Phytates are nutrient-binding compounds found mainly in cereals and legumes, which may significantly contribute to micronutrient malnutrition in regions where phytate-rich cereals, such as maize, are staple food.
This study investigated how maize fermentation, both alone and in combination with soaking and germination, can reduce phytate levels and enhance the estimated bioavailability of iron and zinc.
We evaluated various fermentation methods, including spontaneous fermentation; fermentation with starter cultures, either
Fermentation with Lp299 of soaked and germinated maize grains yielded a phytate reduction of up to 85.6% decreasing from 9.58 ± 0.05 g·kg−1 in raw maize to 1.39 ± 0.09 g·kg−1 after processing. Fermentation of raw maize flour using Lp299 or yogurt resulted in a similar phytate reduction of 65.3% (3.35 ± 0.26 g·kg−1) and 68.7% (3.02 ± 0.01 g·kg−1) respectively. Spontaneous fermentation yielded a phytate reduction of 51.8% (4.65 ± 0.40 g·kg−1). This reduction in phytate content enhanced the estimated bioavailability of iron and zinc, particularly in the soaking-germination-fermentation combination, where the Phytate:Zinc molar ratio (Phy:Zn) dropped from 40.76 to 7.77, representing 81% reduction from the raw maize. The Phytate:Iron molar ratio (Phy:Fe) dropped from 41.42 to 6.24 indicating an 85% reduction. Additionally, fermentation led to a significant increase (
Lactic acid fermentation of soaked and germinated maize grains, emerged as the most promising process to enhance the bioavailability of essential minerals. This approach could help alleviate mineral deficiencies in populations dependent on maize-based diets. The findings underscore the potential of fermentation to be applied at the household level, which may bring up an alternative for programs and policies focused on reducing micronutrient deficiencies and improving food security in developing regions.