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Background: Previous researches have demonstrated an association between 
carotenoids and elongated telomeres. Nonetheless, there is scant scientific 
evidence examining this relationship in individuals who are overweight or 
obese, a demographic more predisposed to accelerated aging. This study aims 
to elucidate the correlation between serum carotenoid concentrations and 
telomere length within this population group.

Methods: Data were sourced from the 2001–2002 National Health and Nutrition 
Examination Survey, encompassing 2,353 overweight or obese participants. The 
levels of α-carotene, β-carotene (both trans and cis isomers), β-cryptoxanthin, 
lutein/zeaxanthin, and trans-lycopene were quantified via high-performance 
liquid chromatography. Telomere length was assessed using quantitative 
polymerase chain reaction.

Results: Following adjustment for potential confounders, telomere length 
exhibited an increase of 1.83 base pairs (bp) per unit elevation in β-carotene 
levels (β  =  1.83; 95% CI: 0.48, 3.18). Within the fully adjusted model, telomere 
length incremented by 1.7  bp per unit increase in serum β-carotene among 
overweight individuals (β  =  1.7; 95% CI: 0.1, 3.3), and by 2.6  bp per unit increase 
among obese individuals (β  =  2.6; 95% CI: 0.1, 5.0). Furthermore, restricted 
cubic spline analysis revealed a linear relationship between β-carotene levels 
and telomere length, whereas a non-linear association was observed between  
β-cryptoxanthin levels and telomere length.

Conclusion: This investigation indicates that higher serum β-carotene 
concentrations are linked with extended telomere length in overweight and 
obese populations in the United States. These findings warrant further validation 
through prospective studies.
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1 Introduction

Serum carotenoids are well-recognized natural antioxidants, with 
over 95% of carotenoids in human blood circulation primarily 
consisting of β-carotene, α-carotene, β-cryptoxanthin, lutein/
zeaxanthin, and lycopene. These carotenoids exhibit potent 
antioxidant properties, mitigating damage induced by reactive oxygen 
species and inhibiting lipid peroxidation (1). Additionally, carotenoids 
are involved in cellular signaling pathways associated with 
inflammation and oxidative stress (OS), thereby exerting a modulatory 
effect on both OS and inflammation (2).

Telomeres, located at the termini of linear chromosomes, are 
composed of thousands of TTAGGG nucleotide sequence repeats, 
serving to protect chromosome ends from deterioration and 
preventing chromosomal fusion (3). Genetic factors play a crucial role 
in determining telomere length. Concurrently, the preservation of 
telomere length is integral to genomic stability and aging. Throughout 
an individual’s lifespan, telomeres progressively shorten with each cell 
division (4). In essence, various environmental factors impacting 
genomic stability, aging, oxidative and inflammatory responses—such 
as diet, smoking, obesity, and physical activity—contribute to 
alterations in telomere length (5, 6).

Despite the established correlation between serum carotenoids 
and telomere length, there remains a paucity of information regarding 
this relationship in overweight or obese individuals. To our knowledge, 
this is the inaugural study exploring the association between serum 
carotenoids and telomere length in overweight or obese populations 
within the United  States. Over recent decades, the prevalence of 
obesity has surged globally, attributed to shifts in dietary habits and 
lifestyle choices (7). Obesity, characterized by the excessive 
accumulation of adipose tissue (AT), involves the release of adipokines 
from AT, which regulate various biological processes such as 
inflammation, insulin resistance, and glucose and lipid metabolism, 
thereby contributing to the pathogenesis of obesity-related diseases (8).

Therefore, the objective of this study is to investigate the 
relationship between serum carotenoid concentrations and telomere 
length among individuals classified as overweight or obese, using data 
from the 2001/2002 cycle of the National Health and Nutrition 
Examination Survey (NHANES). Given the antioxidant properties of 
carotenoids, we  hypothesize that higher carotenoid levels may 
attenuate telomere shortening in the study population.

