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Introduction: Disease-related malnutrition is common but often underdiagnosed 
in patients with chronic gastrointestinal diseases, such as liver cirrhosis, 
short bowel and intestinal insufficiency, and chronic pancreatitis. To improve 
malnutrition diagnosis in these patients, an evaluation of the current Global 
Leadership Initiative on Malnutrition (GLIM) diagnostic criteria, and possibly the 
implementation of additional criteria, is needed.

Aim: This study aimed to identify previously unknown and potentially specific 
features of malnutrition in patients with different chronic gastrointestinal 
diseases and to validate the relevance of the GLIM criteria for clinical practice 
using machine learning (ML).

Methods: Between 10/2018 and 09/2021, n = 314 patients and controls were 
prospectively enrolled in a cross-sectional study. A total of n  = 230 features 
(anthropometric data, body composition, handgrip strength, gait speed, 
laboratory values, dietary habits, physical activity, mental health) were recorded. 
After data preprocessing (cleaning, feature exploration, imputation of missing 
data), n = 135 features were included in the ML analyses. Supervised ML models 
were used to classify malnutrition, and key features were identified using 
SHapley Additive exPlanations (SHAP).

Results: Supervised ML effectively classified malnourished versus non-
malnourished patients and controls. Excluding the existing GLIM criteria and 
malnutrition risk reduced model performance (sensitivity -19%, specificity -8%, 
F1-score -10%), highlighting their significance. Besides some GLIM criteria (weight 
loss, reduced food intake, disease/inflammation), additional anthropometric 
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(hip and upper arm circumference), body composition (phase angle, SMMI), 
and laboratory markers (albumin, pseudocholinesterase, prealbumin) were key 
features for malnutrition classification.

Conclusion: ML analysis confirmed the clinical applicability of the current 
GLIM criteria and identified additional features that may improve malnutrition 
diagnosis and understanding of the pathophysiology of malnutrition in chronic 
gastrointestinal diseases.

KEYWORDS

malnutrition, GLIM criteria, machine learning, supervised and unsupervised learning, 
decision trees, gastrointestinal diseases, liver cirrhosis

Introduction

Disease-related malnutrition is a common but often 
underestimated complication in hospitalized patients with a 
particularly high prevalence of more than 30% in gastrointestinal 
diseases (1). Major factors leading to disease-related malnutrition 
include decreased food intake despite increased energy and protein 
requirements, and stress-induced catabolism due to inflammation (2). 
Disease-related malnutrition increases the risk of infections, organ 
dysfunction, and impaired healing resulting in prolonged 
hospitalization, decreased functional status, impaired quality of life, 
and ultimately increased morbidity and mortality (2, 3). Therefore, the 
early detection and treatment of malnutrition is of great importance 
but requires effective diagnostic markers and a better understanding 
of its underlying mechanisms.

The Global Leadership Initiative on Malnutrition (GLIM) has 
defined an algorithm for the operational diagnosis of malnutrition. 
First, the risk of malnutrition should be determined using validated 
tools, such as the Nutritional Risk Screening 2002 (NRS2002), the 
Malnutrition Universal Screening Tool (MUST), or the Royal Free 
Hospital-Nutritional Prioritizing Tool (RFH-NPT) (4–6). In the case 
of a positive risk screening, malnutrition is diagnosed according to 
GLIM by combining at least one phenotypic criterion (unintentional 
weight loss, low body mass index (BMI), or reduced muscle mass) 
with at least one etiological criterion (reduced food intake/
malabsorption or disease burden accompanied by some degree of 
inflammation) (7). However, malnutrition often goes unrecognized 
due to a lack of awareness, knowledge, clinical protocols and 
equipment, or because disease-related difficulties complicate 
diagnostic assessment (8).

Some gastrointestinal diseases may further limit the practical 
applicability of the GLIM criteria. Patients with chronic diseases of 
the liver, intestine, and pancreas are often malnourished due to the 
interrelated functions of these organs in digestion, nutrient 
absorption, and synthesis of major plasma proteins. Up to 60% of 
patients with advanced chronic liver disease are malnourished (9, 
10). However, overhydration in liver cirrhosis (LC), i.e., edema and 
ascites, masks weight loss, and distorts BMI and body composition 
measurements potentially leading to an underestimation of the 
malnutrition diagnosis. Short bowel syndrome is the result of 
extensive intestinal loss and the resulting insufficient absorptive 
capacity for water, electrolytes, and nutrients (11). Malnutrition has 
been reported in more than 50% of patients with short bowel and 
intestinal insufficiency (SB/II) (10, 12). However, dehydration, 
malabsorption, and/or hyperphagia are common in these patients, 

further complicating nutritional assessment (13). Malnutrition is 
also common in patients with chronic pancreatitis (CP) due to 
exocrine and endocrine insufficiency. We  recently reported a 
malnutrition prevalence of 64%, mainly characterized by loss of 
skeletal muscle mass although this condition becomes apparent only 
in advanced stages (14). Therefore, an evaluation of the current 
diagnostic criteria and possibly the implementation of additional 
criteria is needed for a reliable and clinically applicable assessment 
of malnutrition in patients with different chronic 
gastrointestinal diseases.

In this context, state-of-the-art in silico data analysis could 
be helpful for the early detection of malnutrition. The use of Machine 
Learning (ML) in biomedical research has increased in recent years, 
not only because of the increasing size and complexity of biomedical 
data. By fitting predictive models to data and applying feature 
prioritization and explainability techniques to the fitted model, 
supervised ML can help to understand the association of various 
biological and clinical factors (ML features) with diseases/phenotypes 
(ML labels), thereby deepening the understanding of biomedical data 
and underlying biological processes (15). In addition, unsupervised 
ML can identify patterns in unlabeled data sets and therefore may 
recognize previously undetected clusters in larger data sets such as 
different patient groups (16). Finally, decision trees are a helpful tool 
for identifying decision rules based on identified features and cut-off 
values, allowing the transition of ML-driven decision making into 
practice (15).

In the present study, we  analyzed comprehensive data sets of 
patients with different chronic gastrointestinal diseases (LC, SB/II, and 
CP) and two control groups using ML to identify previously unknown 
and potentially specific features of their malnutrition and to validate 
the relevance of the GLIM criteria for clinical practice.

