (G–L), respectively, represent the top 20 metabolites with the largest fold change in the comparison 
groups of BUD vs. FL; BUD vs. SL; BUD vs. FBFL; FL vs. SL; FL vs. FBFL, and SL vs. FBFL.
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fresh, floral and sweet scents, and they have also been identified as 
the key aroma substances of Longjing tea (49, 53). While jasmone 
and octanal are, respectively, one of the key aroma components of 
Lu′an Guapian tea and Xinyang Maojian tea (28, 29). Meanwhile, 
heptaldehyde is regarded as one of the contributing components of 
the chestnut-like aroma in tea (47).

It is worth noting that due to the lack of standard substances for 
related metabolites, relative quantification or semi-quantification is 
carried out by the internal standard method, which may cause a 
certain deviation in the accurate detection of substance content. 
And due to the different characteristics of compounds, this 
deviation effect may be different for each metabolite. Therefore, 

FIGURE 4

Differential metabolite heat map analysis and KEGG enrichment analysis of different samples during processing. (A–F) Represent the number of 
differential metabolites in TF3h vs. TF6h; TF3h vs. SQ; TF3h vs. DRY; TF6h vs. SQ; TF6h vs. DRY, and SQ vs. DRY, respectively. (G–L) Represent the 
KEGG enrichment analysis of the differential metabolites in TF3h vs. TF6h; TF3h vs. SQ; TF3h vs. DRY; TF6h vs. SQ; TF6h vs. DRY, and SQ vs. DRY, 
respectively.
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although the OAV values of many other volatile metabolites such as 
2-Methylbutyraldehyde, trans-2-decen-1-ol and cis-3-hexenyl 
cis-3-hexenoate are less than 1, they may also contribute to the 
aroma of Zheng’an Bai tea (24, 50, 54, 55). However, since SPME-
GC-MS/MS is a highly selective method that is very effective for 
aldehydes and ketones but not so effective for critical sulfur-
containing compounds, we  will further analyze its aroma 
characteristics by combining sensory evaluation methods in future 
studies. Meantime, when identifying differential metabolites, 
relatively loose standards may lead to the identification of more 
differential metabolites.

4 Conclusion

In this study, a total of 573 non-volatile metabolites were 
identified in total, including 96 flavonoids and their derivatives, 
75 amino acids and their derivatives, 56 sugars and alcohols, 48 
terpenoids and their derivatives, 46 organic acids, 44 alkaloids 

and their derivatives, and 39 polyphenols and their derivatives. 
Among the top 20 differential metabolites of fresh leaves, ethyl 
gallate, theaflavin, isovitexin, linalool and vincetoxicoside B are 
the most common. However, the differential metabolites among 
the samples at the processing stage change abundantly. Overall, 
sugars and alcohols, alkaloids and polyphenols show the greatest 
differences between fresh leaves and samples at the processing 
stage. Meanwhile, we identified 97 volatile metabolites including 
alcohols, aldehydes and esters. The results showed that the 
fixation process led to a sharp decrease in the content of most 
volatile substances, while 9 volatiles substances with an OAV > 1, 
such as geraniol, octanal, linalool, jasmone and nerolidol, were 
identified as the key aroma components of Zheng’an Bai tea. 
Due to the lack of accurate quantitative data, this study may 
have certain limitations. However, we not only comprehensively 
revealed the quality characteristics of Zheng’an Bai tea, but also 
revealed for the first time the dynamic change trend of tea 
quality at different stages from fresh leaves, processing to 
dry tea.

FIGURE 5

Overview of volatile metabolites. (A) Venn diagram analysis of volatile metabolites in different samples, (B) Classification statistics of volatile 
metabolites, (C) PCA analysis of volatile metabolites, (D) heatmap analysis of volatile metabolites.
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TABLE 1 The OAV value of volatile metabolites (OAV value is greater than 1 in at least one tissues, more detailed information has been shown in Supplementary Table S4).