2 Methods

2.1 Study population

The National Health and Nutrition Examination Survey 
(NHANES) is an extensive research initiative designed to evaluate the 
health and nutritional status of adults and children in the United States. 
NHANES has received formal approval from the US Centers for 
Disease Control and Prevention’s Research Ethics Review Board, with 
written informed consent obtained from all study participants. The 
datasets generated and analyzed in this study are publicly accessible 
on the NHANES official website.1

1 https://wwwn.cdc.gov/nchs/NHANES/Default.aspx

Our study population was derived from the 2001–2002 NHANES 
database. Initially, we  screened 11,039 participants to identify 
overweight and obese individuals, excluding those with a BMI ≤ 25 kg/
m2 (N = 7,023). Further exclusions were made for individuals with 
missing data on telomere length, carotenoid levels, education, poverty 
income ratio (PIR), physical activity, energy intake, congestive heart 
failure, cancer or malignancy, hypertension, smoking, and alcohol 
consumption. 2,353 participants were included in our analysis 
(Figure 1).

2.2 Assessment of serum carotenoid levels

Serum specimens for carotenoid measurement were processed, 
stored, and shipped to the National Center for Disease Control and 
Prevention’s Department of Laboratory Sciences for analysis. The 
primary carotenoids measured in NHANES 2001–2002 were 
α-carotene, trans-β-carotene, cis-β-carotene, β-cryptoxanthin, 
combined lutein/zeaxanthin, and trans-lycopene. These measurements 
were conducted using high-performance liquid chromatography with 
photodiode array detection. Detailed laboratory procedures and 
quality control methods for serum carotenoid measurements are 
available elsewhere (9). The serum concentrations of total carotenoids 
were calculated by summing the concentrations of the five carotenoids 
listed above.

2.3 Assessment of telomere length

For DNA analysis, whole blood samples were collected from 
participants, and quantitative polymerase chain reaction (qPCR) was 
performed to determine telomere length (T/S ratio) related to 
standard reference DNA in Dr. Elizabeth Blackburn’s laboratory in San 
Francisco, CA. Further details on telomere length determination are 
available on the laboratory section’s website.2 The inter-assay 
coefficient of variation was 6.5%. A T/S ratio to base pair conversion 
was utilized, with the conversion formula being 3,274 + 2413*(T/S). 
Rigorous quality control reviews were conducted by the Centers for 
Disease Control and Prevention before linking telomere data to the 
NHANES 2001–2002 public data files.

2.4 Assessment of covariates

Demographic information included age, sex, education, race, 
poverty income ratio (PIR), BMI, and energy intake. Questionnaire 
data covered physical activity, smoking status, and alcohol 
consumption status. BMI was calculated as weight/height2 (kg/m2). 
Ethnicity was categorized as non-Hispanic white, non-Hispanic Black, 
Mexican American, other Hispanic, or other races. Physical activity 
levels were classified into no aerobic activity, low-level exercise, 
moderate-level exercise, and high-level exercise. The NHANES 
definitions were used to classify physical activity levels, ranging from 
predominantly sedentary to high-load activities. Smokers were 
defined as individuals who had smoked more than one hundred 

2 http://cdc.gov/nchs/nhanes
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cigarettes in their lifetime, while drinkers were participants who 
consumed at least 12 alcoholic drinks of any type in a given year.

Medical history variables included hypertension, defined as mean 
systolic blood pressure ≥ 140 mmHg, mean diastolic blood 
pressure ≥ 90 mmHg, or self-reported hypertension. Data on 
congestive heart failure and cancer or malignancy were obtained 
through self-report questionnaires.

2.5 Statistical analysis

Continuous variables were presented as mean ± standard 
deviation, while categorical variables were expressed as counts 
(percentages). Serum total carotenoids were divided into quartiles. 
Baseline characteristics across different quartiles were assessed using 
chi-square tests and analysis of variance (Table 1). Generalized linear 
models were constructed to evaluate the relationship between serum 
carotenoids and telomere length in overweight or obese participants. 
Logistic regression models were used to assess the relationship 
between each quartile of serum carotenoids and their lowest quartile, 
with linear trends calculated by treating carotenoid quartiles as 
continuous variables (Table 2). Similar analyses were conducted in 
non-overweight and non-obese individuals (Supplementary Table S1). 