Materials and methods

Declarations about the data

This study was conducted as part of the collaborative EnErGie 
project (ESF/14-BM-A55-0007/18). Data were collected between 
10/2018 and 09/2021 from the cross-sectional EnErGie study. The 
study was approved by the institutional review board of the Rostock 
University Medical Center (A2018-0129) and registered in the Clinical 
Trials Register (NTC04474743) and the German Clinical Trials 
Register (DRKS00021124). All patients provided written informed 
consent. All examinations were performed by trained study personnel.
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An overview of the data processing described in detail below is 
shown in Figure 1.

Curation of the clinical data set

A total of n = 314 subjects were enrolled, including patients 
with chronic gastrointestinal diseases (LC, CP, SB/II), as well as 
patients referred for subacute non-specific complaints (control 
patients (controls)), and healthy controls (HC). All participants 
were at least 18 years of age. Individuals were excluded from the 
study if any of the following criteria were met: any parenteral 
nutrition in the past 6 months, ongoing nutritional intervention 
(oral nutritional supplements, enteral or parenteral nutrition) for 
>7 days, trans-jugular intrahepatic portosystemic shunt (TIPS), 
previous liver transplantation, acute phase of intestinal 
insufficiency (<28 days after bowel resection), pregnancy/
breastfeeding period, pacemaker/implanted defibrillator, 
malignancy in the past 3 years, and insufficient ability to 
answer questionnaires.

Patient data were obtained from the medical records and by 
interview. Anthropometric data, body composition [by bioelectrical 
impedance analysis (BIA)], muscle strength (by measurement of 
maximal handgrip strength) and muscle function (by measurement 
of gait speed), and blood parameters were determined. Disease 
severity was documented for LC patients (Child-Pugh Score) and CP 
patients (Chronic Pancreatitis Prognosis Score, COPPS). In addition, 
questionnaires on diet quality and frequency [“Studie zur Gesundheit 
Erwachsener in Deutschland (DEGS),” Study of Health in Pomerania 
(SHIP)], physical activity [International Physical Activity 
Questionnaire (IPAQ)], and mental health (Hospital Anxiety and 
Depression Scale (HADS), Fatigue Severity Scale (FSS), de Jong 
Gierveld and van Tilburg Scale) were applied.

Malnutrition risk was assessed by NRS-2002 or RFH-NPT (the 
latter in LC patients), and malnutrition was diagnosed using the 
GLIM algorithm (7). Briefly, the diagnosis of malnutrition 
requires the presence of at least one phenotypic [unintentional 
weight loss, low BMI, reduced fat-free mass index (FFMI)] and 
one etiologic criterion (reduced food intake or malabsorption, 
disease burden accompanied by some degree of inflammation). 
The criteria were applied as described previously (10). C-reactive 
protein (CRP) of >5 mg/l was used as a proxy for inflammation. 
A total of n = 230 variables (hereafter referred to as features) were 
recorded (Supplementary Table S1).

Data preprocessing

As reviewed in detail by Fan et al., data preprocessing is necessary 
to handle irregular, noisy, and missing data in biomedical data sets 
(17). Initial data cleaning measures included verification, 
de-duplication, reformatting, and standardization of the data points 
(Figure 1).

Since most ML models can only handle numerical values, it is 
necessary to convert categorical features into numerical 
representations (encoding). For example, binary features with 
categories no/false and yes/true were encoded as 0 and 1, respectively. 
Other features with more than two or with more complex categories 

were encoded using ordinal encoding, where each category is assigned 
to a unique numerical value.

Further preprocessing included feature exploration and exclusion 
of features with high number of missing values, redundancy, high 
variance, and high correlation between the features. Missing values 
were imputed using the mean or most common value for continuous 
or categorical features, respectively, across all patients with the same 
sex and chronic gastrointestinal disease. Finally, n  = 135 of the 
original n  = 230 features were selected for further analyses (see 
Supplementary Table S1).

Supervised machine learning

In order to identify the key features that are most important for 
the diagnosis of malnutrition, we investigated the contribution of the 
selected features to the classification of non-malnourished versus 
malnourished. The GLIM diagnosis was used as the label, leaving 
n = 134 features for supervised ML analysis. Several classification 
algorithms were compared: Adaptive Boosting (AdaBoost), decision 
trees, the K-Nearest Neighbors algorithm (KNN), Light Gradient 
Boosting (LGBM), Logistic Regression, the Naive Bayes classifier, 
Random Forests, Support Vector Machines (SVM), and eXtreme 
Gradient Boosting (XGBoost) [reviewed in Akpan and Starkey (18) 
and in Sen et al. (19)]. In each case, the data was randomly divided 
into a training set (80% of the samples) and a test set (20% of the 
samples) in a stratified manner, ensuring that the training and test sets 
had the same ratio of malnourished to non-malnourished patients as 
the original data set. Additionally, the models were trained in one of 
the following scenarios: (a) using the complete set of n = 134 features 
or (b) omitting the features used to obtain the GLIM diagnosis: total 
weight loss (%), BMI, FFMI, reduced food intake, and disease/
inflammation. In addition, the features ‘malnutrition risk’ and ‘CRP’, 
which was used as a supporting proxy to assess disease/inflammation, 
were omitted because they are associated with the diagnostic features. 
The second scenario resulted in a total number of n = 127 features.

There was a slight imbalance in the data regarding the diagnosis 
of malnutrition, with an imbalance ratio of about 1:3, i.e., the dataset 
contained fewer malnourished than non-malnourished participants. 
Since imbalanced data can affect model performance, this imbalance 
was addressed by using cost-sensitive learning, if applicable within the 
algorithm. Hyperparameters, which are used to control the learning 
process of the algorithm, were optimized using a grid search approach, 
with a strong emphasis on parameters that counteract overfitting. All 
models underwent n  = 100 repetitions of 10-fold stratified cross-
validation to avoid overfitting and to evaluate the ability of the model 
to predict unseen data (20). Model performance was assessed by 
determining accuracy, precision, sensitivity, specificity, the area under 
the receiver operating characteristic (ROC AUC), the average 
precision score, the F1-score, balanced accuracy, and Cohen’s kappa 
score (21). The last four metrics are particularly useful when there is 
imbalance in the data. The mean and standard deviation were then 
calculated for each metric over the 100 × 10-fold cross-validation 
iterations (n = 1,000).

For the best-performing model from each of the two scenarios, 
SHapley Additive exPlanations (SHAP) were used to assess the extent 
to which a feature influences the model’s prediction (22). The SHAP 
approach calculates the contribution of each feature to the model 
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output and thus provides insight into the decision of a model. The 
average SHAP value for each feature and participant was calculated 
over the 100 × 10-fold cross-validation iterations (adapted from (23)). 
Based on the SHAP values, the 10 most important features for 
identifying malnourished patients were identified.

