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Sarcopenia is a loss of muscle strength, muscle mass, and function that can 
increase a patient’s risk of injury, illness, and can even severely impair quality of 
life and increase a patient’s risk of death. A growing body of research suggests 
that sarcopenia and urinary tract disorders are closely related. In this review, 
we  aimed to emphasize the definition of skeletal sarcopenia, summarize the 
methods used to diagnose skeletal sarcopenia, discuss the advances in the study 
of sarcopenia in benign diseases of the urinary system, discuss the advances in the 
study of sarcopenia in malignant diseases of the urinary system. Sarcopenia and 
urologic diseases interact with each other; urologic diseases cause sarcopenia, 
and sarcopenia aggravates the condition of the original disease, thus falling into a 
vicious circle. This review provides a comprehensive understanding of sarcopenia 
in urologic diseases, which is very important for the management and prognosis 
of urologic diseases.
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1 Introduction

With the aggravation of the aging trend of the national population, sarcopenia has become 
a global public health problem, and the incidence of sarcopenia is increasing year by year (1). 
Sarcopenia is a progressive and systemic skeletal muscle disease that involves accelerated loss 
of muscle mass and function and is associated with increased adverse outcomes such as falls, 
decreased function, weakness, and mortality (2).

There is an interaction between sarcopenia and urinary tract disorders. Sarcopenia can 
lead to chronic inflammation, loss of muscle strength and etc. (3). Therefore, patients with 
sarcopenia have an increased chance of developing urinary tract diseases such as urinary tract 
inflammation and overactive bladder disease, and even aggravate the progression of diseases 
such as chronic kidney disease (CKD) and urological malignancies (4–7). Urologic 
malignancies lead to sarcopenia by causing a decrease in protein intake, an increase in protein 
catabolism, and a decrease in physical activity, which further affects aspects of surgery, 
chemotherapy, and prognosis (8, 9). Although studies in recent years have suggested that 
sarcopenia is associated with urologic disorders, little attention has been paid to the potential 
role of the urinary system in the etiology of sarcopenia and in interventions. Therefore, in this 
review, we aimed to (1) emphasize the definition of skeletal sarcopenia, (2) summarize the 
methods used to diagnose skeletal sarcopenia, (3) discuss the advances in the study of 
sarcopenia in benign and malignant diseases of the urinary system.
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2 Sarcopenia

2.1 Definitions

The term sarcopenia was first coined in 1988 by Rosenberg, who 
argued that no single feature of age-related decline is more pronounced 
than weight loss, which affects walking, capacity intake, overall 
nutritional intake, and more. Thus, initially sarcopenia was considered 
an age-related loss of skeletal muscle mass (10).

Different definitions of sarcopenia have been proposed by various 
organizations to date, with the EWGSOP2 definition being the most 
widely used in clinical practice (11–16). In 2010, EWGSOP published 
a definition of sarcopenia that is widely used worldwide. Sarcopenia 
is defined as a disease of old age caused by a decrease in muscle mass, 
muscle strength and/or physical function (14). In 2018, EWGSOP2 
updated and added to the definition of sarcopenia: “sarcopenia is a 
muscle disease (muscle failure) rooted in adverse muscle changes that 
accrue across a lifetime; sarcopenia is common among adults of older 
age but can also occur earlier in life.” In contrast to the 2010 definition, 
in the updated definition, EWGSOP2 includes low muscle strength as 
the main indicator of sarcopenia (12). Because an increasing number 
of scholars believe that muscle number and muscle mass remain 
problematic as the primary parameters for defining sarcopenia due to 
technical limitations, muscle strength is preferred over muscle mass 
in predicting poor outcomes, and muscle strength is currently the 
most reliable measure of muscle function (17–19). EWGSOP2 
diagnostic thresholds are as follows: 1. Low muscle strength: Grip 
strength <27 kg for men and < 16 kg for women or Chair Rise Test: 5 
rises in >15 s; 2. Low muscle mass: ASM (appendicular skeletal muscle 
mass)/height2 ≤ 7 kg/m2 for men and ≤ 5.5 kg/m2 for women; 3. Low 
physical performance: Step speed ≤0.8 m/s or SPPB (Simple Physical 
Performance Test) score ≤ 8 or TUG (timed up and go walking test) 
≥20 s or 400 m walk test not completed or completed in ≥6 min (12).

Another widely used consensus on sarcopenia is AWGS (Asian 
Working Group for Sarcopenia), which in 2014 adopted a similar 
definition to EWGSOP, an age-related geriatric syndrome 
characterized by decreased muscle mass and low muscle function. The 
difference is that AWGS requires both low muscle strength and low 
physical performance to be diagnosed. Additionally, threshold values 
have been proposed that are compatible with Asian populations based 
on their anthropometrics (20). In the latest AWGS 2019 consensus, 
the diagnostic thresholds are as follows: 1. low muscle strength: grip 
strength <28 kg in men and < 18 kg in women; 2. low muscle mass: 
ASM/height2  < 7.0 kg/m2 for men and < 5.4 kg/m2 for women as 
measured by DXA (Dual-energy X-ray bone densitometry); <7.0 kg/
m2 for men and < 5.7 kg/m2 for women as measured by BIA 
(bioelectrical impedance analysis); 3. low physical performance: gait 
speed <1.0 m/s or chair rise test ≥12 s or SPPB ≤9. AWGS 2019 also 
added recommendations for different algorithms to be  used in 
community and hospital settings and introduced the term “possible 
sarcopenia” to promote early intervention in community settings. 
Possible sarcopenia is defined as low muscle strength (handgrip 
strength) or low physical performance (chair rise test) (21).