Further regression analyses were performed by categorizing 
participants into overweight (BMI < 30 kg/m2) and obese 
(BMI ≥ 30 kg/m2) subgroups based on obesity thresholds (Table 3).

Three models were employed to adjust for potential confounders 
identified in previous studies (10). Model I was adjusted for sex and 
age, Model II included additional demographic characteristics such 
as education, race, PIR, BMI, physical activity, and energy intake, and 
Model III further adjusted for medical history variables including 
congestive heart failure, cancer or malignancy, hypertension, 
smoking, and alcohol consumption. Stratified analyses were 
conducted to determine the relationship between serum carotenoids 
and telomere length across various subgroups based on sex, 
education, race, physical activity, congestive heart failure, cancer or 
malignancy, hypertension, smoking, and alcohol consumption 
(Figure 2). Lastly, a restricted cubic spline model with five nodes was 
utilized to examine the relationship between each serum carotenoid 
and telomere length (Figure 3).

All analyses were performed using a two-sided significance level 
(p < 0.05) with the statistical software packages R3 and Empower Stats.4

3 http://www.R-project.org

4 www.empowerstats.com, X&Y Solutions, Inc.

FIGURE 1

Flowchart of the study population.
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TABLE 1 Baseline characteristics of participants.

Q1 Q2 Q3 Q4 p-value

N 588 587 587 591

Age, years 48.366 ± 17.263 47.329 ± 17.217 49.543 ± 17.692 52.252 ± 17.683 <0.001

BMI, kg/m2 32.733 ± 6.732 31.450 ± 5.525 30.530 ± 4.593 29.514 ± 3.579 <0.001

PIR 2.500 ± 1.582 2.684 ± 1.593 2.965 ± 1.615 2.964 ± 1.620 <0.001

Energy, kcal 2127.995 ± 1088.242 2156.126 ± 924.619 2154.814 ± 1017.206 2120.315 ± 923.328 0.527

Telomere length, bp 5764.713 ± 628.233 5798.925 ± 596.983 5803.733 ± 615.959 5775.862 ± 576.058 0.460

Alpha-carotene, ug/dl 1.422 ± 1.149 2.363 ± 1.479 3.841 ± 2.651 7.565 ± 6.822 <0.001

Beta-carotene (trans + cis), ug/dl 6.531 ± 3.416 11.306 ± 5.459 17.161 ± 7.709 36.239 ± 25.162 <0.001

Beta-cryptoxanthin, ug/dl 4.484 ± 2.356 7.370 ± 3.388 10.630 ± 5.475 18.443 ± 12.154 <0.001

Combined lutein/zeaxanthin, ug/dl 9.413 ± 3.509 13.034 ± 4.491 16.875 ± 5.994 23.693 ± 9.861 <0.001

Trans-lycopene, ug/dl 13.593 ± 6.094 20.598 ± 7.583 25.219 ± 9.436 29.424 ± 12.733 <0.001

Sex 0.757

Male 297 (50.510%) 289 (49.233%) 300 (51.107%) 285 (48.223%)

Female 291 (49.490%) 298 (50.767%) 287 (48.893%) 306 (51.777%)

Education <0.001

Less Than 9th Grade 67 (11.395%) 63 (10.733%) 76 (12.947%) 106 (17.936%)

9-11th Grade 119 (20.238%) 106 (18.058%) 79 (13.458%) 86 (14.552%)

High School Grad 156 (26.531%) 160 (27.257%) 142 (24.191%) 104 (17.597%)

Some College 164 (27.891%) 157 (26.746%) 164 (27.939%) 141 (23.858%)