All supervised machine learning methods (including decision 
trees, see below) were performed in Python (version 3.9.16) using 
scikit-learn (version 1.0.1).

Unsupervised machine learning

Dimension reduction and visualization of the underlying patterns 
within the patient data was performed using Uniform Approximation 
and Projection (UMAP) (24). Due to the diversity of feature types 
within the data set, the Feature-Type Distributed Clustering (FDC) 
approach was applied as previously described by our group (25). The 
consideration of diverse feature types in combination with the 
conventional UMAP algorithm can lead to more effective results when 
investigating underlying patterns or patient clusters from patient 
data (25).

Accordingly, the UMAP algorithm was applied to the ordinal, 
nominal, and continuous features separately using the Canberra, 
Hamming, and Euclidean distance metrics, respectively. For all other 
parameters, default values were found to be  optimal. Then, both 
dimensions of each of the ordinal and continuous projections and one 
of the nominal dimensions were integrated to reduce the high-
dimensional data to an intermediate 5-dimensional embedding. This 
5-dimensional embedding was further processed with conventional 
UMAP (using default UMAP parameters) to obtain the final 2D 
UMAP projection.

Decision trees

The 10 selected key features from the best performing model 
using all features were used to train decision trees to investigate the 

explanatory power of the ML models. As described above for 
supervised ML, the data was shuffled and stratified into training data 
(80%) and test data (20%). The hyperparameters were optimized using 
a grid search approach. The tree was trained to a maximum depth of 
three. After training the model on the training data, the performance 
of the tree was evaluated on the test data using the same metrics as in 
the initial approach to compare the different algorithms. From five 
randomly generated decision trees, the best performing model was 
selected to determine and visualize its decision rules, including the 
respective features and cut-off values, when classifying the data.

Statistical analyses

Statistical analyses were performed using IBM SPSS Statistics 
(version 28, Ehningen, Germany) to compare the distribution of sex, 
age, and malnutrition diagnosis between patients with different 
chronic gastrointestinal diseases and controls in order to characterize 
the different patient and control cohorts. In addition, statistical tests 
were performed to compare features within clusters identified by ML 
as well as to compare features in patients with and without 
malnutrition diagnosis. After testing for normal distribution, the 
Mann–Whitney-U test or Student’s t-test was used for interval scaled 
variables. Nominal and ordinal scaled variables were tested using 
Pearson chi-squared test with Bonferroni adjustment. Data are 
presented as absolute (n) and relative (%) values, mean ± standard 
deviation (SD; normally distributed data) or median and interquartile 
range (IQR, non-normally distributed data). Statistical significance 
was considered when p < 0.05.

Results and discussion

Disease-related malnutrition is a common complication in the 
hospital setting, with a particularly high prevalence in chronic 
gastrointestinal diseases (1). Despite the availability of diagnostic 
criteria, malnutrition often remains unrecognized or underestimated, 

FIGURE 1

Overview of the data processing. LC, liver cirrhosis; CP, chronic pancreatitis; SB/II, short bowel/intestinal insufficiency; SHAP, SHapley Additive 
exPlanations; UMAP, uniform manifold approximation and projection.
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and individual criteria are limited in their practical applicability in 
several gastrointestinal diseases, such as LC. Machine Learning (ML) 
is a contemporary approach that can be  used to evaluate current 
diagnostic criteria, to identify additional features and a core data set 
for malnutrition diagnosis and potentially provide insights into the 
underlying mechanisms of malnutrition. The use of ML to aid 
diagnosis has already been evaluated in elderly patients with 
malnutrition, highlighting the potential of these technologies to 
improve diagnostic accuracy (26). However, in the context of ML, 
there are currently only a few studies investigating the interplay 
between malnutrition and chronic gastrointestinal diseases such as 
liver cirrhosis.

Furthermore, the GLIM criteria were developed based on expert 
consensus (7), and the use of ML algorithms can be used as a more 
unbiased strategy to develop additional or optimize the current 
diagnostic criteria. Therefore, the aim of this study was to analyze a 
comprehensive data set using ML to characterize both general and 
specific features of malnourished patients with different chronic 
gastrointestinal diseases and to validate the relevance of the GLIM 
criteria for clinical practice.

Demographic data

The demographic data of the different groups and the prevalence 
of malnutrition are summarized in Table 1. Most of the data sets were 
derived from HC, and patients with LC or CP, while SB/II and control 
patients comprised smaller groups. Age was comparable between 
control and patient groups. The percentage of women was >50% in the 
HC and control patients as well as in SB/II. In contrast and as 
expected, fewer patients were female in the LC (33%) and CP (23%) 
groups. While none of the HC was malnourished, 34% of the control 
patients were diagnosed with malnutrition. However, this was not 
unexpected in control patients with subacute non-specific 
gastrointestinal complaints. Malnutrition was more prevalent among 
LC patients (>60%) compared to the other groups. The data set 
included patients with varying degrees of the disease severity (LC: 
Child-Pugh Score A 19.3%, B 41.0%, C 39.7%; CP: COPSS A 33.3%, 
B 49.3%, C 17.4%, data not shown). The prevalence of malnutrition 
was found to increase with progressive disease. In LC patients, 
malnutrition was diagnosed in 40.0% with Child-Pugh Score A, in 
68.8% with Child-Pugh Score B and in 61.3% with Child-Pugh Score 
C. In CP patients, malnutrition was diagnosed in 13.0% with COPPS 
A, in 44.1% with COPPS B and in 83.3% with COPPS C (data not 
shown). These findings indicate that malnutrition is a common 

complication in both (sub-)acute and chronic gastrointestinal diseases 
and increases with disease progression.

Supervised classification of malnutrition

The results of the supervised ML analyses are described and 
discussed together in the following sections.

High classification performance after inclusion of 
all clinical features

We performed a classification analysis of the malnourished versus 
the non-malnourished patients and controls using all 134 selected 
features. Nine different classification models were used for this 
purpose and a number of different performance metrics were 
obtained. The results of the analysis are summarized in Table 2 
(sensitivity, specificity, and F1-score) and in Supplementary Table S2 
(additional performance metrics).