CAS Name Odor description Threshold 
(mg/kg)

OAV

BUD FBFL FL SL TF3h TF6h SQ DRY

106-26-3 Neral Green, grassy, fresh 0.053 13.0 8.6 8.6 10.3 17.1 15.8 0.0 0.0

141-27-5 Trans-citral Citrus, lemon-like 0.04 2.2 1.5 1.8 1.3 3.1 3.0 0.0 0.0

39028-58-5 (E)-linalool oxide Floral, honey-like 3 1.0 1.6 0.9 0.2 3.3 3.9 0.2 0.2

3391-86-4 1-Octen-3-ol Green, vegetative-like 0.007 9.6 6.2 0.0 9.5 0.0 6.6 1.8 1.4

96-17-3 2-Methylbutyraldehyde Almond, chocolate 0.04 0.0 0.0 0.0 0.0 0.0 3.8 0.2 0.9

30086-02-3 3,5-Octadien-2-one Creamy and fruity smell 0.0005 725.9 0.0 376.7 0.0 0.0 1026.4 0.0 0.0

544-12-7 Trans-3-hexen-1-ol Green, leafy, grassy 0.07 0.0 0.0 0.5 0.0 3.9 0.0 0.0 0.0

79-77-6 β-ionone Floral, sweet 0.09 1.9 1.3 1.1 2.2 1.4 2.3 0.6 0.3

100-51-6 Benzyl alcohol Floral, rose-like, phenolic 0.1 47.4 0.7 12.8 108.6 44.5 17.0 0.2 0.3

6728-26-3 Trans-2-hexenal Green, fruity 0.04 3.3 5.1 1.6 2.6 4.9 1.9 0.0 0.0

34995-77-2 Tetrahydro-alpha,alpha,5-trimethyl-5-vinylfuran-2-methanol Floral 6 2.5 4.8 0.4 2.8 3.4 4.3 0.0 0.0

7212-44-4 Nerolidol Floral, green, citrus 0.00025 0.0 0.0 0.0 0.0 0.0 0.0 0.0 51.2

40716-66-3 Trans-nerolidol Slight neroli-like 0.25 0.6 0.4 0.2 1.1 1.9 0.0 0.0 0.0

78-70-6 Linalool Floral, sweet 0.005 4227.6 7196.1 2803.1 3508.8 5112.0 7535.1 73.2 107.6

106-70-7 Methyl hexanoate Sweet, balsamic, creamy 0.075 1.6 1.2 0.2 3.0 2.4 2.1 0.1 0.1

110-93-0 6-Methyl-5-hepten-2-one Green, grassy, fresh 0.1 5.5 5.1 1.5 3.0 5.7 7.2 0.0 0.0

119-36-8 Methyl salicylate Fresh, sweet 0.06 119.7 91.3 41.0 107.4 82.8 73.9 2.3 1.6

488-10-8 Jasmone Floral 0.007 36.2 33.3 11.4 72.8 227.7 79.1 45.0 31.8

106–24-1 Geraniol Rose-like, sweet 0.0075 14860.0 16259.5 6189.3 10919.7 13427.5 14939.0 278.3 206.7

3796-70-1 Geranylacetone Floral, green, fruity 0.1 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0

928-96-1 Leaf alcohol Grass, green, fruit 0.4 1.0 1.4 0.0 0.9 0.0 1.0 0.0 0.0

590-86-3 3-methylbutanal Malt 0.1 0.3 0.4 0.0 0.6 0.7 1.9 0.2 0.3

111-70-6 1-Heptanol Green, sweet 0.2 0.7 1.4 0.3 1.1 1.3 1.4 0.0 0.0

111-71-7 Heptaldehyde Green, oily, grassy 0.01 18.5 13.6 4.3 12.3 18.9 18.8 1.6 2.4

124-19-6 1-Nonanal Floral, fatty, green 0.04 13.9 22.8 6.9 14.7 29.3 31.7 6.9 3.2

111-87-5 1-Octanol Green, citrus, fatty 0.1 0.0 2.4 0.0 6.8 0.0 1.7 2.2 0.3

124-13-0 Octanal Citrus, fruit, green 0.0007 96.3 49.4 0.0 79.1 0.0 73.1 6.6 14.8
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