College Graduate 82 (13.946%) 101 (17.206%) 126 (21.465%) 154 (26.058%)

Race <0.001

Mexican American 99 (16.837%) 125 (21.295%) 121 (20.613%) 186 (31.472%)

Other Hispanic 28 (4.762%) 22 (3.748%) 24 (4.089%) 18 (3.046%)

Non-Hispanic White 343 (58.333%) 307 (52.300%) 307 (52.300%) 284 (48.054%)

Non-Hispanic Black 111 (18.878%) 123 (20.954%) 108 (18.399%) 92 (15.567%)

Other Race 7 (1.190%) 10 (1.704%) 27 (4.600%) 11 (1.861%)

Physical activity <0.001

no aerobic activity 176 (29.932%) 165 (28.109%) 139 (23.680%) 114 (19.289%)

low level exercise 299 (50.850%) 286 (48.722%) 327 (55.707%) 339 (57.360%)

moderate level exercise 80 (13.605%) 90 (15.332%) 78 (13.288%) 104 (17.597%)

high level exercise 33 (5.612%) 46 (7.836%) 43 (7.325%) 34 (5.753%)

Congestive heart failure 0.029

Yes 28 (4.762%) 18 (3.066%) 19 (3.237%) 10 (1.692%)

No 560 (95.238%) 569 (96.934%) 568 (96.763%) 581 (98.308%)

Cancer or malignancy 0.910

Yes 56 (9.524%) 53 (9.029%) 50 (8.518%) 50 (8.460%)

No 532 (90.476%) 534 (90.971%) 537 (91.482%) 541 (91.540%)

Hypertension 0.057

No 298 (50.680%) 337 (57.411%) 338 (57.581%) 321 (54.315%)

Yes 290 (49.320%) 250 (42.589%) 249 (42.419%) 270 (45.685%)

Smoking <0.001

Yes 344 (58.503%) 310 (52.811%) 260 (44.293%) 234 (39.594%)

No 244 (41.497%) 277 (47.189%) 327 (55.707%) 357 (60.406%)

Drinking 0.302

Yes 415 (70.578%) 387 (65.928%) 389 (66.269%) 402 (68.020%)

No 173 (29.422%) 200 (34.072%) 198 (33.731%) 189 (31.980%)

BMI, Body mass index; PIR, Poverty income ratio; In case of continuous variables, Kruskal Wallis rank sum test was used, and if the theoretical number of count variables was < 10, Fisher 
exact probability test was used.
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3 Results

3.1 Baseline characteristics of participants

The baseline characteristics of the 2,353 participants included 
in this study are presented in Table 1. The mean age of the subjects 
was 49.4 ± 17.6 years, with 1,171 males (49.8%). Participants in the 

highest serum total carotenoid group (Q4) were more likely to 
be female, older, and had a higher proportion of college graduates 
or higher education levels. This group also tended toward lower 
or moderate physical activity compared to other groups, had a 
lower mean BMI, and consumed less energy. Additionally, they 
were less likely to smoke or have conditions such as congestive 
heart failure.

TABLE 2 Relationship between serum carotenoids and telomere length.

Exposure Model I Model II Model III

β 95% CI p value β 95% CI p value β 95% CI p value

Alpha-carotene 3.91 (−1.12, 8.94) 0.1273 4.29 (−0.90, 9.48) 0.1051 4.62 (−0.63, 9.86) 0.0845

Quartile of alpha-carotene

Q1 Reference Reference Reference

Q2 −14.07 (−77.57, 49.43) 0.6641 0.72 (−63.98, 65.43) 0.9825 4.48 (−60.34, 69.31) 0.8922

Q3 29.81 (−35.20, 94.82) 0.3688 48.71 (−19.36, 116.78) 0.1609 56.46 (−12.01, 124.94) 0.1062

Q4 19.18 (−45.72, 84.08) 0.5625 38.49 (−30.95, 107.94) 0.2774 44.13 (−26.14, 114.40) 0.2185

P for trend 0.3194 0.1448 0.1056

Beta-carotene (trans + cis) 1.68 (0.37, 2.98) 0.0118 1.69 (0.35, 3.03) 0.0138 1.83 (0.48, 3.18) 0.0079