The LGBM classifier performed best in terms of F1-score, which 
is a widely used performance metric for imbalanced data sets that 
combines precision and sensitivity (Table 2). In addition, LGBM had 
the best performance in terms of accuracy, ROC AUC, balanced 
accuracy, and Cohen’s kappa score (Supplementary Table S2). KNN, 
a simpler classification model, performed best in terms of specificity, 
and Logistic Regression performed best in terms of sensitivity. Given 
that at least one classifier can achieve a score of more than 80% for 
both the F1 and the Cohen’s kappa score, we  conclude that the 
imbalance in the data does not have a negative effect on the classifiers. 
This is also supported by the high values of the average precision 
score and the balanced accuracy (Supplementary Table S2). Taken 
together, the ensemble models such as Random Forests, Adaboost, 
LGBM, and XGBoost perform better than the simpler classifiers. 
Since the LGBM had the best performance for classifying 
malnourished patients, we further investigated which features were 
mainly used by this model.

Reduced classification performance after 
removal of the GLIM criteria

The GLIM criteria were used for operational diagnosis of 
malnutrition. Therefore, it is clear that these criteria are associated 
with the state of malnutrition. The search for additional features that 
are independently associated with the diagnosis of malnutrition may 
identify biomarkers for malnutrition or provide insight into the 
mechanisms of malnutrition. Therefore, a classification analysis was 
performed without the GLIM criteria and associated features.

TABLE 1 Overview about the implemented cohorts of healthy controls (HC), control patients (controls) and patients with liver cirrhosis (LC), chronic 
pancreatitis (CP) as well as short bowel/intestinal insufficiency (SB/II).

Total 
(n = 314, 
100.0%)

HC 
(n = 91, 
29.0%)

Controls 
(n = 47, 
15.0%)

LC 
(n = 78, 
24.8%)

CP 
(n = 71, 
22.6%)

SB/II 
(n = 27, 
8.6%)

p value

Sex, female [n (%)] 132 (42.0) 47 (51.6) 26 (55.3) 26 (33.3) 17 (23.9)* 16 (59.3) <0.001b

Age [years] 58 (16) 58 (16) 54 (27) 58 (11) 58 (18) 60 (22) 0.109a

Malnutrition (diagnosed by GLIM) [n (%)] 104 (33.1) 0 (0)* 16 (34.0) 47 (60.3)* 30 (42.3) 11 (40.7) <0.001b

Data are shown as absolute (n) and relative values (%) as well as median (IQR) (age).
a Kruskal-Wallis test.
b Pearson chi-squared test with Bonferroni adjustment (* indicates statistical significance).
Bold values indicate statistical significance (p < 0.05).
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TABLE 3 Average performance of the trained models classifying malnutrition leaving out GLIM diagnosis criteria (total weight loss, BMI, FFMI, CRP, 
reduced food intake, chronic disease/inflammation, malnutrition risk; n = 127).

Decision 
Tree

KNN SVM Logistic 
regression

Naive 
Bayes

Random 
Forest

AdaBoost LGBM XGBoost

Sensitivity 0.869 ± 0.119 0.390 ± 0.144 0.709 ± 0.135 0.770 ± 0.124 0.603 ± 0.147 0.721 ± 0.132 0.679 ± 0.144 0.731 ± 0.136 0.667 ± 0.146

Specificity 0.677 ± 0.111 0.926 ± 0.056 0.818 ± 0.082 0.732 ± 0.095 0.834 ± 0.084 0.862 ± 0.074 0.853 ± 0.078 0.839 ± 0.080 0.860 ± 0.076

F1-score 0.690 ± 0.082 0.496 ± 0.143 0.681 ± 0.103 0.667 ± 0.092 0.619 ± 0.120 0.720 ± 0.102 0.684 ± 0.109 0.709 ± 0.102 0.680 ± 0.111

Performance was evaluated for 100 × 10-fold cross-validation iterations (n = 1,000). The highest value for each performance metric across all algorithms is highlighted. Data are shown as 
mean ± standard deviation. KNN, K-nearest neighbors; SVM, support vector machine; AdaBoost, adaptive boosting; LGBM, light gradient boosting machine; XGBoost, eXtreme gradient 
boosting. Bold values indicate the highest performance value.

The performance metrics are shown in Table  3 (sensitivity, 
specificity, and F1-score) and Supplementary Table S3 (additional 
performance metrics). The Random Forest model produces the 
highest F1-score, accuracy, ROC AUC, average precision score, 
balanced accuracy, and Cohen’s kappa score. The KNN model, on 
the other hand, produces the highest measures of precision and 
specificity, while the decision tree produces the best sensitivity. 
Again, the average precision score, F1-score, balanced accuracy, and 
Cohen’s kappa score of the best performing classification models are 
quite high, indicating that the imbalance present in the data does 
not affect the classification. The Random Forest model was selected 
for further interpretive analyses because it was the best performing 
model when GLIM features were omitted from the calculations.

As expected, the classification performance of the models 
decreased with the exclusion of the GLIM criteria highlighting their 
importance in the diagnosis of malnutrition. Compared to the LGBM 
as the best performing model including the GLIM criteria, the 
Random Forest model lost 19% sensitivity (0.888 ± 0.101 vs. 
0.721 ± 0.132), and 8% specificity (0.935 ± 0.054 vs. 0.862 ± 0.074), 
while the F1-score decreased by 10% (0.879 ± 0.075 vs. 0.792 ± 0.075).

Supervised machine learning identified key 
features associated with malnutrition

Both supervised ML approaches (with and without GLIM 
criteria) identified a list of features that contribute to the classification 
of malnourished versus non-malnourished. SHAP values which 
reflect the impact of the features on the model output, were used to 
prioritize the features in terms of their relevance for diagnosing 
malnutrition. Figure 2 shows the ten most important features for the 
approach including the GLIM criteria (A) or excluding the GLIM 
criteria, as well as malnutrition risk and CRP as a proxy for 
inflammation (B). For each participant and feature, the average SHAP 
value is shown as a single point. Overall feature importance was 
calculated as the mean of the absolute SHAP values across all 
participants for each feature.

Best model using the GLIM criteria
The LGBM was used as the best performing model considering all 

features (Figure 2A, see also Table 2). The main results using this 
approach are listed below and discussed in the next section.

According to the SHAP values, the GLIM phenotypic criterion of 
unintentional total weight loss was the most important feature for 
classifying malnutrition. Total weight loss was more important for 
classifying malnourished than non-malnourished patients/controls 
(alignment more to the right). High weight loss (indicated by the red 
color) increases the model output for positive malnutrition 
classification (positive SHAP values).

