AUTHOR=Wang Ling , Li Guojin , Gao Jie , Cheng Jia , Yuan Zhengnan , Lu Hongzhao , Zeng Wenxian , Zhang Tao TITLE=Untargeted metabolomics reveals the alteration of metabolites during the stewing process of Lueyang black-bone chicken meat JOURNAL=Frontiers in Nutrition VOLUME=11 YEAR=2024 URL=https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2024.1479607 DOI=10.3389/fnut.2024.1479607 ISSN=2296-861X ABSTRACT=Introduction

Black-bone chicken meat is rich in nutritional substances and bioactive compounds. Stewing is a traditional and healthy cooking style for black-bone chicken meat. However, the alteration of metabolites in chicken meat during stewing is still unknown.

Methods

A comprehensive analysis of Lueyang black-bone chicken meat metabolites was performed in fresh chicken meat (FM), short-term heat-pretreated meat (PM), fully cooked meat (CM) and chicken soup (CS) via untargeted metabolomics.

Results

By comparison, 200, 992 and 891 significantly differentially metabolites (DMs) were identified in the PM vs. FM, CM vs. FM and CS vs. FM comparisons, respectively. These DMs mainly included amino acids, peptides, carbohydrates and lipids. During the heating process, the abundances of Ser, Ala, Tyr, niacinamide, galactose, guanosine 3′-monophosphate and inosine 5′-monophosphate in chicken meat significantly decreased and were partially dissolved in the soup. Due to the hydrolysis of phospholipids, the relative contents of unsaturated lipids, especially a range of lysophosphatidylcholines, lysophosphatidylethanolamines, arachidonic acid and derivatives, increased in fully cooked meat.

Discussion

Pretreatment had little impact on the changes in metabolites in chicken meat. During stewing, the dissolved amino acids, carbohydrates and nucleic acids could enhance the taste quality of chicken soup, and the high abundance of unsaturated lipids could promote the nutritional quality of black-bone chicken meat. In summary, these data provide helpful information for nutritional quality studies on the metabolite profiles of black-bone chicken meat.