Quartile of Beta-carotene (trans + cis)

Q1 Reference Reference Reference

Q2 26.35 (−36.51, 89.21) 0.4113 26.65 (−36.40, 89.71) 0.4075 33.34 (−29.79, 96.48) 0.3008

Q3 80.73 (16.87, 144.59) 0.0133 76.15 (10.99, 141.32) 0.0221 85.21 (19.80, 150.61) 0.0107

Q4 61.22 (−3.90, 126.34) 0.0655 64.80 (−2.78, 132.39) 0.0603 73.01 (5.18, 140.84) 0.0350

P for trend 0.0250 0.0280 0.0153

Beta-cryptoxanthin 0.19 (−2.36, 2.74) 0.8826 1.77 (−1.04, 4.58) 0.2165 1.93 (−0.90, 4.76) 0.1815

Quartile of Beta-cryptoxanthin

Q1 Reference Reference Reference

Q2 62.18 (−0.64, 125.01) 0.0525 53.39 (−9.73, 116.52) 0.0975 58.29 (−4.85, 121.44) 0.0705

Q3 74.79 (11.96, 137.62) 0.0197 73.99 (9.41, 138.57) 0.0248 82.22 (17.40, 147.04) 0.0130

Q4 51.95 (−10.82, 114.73) 0.1049 83.64 (14.28, 153.00) 0.0182 92.36 (22.37, 162.35) 0.0098

P for trend 0.0979 0.0146 0.0073

Combined lutein/zeaxanthin 1.85 (−0.85, 4.55) 0.1793 1.38 (−1.44, 4.19) 0.3379 1.32 (−1.50, 4.14) 0.3588

Quartile of Combined lutein/zeaxanthin

Q1 Reference Reference Reference

Q2 20.81 (−42.18, 83.79) 0.5174 13.58 (−49.78, 76.95) 0.6744 16.46 (−46.90, 79.83) 0.6106

Q3 −1.79 (−65.17, 61.59) 0.9559 −13.94 (−78.58, 50.70) 0.6726 −11.09 (−75.85, 53.66) 0.7371

Q4 26.55 (−37.17, 90.27) 0.4142 15.07 (−51.63, 81.76) 0.6580 14.96 (−51.82, 81.74) 0.6606

P for trend 0.5799 0.8752 0.8785

Trans-lycopene 2.05 (−0.04, 4.15) 0.0547 1.41 (−0.70, 3.53) 0.1900 1.38 (−0.73, 3.50) 0.2001

Quartile of Trans-lycopene

Q1 Reference Reference Reference

Q2 −6.54 (−70.26, 57.19) 0.8407 −2.41 (−66.00, 61.18) 0.9407 −1.59 (−65.22, 62.04) 0.9610

Q3 47.19 (−16.91, 111.30) 0.1492 40.35 (−23.70, 104.40) 0.2170 40.45 (−23.70, 104.60) 0.2166

Q4 59.52 (−5.69, 124.73) 0.0738 46.36 (−19.39, 112.11) 0.1671 44.97 (−20.88, 110.82) 0.1809

P for trend 0.0260 0.0835 0.0924

Model I adjust for: Age; Sex. Model II adjust for: Age; Sex; Education; Race; PIR; BMI; Physical activity; Energy. Model III adjust for: Age; Sex; Education; Race; PIR; BMI; Physical activity; 
Energy; Congestive heart failure; Cancer or malignancy; Hypertension; Smoking; Drinking. Bold indicates significant statistical test value.
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FIGURE 2

Relationship between serum β-carotene and telomere length in different subgroups. In addition to the stratification variables themselves, sex, 
education, race, physical activity, congestive heart failure, cancer or malignancy, hypertension, smoking and drinking were adjusted.