The other phenotypic criteria (reduced FFMI, position 17; and 
low BMI, position 35; Supplementary Table S4) were considered less 
important for malnutrition diagnosis using the supervised ML 
approach. The most likely reason for this is the high proportion of 
overhydrated LC patients, which masks the body weight and alters 
body composition.

The etiologic criteria (reduced food intake, disease burden 
accompanied by inflammation, and CRP as a supportive proxy for this 
criterion) were other key features of the malnutrition diagnosis. 
Reduced food intake and disease burden as well as high CRP levels are 
positively associated with the diagnosis of malnutrition. The 
assessment of reduced food intake provided a particularly reliable 
classification of malnourished and non-malnourished patients and 
controls. Another inflammatory marker, tumor necrosis factor (TNF)-
alpha is among the 10 features with the highest SHAP values.

In addition, the anthropometric measures of body weight and 
waist circumference were key features for malnutrition diagnosis, with 
lower feature values increasing model output toward malnutrition 
diagnosis. However, high waist circumference was more important for 
classifying non-malnourished patients and controls.

Serum albumin, often used as clinical laboratory marker for 
malnutrition but now considered as a marker of inflammation and 
disease severity (27), was also identified as an important feature for 
the model output.

TABLE 2 Average performance of the trained models classifying malnutrition using all (n = 134) features.

Decision 
tree

KNN SVM Logistic 
regression

Naive 
Bayes

Random 
Forest

AdaBoost LGBM XGBoost

Sensitivity 0.875 ± 0.107 0.491 ± 0.152 0.807 ± 0.123 0.903 ± 0.096 0.696 ± 0.140 0.849 ± 0.107 0.863 ± 0.109 0.888 ± 0.101 0.849 ± 0.112

Specificity 0.909 ± 0.070 0.954 ± 0.046 0.852 ± 0.077 0.843 ± 0.078 0.841 ± 0.083 0.907 ± 0.065 0.941 ± 0.055 0.935 ± 0.054 0.935 ± 0.053

F1-score 0.85 ± 0.085 0.608 ± 0.139 0.766 ± 0.09 0.815 ± 0.076 0.688 ± 0.110 0.833 ± 0.082 0.870 ± 0.079 0.879 ± 0.075 0.856 ± 0.078

Performance was evaluated for 100 × 10-fold cross-validation iterations (n = 1,000). The highest value for each performance metric across all algorithms is highlighted. Data are shown as 
mean ± standard deviation. KNN, K-nearest neighbors; SVM, support vector machine; AdaBoost, adaptive boosting; LGBM, light gradient boosting machine; XGBoost, eXtreme gradient 
boosting. Bold values indicate statistical significance (p < 0.05).
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Resistance (the ohmic resistance in alternative current, a raw value 
measured by BIA) and the physical activity level as a functional 
parameter were also among the 10 most important features predictive 
of malnutrition diagnosis using the LGBM.

Best model without GLIM criteria
We also applied Random Forest as the best performing model 

omitting the diagnostic GLIM criteria and malnutrition risk, to 
investigate which features have an additional impact and are still able 
to predict malnutrition when the GLIM criteria are not considered for 
classification (Figure 2B, see also Table 3). The lower numerical SHAP 
values were expected and are not solely related to the omission of the 
criteria, as Random Forest yields lower values compared to LGBM. The 
ten key features of the malnutrition diagnosis generated by this 
approach are listed below.

An underlying chronic gastrointestinal disease was found to 
be the most important feature for diagnosing malnutrition when 
malnutrition risk and the diagnostic criteria are excluded. The 
absence of an underlying disease was more important for the 
classification of non-malnourished patients and controls, while 
the presence of a disease state was weakly associated 
with malnutrition.

The laboratory parameters albumin, pseudocholinesterase, and 
prealbumin were also identified as key features. Lower values had a 
greater impact on the model output toward the diagnosis 
of malnutrition.

The anthropometric measures of hip circumference, body weight, 
and upper arm circumference had a high impact on the model output. 
Lower feature values had higher SHAP values associated with a 
positive diagnosis of malnutrition.

Phase angle and SMMI are features of body composition 
measurements. According to our model, low feature values are 
associated with the diagnosis of malnutrition.

Furthermore, inflammation was considered important for 
malnutrition classification with the pro-inflammatory cytokines 
Interleukin-6 (IL-6) and TNF-alpha (position 11, see 
Supplementary Table S5) being key features identified by ML. Low 
levels were associated with both malnourished and non-malnourished 
patients, making classification unreliable. However, high levels of 
inflammatory cytokines were associated with a positive diagnosis 
of malnutrition.

Biological significance of the ML-identified key 
features

To assess the biological significance of the above listed findings, 
we compared the numerical values of the ML-identified key features 
between non-malnourished and malnourished patients (Table 4). All 
features are highly significantly different between the two groups, 
highlighting their relevance to malnutrition and confirming the 
functionality of the presented ML approach. Despite the biologically 
important differences in the numerical values, there are overlapping 
ranges which means that not all of these parameters are suitable as 
biomarkers. However, the inclusion of additional features to the 
established GLIM criteria could improve the diagnostic accuracy in 
chronic gastrointestinal diseases. Furthermore, the key features 
identified may be  indicators of mechanisms or different 
manifestations of malnutrition.

Significance of the GLIM criteria
Summarizing the results of the supervised ML analysis 

(Figure  2A), the LGBM identified several GLIM criteria as key 
features for diagnosing malnutrition from an extensive set of clinical 
features in a total cohort of patients with chronic gastrointestinal 
diseases. Among these, total weight loss was the most important 
feature for classifying malnutrition. Although weight loss may 
be masked by fluid overload in patients with LC, this criterion had 
high diagnostic accuracy and was identified as an important driver 
in the diagnosis of malnutrition by Bannert et al. (10). Weight loss in 
cirrhosis is related to etiology. Anastácio et al. found that patients 
with alcoholic liver disease had higher weight loss compared to other 
etiologies of chronic liver disease (28). In this study, 74% of LC 
patients (representing 25% of the total cohort) had alcoholic liver 
disease, which may contribute to the high diagnostic accuracy and 
model output. However, even a simple history of unintentional and 
progressive weight loss is considered as a valid predictor of the 
clinical outcome (29).

Both etiologic GLIM criteria “reduced food intake/malabsorption” 
and “chronic disease accompanied by inflammation” were other key 
features, highlighting their importance in classifying malnutrition in 
chronic gastrointestinal diseases. In our previous study, these 
diagnostic criteria were most frequently found in this cohort of 
patients (10). In this context, the inflammatory marker CRP was one 
of the top features. TNF-alpha and IL-6 were also found to be key 
features in classifying malnutrition, making them further suitable 
proxies for malnutrition-related inflammation, but they are often not 
available in daily clinical practice. According to a Canadian 
comparative study assessing malnutrition at hospital admission, the 
best combination of the GLIM diagnostic criteria with fair validity for 
diagnosing malnutrition was weight loss with either high CRP or low 
food intake (30). This is consistent with our top three most important 
features using a ML approach in patients with chronic 
gastrointestinal disease.

Our results underline the reasonable applicability of the GLIM 
criteria in patients suffering from different gastrointestinal diseases. It 
should be emphasized that our less biased ML approach thus confirms 
the expert consensus and contributes to the validation of the relevance 
of the consensus criteria for clinical practice, as suggested by the 
GLIM Committee (7).

Significance of other key features
In addition to the GLIM criteria, other key features for classifying 

malnutrition in patients with chronic gastrointestinal diseases were 
identified by both supervised ML approaches. Consistent with the 
reported high prevalence in gastroenterology (1), an underlying 
chronic gastrointestinal disease was the most important feature for 
diagnosing malnutrition in our study using a Random Forest model 
after omitting the GLIM criteria. This highlights the importance of 
malnutrition screening in patients with a significant gastrointestinal 
disease (7, 29).

In addition, anthropometric and body composition parameters 
are of great importance. Reduced hip circumference allowed a 
reasonably reliable classification of malnourished patients 
identified by Random Forest. To date, only one study has identified 
a hip circumference < 88 cm as a risk factor for malnutrition in 
type 2 diabetic patients with pulmonary tuberculosis (31). In our 
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TABLE 4 Comparison of the ML-identified key features of malnutrition diagnosis between non-malnourished and malnourished patients.

Non-malnourished (n = 210) Malnourished (n = 104) p value

Total weight loss, % 0.0 (0.0) 11.8 (15.1) <0.001a

Reduced food intake, yes (%) 42 (20.0%) 82 (78.9%) <0.001c

C-reactive protein, mg/l 2.4 (3.8) 9.9 (31.7) <0.001a

Body weight, kg 80.8 (22.9) 70.5 (17.3) <0.001a

Waist circumference, cm 95.77 ± 16.03 91.76 ± 15.49 0.036b

Albumin, g/l 43.1 (7.8) 35.0 (12.0) <0.001a

Disease/inflammation, yes (%) 50 (23.8%) 68 (65.4%) <0.001c

Resistance, Ω 563.37 ± 90.66 617.71 ± 117.10 <0.001b

TNF-alpha, pg./ml 5.5 (3.7) 9.5 (8.4) <0.001a

Physical activity level, low (%) / moderate (%) / high (%) 48 (22.9%) / 78 (37.1%) / 84 (40.0%) 53 (51.0%) / 26 (25.0%) / 24 (23.1%) <0.001c

Gastrointestinal disease, yes (%) 88 (41.9%) 88 (84.6%) <0.001c

Hip circumference, cm 102.1 (12.7) 95.0 (11.3) <0.001a

Pseudocholinesterase, kU/l 8.00 (3.35) 4.84 (7.81) <0.001a

Prealbumin, g/l 0.23 (0.09) 0.12 (0.20) <0.001a

Phase angle, ° 5.0 (1.0) 4.2 (1.3) <0.001a

Upper arm circumference, cm 30.4 (5.6) 26.6 (5.6) <0.001a

Skeletal muscle mass index, kg/m2 8.58 ± 1.59 7.17 ± 2.13 <0.001b

IL-6, pg/ml 2.32 (3.50) 13.30 (40.0) <0.001a

Data are shown as absolute (n) and relative values (%), mean ± standard deviation or median (IQR).
a Mann–Whitney-U test.
b Student’s T-test.
c Pearson chi-squared test.
Bold values indicate statistical significance (p < 0.05).

cohort of 314 participants, hip circumference was significantly 
decreased in malnourished compared to non-malnourished 
patients. Therefore, this may be an additional helpful marker in the 

diagnosis of malnutrition, especially in patients with ascites where 
other anthropometric and body composition parameters may 
be masked.

FIGURE 2

SHAP feature importance summary plot from (A) the LGBM using all features including GLIM diagnostic criteria (marked in bold) or from (B) the 
Random Forest model omitting the GLIM malnutrition diagnosis criteria and the associated features malnutrition risk and C-reactive protein. Each dot 
represents the average SHAP feature importance value for one patient regarding the respective feature. The color of the dot represents the feature 
expression value (red - high, blue - low). Positive SHAP values indicate classification of malnourished patients, while negative SHAP values indicate 
classification of non-malnourished individuals. An alignment to the right therefore indicates higher importance of a feature for malnutrition 
classification. IL-6, interleukin 6; TNF, tumor necrosis factor.
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Furthermore, a reduced phase angle, higher resistance value, and 
lower skeletal muscle mass index indicated a diagnosis of malnutrition 
using the Random Forest model after excluding the GLIM criteria. 
Phase angle is a measured parameter of bioelectrical impedance 
analysis and an index of cell membrane integrity and vitality. It has 
been shown to be a reasonable indicator of mortality in many clinical 
situations and is associated with the nutritional status, prognosis, 
stage, and severity of digestive and liver diseases (32–34). However, 
the use of the phase angle as a biomarker of malnutrition in 
gastrointestinal diseases is limited because it is influenced by age, sex, 
BMI, and inflammation, which affects fluid distribution; therefore, 
assessment of hydration should be included (35). Skeletal muscle mass 
index measured by bioelectrical impedance analysis is an indicator for 
the GLIM criterion reduced muscle mass. When methods such as BIA, 
CT or MRI are not available, arm muscle circumference can be used 
as an alternative measure (7). This is also reflected in our results, 
which identified upper arm circumference as another key feature for 
classifying malnutrition.