TABLE 3 Relationship between serum β-carotene and telomere length in overweight and obese people.

Beta-carotene (trans + cis) Model I Model II Model III

BMI β (95% CI) p- value β (95% CI) p- value β (95% CI) p- value

BMI ≤ 30 1.4 (−0.1, 3.0) 0.074 1.6 (−0.1, 3.2) 0.059 1.7 (0.1, 3.3) 0.042

BMI > 30 2.0 (−0.4, 4.4) 0.107 2.4 (−0.1, 4.8) 0.058 2.6 (0.1, 5.0) 0.042

Total 1.5 (0.2, 2.9) 0.022 1.7 (0.4, 3.1) 0.010 1.9 (0.5, 3.2) 0.006

Model I adjust for: Age; Sex. Model II adjust for: Age; Sex; Education; Race; PIR; Physical activity; Energy. Model III adjust for: Age; Sex; Education; Race; PIR; Physical activity; Energy; 
Congestive heart failure; Cancer or malignancy; Hypertension; Smoking; Drinking. Bold indicates significant statistical test value.
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3.2 Relationship between serum 
carotenoids and telomere length

The relationship between serum carotenoids and telomere length 
is detailed in Table 2. After multivariate adjustment, a significant 
relationship was observed between β-carotene (trans + cis) and 
telomere length, whereas no association was found with α-carotene, 
β-cryptoxanthin, lutein/zeaxanthin, and trans-lycopene. For 
continuous carotenoid levels, telomere length increased by 1.83 base 
pairs (bp) per unit increase in β-carotene levels (β = 1.83; 95% CI: 
0.48, 3.18). When carotenoid levels were divided into quartiles, a 
significant positive correlation was found between the highest 
quartile and telomere length compared with the lowest quartile for 
β-carotene (OR = 73.1; 95% CI: 5.18, 140.84) and β-cryptoxanthin 
(OR = 92.36; 95% CI: 22.37, 162.35). Across all models, trend tests 
indicated statistically significant associations for β-carotene (p for 
trend <0.05). No such association was observed in non-overweight 
and non-obese individuals, as shown in Supplementary Table S1. In 
the fully adjusted model, telomere length increased by 1.7 bp per unit 
increase in serum β-carotene in overweight individuals (β = 1.7; 95% 
CI: 0.1, 3.3), and by 2.6 bp per unit increase in obese individuals 
(β = 2.6; 95% CI: 0.1, 5.0), as shown in Table 3.

3.3 Subgroup analysis

The relationship between serum β-carotene and telomere length 
within subgroups is shown in Figure 2. Subgroups were stratified by 
sex, education, ethnicity, physical activity, congestive heart failure, 
cancer or malignancy, hypertension, smoking, and alcohol 

consumption. After adjusting for variables other than the stratification 
variable itself, no significant interaction was found between β-carotene 
levels and potential confounders of telomere length (p > 0.05 for each 
interaction). Supplementary Tables S2–S5 present stratified analyses 
and interactions between the other four carotenoids and telomere 
length, with results similar to those for β-carotene.

3.4 Restricted cubic spline model

The dose–response relationship between carotenoid levels and 
telomere length is illustrated in Figure 3. No linear deviation from 
telomere length was observed for β-carotene (p for Nonlinear = 0.1531; 
p for Overall = 0.0175). However, a non-linear relationship was 
detected between β-cryptoxanthin and telomere length (p for 
Nonlinear = 0.0449; p for Overall = 0.0452), with a significant 
relationship below the threshold of 17.6 μg/dL. No nonlinear 
relationship was observed for the other three carotenoids.