Finally, among the laboratory values, plasma albumin, 
prealbumin, and pseudocholinesterase, were important features for 
the model output. Lower values of these parameters in LC patients, 
who make up the majority of the patients recruited in this study, 
reflect reduced liver function and thus the disease state. Low albumin 
concentrations have been shown to correlate with increased medical 
complications. However, prolonged protein-calorie restriction was 
associated with a reduction in body weight but little change in plasma 
albumin concentrations (29). Albumin (as well as prealbumin and 
pseudocholinesterase) levels further decrease during acute 
inflammation. In addition, human albumin is administered in 
conjunction with therapeutic paracentesis or hepatorenal syndrome 
in LC. Although this was not the case in the present study, the 
administration of albumin may influence albumin levels, potentially 
introducing bias and obscuring the presence of malnutrition. 
Therefore, albumin should not be considered as a standalone marker 
of malnutrition, but it may be  useful to consider albumin in 
conjunction with other factors.

It should be noted that some of the key features identified may 
be the cause and others may be the result of malnutrition. On the one 
hand, the reduction of anthropometric parameters such as hip and 
upper arm circumferences will result from reduced energy intake and 
low physical activity and can therefore be used to detect pre-existing 
malnutrition in the patients. On the other hand, for example 
inflammation-related changes in the laboratory markers may suggest 
the underlying mechanisms of malnutrition. This aspect could 
be addressed in future research.

In conclusion, we found that weight loss, reduced food intake, 
inflammatory markers, hip and upper arm circumference, SMMI 
and phase angle, as well as several laboratory parameters (albumin, 
prealbumin, pseudocholinesterase) had a particularly high impact 
on the classification of malnutrition in a cohort of patients with 
different gastrointestinal diseases. Early detection and appropriate 
treatment of malnutrition is of great importance to prevent adverse 
outcomes. Furthermore, predictive models using longitudinal data 
have shown promise in predicting malnutrition, highlighting the 
importance of continuous patient monitoring and facilitating early 
nutritional intervention (36). In two recent studies, ML was used 
to test different combinations of GLIM criteria for their 
performance in malnutrition diagnosis and prognosis in LC 

patients awaiting liver transplantation (37, 38). Mid-arm muscle 
circumference (reflecting the phenotypic GLIM criterion of 
reduced muscle mass) and liver disease parameters (used as 
etiologic criteria) were associated with the diagnosis of 
malnutrition and were also predictors of 1-year mortality (38). In 
this context, it will be interesting to further analyze our model in 
relation to the prognosis of (malnourished) patients with chronic 
gastrointestinal diseases. Image-based models predicting the 
nutritional risk from facial feature recognition have opened new 
avenues as non-invasive diagnostics (39). Taken together, these 
results and developments collectively represent a remarkable 
application scenario for ML in the diagnosis and management 
of malnutrition.

Unsupervised analysis reveals clustering of 
malnourished cirrhosis patients

The UMAP dimension reduction tool is an unsupervised ML 
approach that identifies and visualizes the data underlying structures 
in high-dimensional data. Using this exploratory approach, 
we identified clusters of patients and controls based on the similarities 
in their measurements and analyzed the enrichment of the GLIM 
criteria in these clusters (Figures 3, 4).

UMAP revealed five clusters in the data, labeled clusters 0, 1, 2, 3, 
and 4, each consisting of 136, 43, 56, 28, and 37 data points, 
respectively (Figure 3A). A total of 14 data points were labeled as noise 
by the Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN) algorithm (labeled cluster -1  in Figures  3A, 4A). The 
distribution of the control and patient cohorts among the clusters 
(Figure 3B) showed that cluster 4 consisted mainly of LC patients and 
cluster 1 had a high proportion of CP patients and HC, while the other 
clusters consisted of a heterogeneous mixture of patients with the 
indicated gastrointestinal diseases and controls. In addition, cluster 4 
had the highest proportion of malnourished patients and thus 
consisted mainly of malnourished LC patients (Figure 3C). Beyond 
that, malnourished and non-malnourished patients were distributed 
among the other clusters. We expected from our data set of different 
and complex features related to the nutritional status that 
malnourished patients (and controls) would cluster in a separate 
group compared to well-nourished individuals. However, the five 
clusters revealed could also indicate that there are more (here in our 
cohort five) nutritional states. In such a scenario, where the 
classification into malnourished and non-malnourished does not 
correspond to the nutritional states identified by individual clusters, 
this may indicate why the diagnosis of malnutrition is so difficult to 
define and detect. A deeper analysis involving more patients with a 
wider variety of diseases and repeated analyses over time in the 
presence (patients) or absence (HC) of disease is needed to 
address this.

We further investigated the differential distribution of features 
among these clusters. We mainly focused on the distribution of the 
GLIM criteria because our previous results from the supervised ML 
approach showed that several GLIM criteria serve as key features for 
diagnosing malnutrition in patients with different gastrointestinal 
diseases (Figure 4). While the False and True categories of both binary 
features, disease/inflammation and reduced food intake 
(Figures 4B,C), are widely distributed in the clusters 0 to 3, cluster 4 is 
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more dominated by positive values (True) for both features. 
Figures 4D–F shows the distribution of BMI, FFMI, and total weight 
loss across all clusters.

Despite high standard deviations, ANOVA testing revealed 
differences between the clusters for all GLIM features except BMI 
(Table 5). The mean values for FFMI, total weight loss and BMI, as 
well as the percentage of individuals with reduced food intake and 
disease/inflammation were higher in cluster 4 compared to the other 
clusters. This was expected since this cluster consisted mainly of LC 
patients who often suffer from overhydration, which leads to changes 
in body composition and limits the reliability of BIA measurement.

Because cluster 4 had the sharpest profile and was clearly 
different from the others, clusters 0 to 3 were combined for further 
statistical testing and compared with cluster 4. Cluster 4, which is 
dominated by (malnourished) LC patients (Figure 3), differed highly 

significantly in many features: GLIM criteria were higher in cluster 
4 (see also Table 5), as was the diagnosis of malnutrition (and also 
the risk of malnutrition). In addition, several features were found to 
be different including laboratory parameters, lower physical activity 
level, reduced skeletal muscle mass, grip strength and gait speed, 
higher prevalence of edema and ascites associated with increased 
waist circumference, lower intake of several macro-and 
micronutrients, presumably due to reduced food intake, and more 
frequent psychosocial symptoms (anxiety, depression, fatigue and 
loneliness) (data not shown). This may indicate that the pathogenesis 
of malnourished LC patients differs from that of malnourished 
patients with other chronic gastrointestinal diseases and from that 
of non-malnourished LC patients. Previously, we  found that 
individual GLIM criteria act as specific drivers for the diagnosis of 
malnutrition in different chronic gastrointestinal diseases, indicating 

FIGURE 3

Distribution of the clusters obtained by UMAP supported Feature Distributed Clustering (FDC). (A) Five clusters (0–4) were found; moreover 14 data 
points were denoted as noise (labeled as cluster -1). (B,C) Distribution of gastrointestinal diseases along with malnutrition in the clusters. It was 
observed that cluster 4 is mostly comprised of LC patients and also has the highest proportion of malnourished individuals. UMAP, uniform 
approximation and projection; HC, healthy controls; SB/II, short bowel/intestinal insufficiency; CP, chronic pancreatitis; LC, liver cirrhosis.
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different underlying mechanisms or manifestations of 
malnutrition (10).

Interpretable decision making using 
decision trees

With the intention to translating our in silico results into clinical 
applicability, we generated decision trees to define decision rules and 
cut-off values for the diagnosis of malnutrition. Yin et al. used tree-
based methods to visualize and validate decision tools for identifying 
malnutrition in cancer patients in a retrospective study, demonstrating 
the overall utility of such approaches in clinical diagnostics (40).

The LGBM was the best performing model when considering all the 
features, so we used the top ten features from the LGBM classification 

to generate the decision trees. The decision tree with the best 
performance (overall accuracy 0.968) is shown in Figure 5. This example 
decision tree includes a phenotypic (total weight loss) and an etiologic 
GLIM criterion (reduced food intake), respectively. It also includes CRP, 
which was used as a supporting proxy to determine the GLIM criterion 
of chronic disease/inflammation. In addition, anthropometric measures 
(body weight and waist circumference) are included in the model. 
Cut-off values were generated by the model for total weight loss, CRP, 
body weight, and waist circumference; with two different cut-off values 
for CRP depending on the decision path. These cut-offs are important 
because they help to refine the classification process.

The decision tree shown is an example of how ML data can 
be used to translate ML data into clinical applicability.

However, and again emphasizing the purely exemplary approach, 
some of the cut-off values generated by our decision tree are currently 

FIGURE 4

Distribution of the clusters obtained by UMAP supported Feature Distributed Clustering (FDC). (A) Five clusters (0–4) were found; moreover 14 data 
points were denoted as noise (labeled as cluster -1). (B–F) Distribution of the distinct GLIM criteria in the clusters. UMAP, uniform approximation and 
projection; LC, liver cirrhosis; BMI, body mass index; FFMI, fat-free mass index.

TABLE 5 The relative values (%) and mean ± SD of the individual GLIM criteria in the five clusters (0–4) detected by the unsupervised analysis. Cluster 4 
shows different patterns compared to the others. ANOVA was used for statistical testing.

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 p-value

BMI, kg/m2 (Mean ± SD) 25.6 ± 5.1 25.7 ± 4.6 26.3 ± 5.0 25.3 ± 5.5 28.0 ± 6.3 0.1455

FFMI, kg/m2 (Mean ± SD) 17.4 ± 2.1 17.0 ± 2.3 18.8 ± 2.3 17.9 ± 2.9 19.4 ± 4.3 0.0003

Total weight loss, % (Mean ± SD) 3.7 ± 6.5 3.6 ± 9.3 6.1 ± 8.6 4.9 ± 10.1 9.9 ± 12.9 0.0026

Reduced Food Intake (True, %) 36.0% 25.5% 35.7% 39.2% 81.0% <0.0001

Disease/inflammation (True, %) 27.9% 11.6% 41.0% 25.0% 89.1% <0.0001

BMI, body mass index; FFMI, fat-free mass index. Bold values indicate statistical significance (p < 0.05).
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not suitable for practical use. A weight loss of less than 2.7% is barely 
detectable, but can be  interpreted as weight loss in general being 
important, which also reflects the results of Yin et al. (40). Moreover, 
other parameters such as waist circumference or body weight are not 
yet related to the sex or height and may be  strongly influenced by 
ascites, which was present in 21% of our patients (not shown). Although 
the overall aim was to identify common features of malnutrition in 
different chronic gastrointestinal diseases, we  are aware that an 
individualized assessment is still necessary, and especially in 
decompensated LC patients with ascites, malnutrition assessment 
remains challenging.

Limitations and outlook

The data in this study were collected from a smaller cohort of 
participants (n  = 314), but include many features related to the 
nutritional status that were measured and recorded prospectively. The 
study was based on a cohort of controls and patients with different 
gastrointestinal diseases, including a high proportion of LC patients 
with ascites and edema. Therefore, our patient population is slightly 
biased toward liver disease. An imbalance in the proportion of 
attributes, e.g., male and female populations, could potentially lead to 
bias effects in the prognosis of the models. However, imbalanced 
attributes are common in clinical data and reflect real-world 
population characteristics. Our models were evaluated by cross-
validation across multiple performance metrics, indicating that they 
capture meaningful relationships despite attribute imbalance. For the 
models used in this study, we found no sex bias in the prediction of 
malnutrition. In addition, the GLIM criteria were used to diagnose 
malnutrition, which served as the label for the classification task. This 
self-fulfilling design of the classification task may have biased the 
reported importance of the features. To overcome this, the GLIM 
criteria and associated features were excluded in a further approach 
with additional information gain.

Although the results of our models require further validation, 
our study provides a robust foundation for more in-depth research in 
this  area by employing ML methods to classify malnutrition in 
chronic  gastrointestinal diseases. Future research could address the 

pathomechanisms and possible different states of nutrition and 
malnutrition in chronic gastrointestinal diseases, as well as the impact of 
our models on the prognosis of patients belonging to different clusters.

Conclusion

In this study, we employed ML approaches to identify the key 
features of malnutrition in patients with chronic gastrointestinal 
diseases. Among the extensive set of clinical features related to 
nutritional status, several GLIM criteria, as well as other features, were 
identified as important for the diagnosis of malnutrition. These 
include total weight loss, reduced food intake, inflammatory markers, 
hip and upper arm circumference, SMMI, phase angle, and clinical 
laboratory values of albumin, prealbumin and pseudocholinesterase. 
These results support the clinical applicability of the GLIM criteria in 
patients suffering from different gastrointestinal diseases and thus 
contribute to their validation. Furthermore, the diagnostic assessment 
of malnutrition may be improved by the implementation of additional 
criteria, such as anthropometric parameters, as well as classical 
laboratory values and possibly the use of decision trees. Prospective 
validation studies and future research are needed to gain further 
insight into the pathophysiology and prognosis of malnutrition in 
chronic gastrointestinal diseases.
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FIGURE 5

Exemplary decision tree using the top 10 features from LGBM using all features.
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