4 Discussion

Our study found that increasing serum carotenoid levels were 
significantly associated with longer telomere lengths in overweight or 
obese U.S. populations. Specifically, β-carotene showed a linear 
correlation with telomere length, while β-cryptoxanthin showed a 
non-linear correlation. The other three carotenoids were not 
statistically significant. The increase in carotenoid levels had a more 
significant effect on telomere length in obese individuals compared to 
overweight individuals. Notably, no such relationship was found 

FIGURE 3

Association between serum β-carotene and telomere length in overweight and obese people. Adjusted for age, sex, education, race, PIR, BMI, physical 
activity, energy, congestive heart failure, cancer or malignancy, hypertension, smoking, and drinking.
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between carotenoids and telomere length in non-overweight or 
non-obese individuals.

Previous studies have shown a significant positive relationship 
between telomere length and self-reported high dietary intake of 
vegetables and β-carotene (11), particularly in women not using 
multivitamins (12). Serum carotenoid levels have also been 
highlighted as objective markers of dietary intake. A study from 
Austria indicated that higher plasma concentrations of lutein, 
zeaxanthin, and vitamin C were associated with longer leukocyte 
telomere length in normal older adults, suggesting a protective role 
for these vitamins in telomere maintenance (3). Similarly, an increase 
in blood carotenoid levels was significantly associated with longer 
leukocyte telomeres in 3,660 adults from NHANES (10). And this 
result was replicated in a larger cohort, serum carotenoids generally 
showed a positive correlation with leukocyte telomere length (13).

However, most previous studies have focused on the general adult 
population, neglecting groups more prone to accelerated aging, such 
as overweight or obese individuals (14). This longitudinal study 
highlights the significant finding that telomere shortening begins at a 
remarkably early age in children with obesity (15). This aligns with the 
understanding that obesity reduces telomere length by persistently 
affecting systemic inflammation and redox homeostasis (16). The 
urgent need for preventive measures and early interventions is 
emphasized to mitigate the long-term health consequences of obesity 
on telomere dynamics and associated metabolic disorders. For 
example, obese mice have shown reduced telomere length in oocytes 
and embryos (17), and overweight and obese children have significantly 
shorter telomeres compared to children with normal BMI (18). A 
collaborative cross-sectional meta-analysis of 87 observational studies 
also demonstrated that higher BMI is associated with shorter telomeres, 
particularly in young adults (19). Thus, maintaining a healthy body 
weight is crucial to delay telomere shortening and the development of 
related diseases. Additionally, a meta-analysis has demonstrated that 
psychological stress is linked to a reduction in telomere length (16), 
with high levels correlating with chronic diseases such as obesity and 
abdominal fat accumulation (20). Furthermore, beyond varying stress 
levels, socioeconomic status also influences telomere length. A cohort 
study from FFCWS identified poverty as a predictor of changes in 
telomere length among women (21). Moreover, certain stressors 
unique to women may further exacerbate this effect (22).

Mechanistically, increases in oxidative stress and chronic 
inflammation are key contributors to telomere shortening (23). 
Reactive oxygen species from oxidative stress can cause breaks in 
DNA and interfere with the replication of telomeric repeats, leading 
to an increased rate of telomere shortening. Chronic inflammation 
increases inflammatory mediators, which also promote telomere 
shortening. Conversely, telomere shortening in leukocytes leads to 
decreased immune function and increased secretion of 
pro-inflammatory factors (24, 25), creating a vicious cycle (26). 
Obesity exacerbates this cycle by increasing oxidative stress and 
chronic inflammation (16), potentially due to adipocyte proliferation 
and hypertrophy leading to adipose tissue hypoxia (27). Therefore, 
obese individuals may have shorter somatic telomere lengths and are 
more susceptible to premature aging and reduced cell lifespan (28–
30). Our findings support this trend, with lower BMI associated with 
longer telomeres across all populations included.

In this study, serum β-carotene levels were significantly associated 
with longer telomeres, while β-cryptoxanthin showed no significant 

relationship beyond a certain concentration. α-carotene, lutein/
zeaxanthin, and trans-lycopene were not statistically significant. This 
difference may be due to the study population size, statistical methods, 
and choice of confounding variables. Further carefully designed studies 
are needed to assess the effects of these carotenoids on telomeres (10).

Despite these differences, carotenoids still play a significant role 
in protecting against telomere loss. Tocopherol (vitamin E) and 
β-carotene work synergistically to quench reactive oxygen species 
(ROS). Specifically β-carotene neutralize peroxyl radicals, leading to 
the formation of a carotenoid radical cation (CAR•+). This CAR• + can 
be reduced back to β-carotene by cellular antioxidants like tocopherol, 
thereby recycling β-carotene and reducing the propagation of lipid 
peroxidation (31). Carotenoids have anti-inflammatory properties, 
and increased serum concentrations can reduce the production of 
inflammatory mediators, potentially protecting telomeres from 
inflammatory damage (3). As potent antioxidants, they can neutralize 
free radicals and reduce oxidative stress, thus delaying telomere 
shortening in obese individuals (10, 32–34). Obesity-related unhealthy 
lifestyles, such as poor dietary habits and lack of exercise, may lead to 
reduced carotenoid intake, indirectly affecting telomere length. 
Hormonal fluctuations in obesity may also impact telomere length, 
and carotenoids may influence telomere length through hormone 
modulation or other signaling pathways (35).

For provitamin A carotenoids, including α-carotene, β-carotene, 
and β-cryptoxanthin, β-carotene, are abundantly found in yellow-
orange fruits and green leafy vegetables. Notable sources of β-carotene 
include carrots, pumpkins, and celery (36). β-carotene may exhibit 
pro-oxidative properties at high concentrations or high oxygen partial 
pressures (10). The narrative review by Baliou et al. (2024) highlights 
the diverse benefits of the Mediterranean diet on telomere biology. It 
suggests that a diet rich in carotenoids from natural food sources may 
be more effective than supplementation in preserving telomere length, 
thereby helping to mitigate the progression of age-related diseases 
(37). β-carotene in adipose tissue may be metabolized into thrombotic 
or atherogenic derivatives, increasing the risk of cardiovascular 
disorders (38, 39). Conversely, non-provitamin A carotenoids, 
including lutein/zeaxanthin and trans-lycopene, have been reported 
to prevent DNA damage (40). Follow-up studies are needed to 
determine if specific carotenoids differentially protect telomere length. 
Notably, several studies have indicated that β-carotene 
supplementation alone, particularly at high doses, is linked to adverse 
outcomes, including an increased risk of all-cause mortality and a 
higher likelihood of lung cancer among individual at elevated risk for 
this disease (41, 42). Therefore, for daily intake, a mixed consumption 
of various carotenoids is recommended to avoid excessive intake of 
any single carotenoid class (43). Carotenoids may help reduce the risk 
of telomere shortening in obese individuals, underscoring the 
importance of a balanced dietary approach. Such as the Mediterranean 
diet, which offers broader nutritional support compared to 
isolated supplementation.

However, our study has limitations. First and foremost, our study 
utilized only the 2001–2002 cycle of the NHANES database (13). 
Further research and periodic studies are necessary to validate our 
findings. Also, as a cross-sectional study, it only explores the 
relationship between serum carotenoids and telomere length in obese 
individuals without establishing causality. More longitudinal studies 
and intervention trials are needed to clarify these associations and 
explore differences across gender, age, and ethnic groups (16). 
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Additionally, there is no precise definition of high carotenoid 
concentrations, which may introduce bias.

Despite these limitations, our study highlights the potential 
relationship between serum carotenoids and telomere length in obese 
individuals, suggesting that increasing carotenoid intake may help 
delay telomere shortening, cellular aging, and related diseases in 
this population.

5 Conclusion

In conclusion, this study suggests that serum β-carotene is linearly 
and positively associated with longer telomere length in overweight 
and obese U.S. populations. Compared with overweight participants, 
obese participants ingested more β-carotene better for delaying 
telomere shortening. While the potential role of other carotenoids in 
delaying aging cannot be denied, further confirmation through future 
prospective studies is needed.
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