However, these criteria of weight loss as the main criterion for 
sarcopenia are not met in certain diseases, such as diabetes (22). In 
these disorders, the patient’s muscle mass decreases but fat mass 
remains the same or increases, a condition known as sarcopenic 
obesity (SO). The European Society for Clinical Nutrition and 

Metabolism (ESPEN) and the European Association for the Study of 
Obesity (EASO), as well as the jointly appointed international expert 
panel proposes that SO is defined as the co-existence of excess 
adiposity and low muscle mass/function (23).

2.2 Diagnosis

2.2.1 Screening
Early screening and early intervention for skeletal sarcopenia is 

important. There are a number of clinical screening tools available to 
identify sarcopenia (Table  1). SARC-F is currently the most 
recommended screening tool for sarcopenia, but its sensitivity is low. 
Researchers have also developed/re-purposed several other screening 
tools for effective screening. Each of these screening tools has 
advantages and disadvantages for different clinical use scenarios. 
Screening tools do not serve as a definitive diagnosis of sarcopenia, 
and if a screening tool suggests the presence of sarcopenia, a definitive 
test should be performed.

2.2.2 Physical performance and muscle strength 
tests

Physical performance is defined as visually measurable whole-
body function related to exercise, involving not only muscles but also 
central and peripheral nerve function. There are several instruments 
that can be used for fitness testing, including gait speed, the Simple 
Physical Performance Test (SPPB), timed up and go walking test 
(TUG), and 400-meter walk test. Gait speed is now widely used in 
practice, with the commonly used gait speed test being the 4-meter 
walking speed test, and the EWGSOP2 recommending a speed of 
≤0.8 m/s as an indicator of severe sarcopenia (24). The SPPB is a 
comprehensive test that incorporates a gait speed test, a balance test, 
and a chair stand test, and is scored out of 12, with a score of ≤8 
indicating poor physical performance (25). In the TUG test, 
participants were asked to stand up from a standard chair, walk to a 
marker 3 meters away, turn around and walk back to sit in the chair, 
taking ≥20 s to be  considered a poor physical performer. The 
400-meter walk test assessed walking ability and endurance, in which 
participants were asked to complete 20 laps of a 20-meter walk as fast 
as possible for each lap, with two rest stops permitted during the test, 
and a final time of ≥6 min to be  considered a poor performer. 
Considered to have poor physical performance (26).

Grip strength is easy and inexpensive to measure and can be used 
as a test tool for arm muscle strength. Grip strength correlates with 
strength in other parts of the body, so it can be a reliable alternative to 
more complex measurements of arm and leg strength. Accurate 
measurement of grip strength requires the use of a calibrated hand-
held dynamometer under well-defined test conditions (27).

Seat Stand Test can be used as a test tool for leg muscle strength. 
It measures the time it takes for a patient to get up in a seated position 
five times without using their arms. Or it counts the number of times 
a patient can stand up and sit in a chair in a 30-s period of time (28).

2.2.3 Imaging modalities and body composition 
measurement tools

Muscle mass can be reported in terms of whole-body skeletal 
muscle mass (SMM), appendicular skeletal muscle mass (ASM), or 
muscle cross-sectional area for specific muscle groups. Table  2 
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TABLE 1 Screening tools for sarcopenia.

Name Domains measured Strengths Limitations Clinical 
scenarios

SARC-F  • Strength

 • Assistance in walking

 • Rise from a chair

 • Climb stairs

 • Falls

 • Initial diagnosis of sarcopenia

 • Quick and easy to use

 • Suitable for all clinical scenarios

 • High specificity and moderate 

sensitivity

 • The first four measures may be biased

 • Muscle function was mainly assessed, 

and muscle mass was not assessed

 • Low sensitivity

Suitable for virtually 

all medical 

environments

SARC-F Calf  • Strength

 • Assistance in walking

 • Rise from a chair

 • Climb stairs

 • Falls

 • Calf circumference

 • Increased sensitivity for 

SARC-F (45.9%-57.2%)

 • Calf measurements are susceptible to 

interference from other factors such 

as fat and edema

For community health, 

specialty clinical 

settings

Ishii Test  • Age

 • Grip strength

 • Calf circumference

 • High sensitivity and specificity 

(84.9% and 88.2% for men; 

75.5% and 92.0% for women)

 • Not yet validated in multiple 

populations

Not commonly used in 

primary care, generally 

used in specialty 

clinical settings

MSRA MSRA-5 includes:

 • Age

 • Protein

 • Physical activity level

 • Number of hospitalizations

 • Weight loss in the last year

 • MSRA-7 includes:

 • Age

 • Protein

 • Dairy products consumption

 • Number of meals per day

 • Physical activity level

 • Number of hospitalizations

 • Weight loss in the last year

 • High sensitivity  • Not yet validated in multiple 

populations

Generally not used in 

community hospitals

SarSA-Mod  • Age

 • Weight

 • Calf circumference

 • High sensitivity (84.3% in 

women, 85.4% in men)

 • Validated in Middle Eastern 

populations only

Used in a variety of 

clinical settings

Grip strength Low muscle strength was defined as hand 

grip strength:

 • < 30 kg in men

 • < 20 kg in women

 • Easy to perform in clinic setting 

with simple, inexpensive tool 

dynamometer

 • Requires dynamometer Widely used in clinical 

practice

SarQoL 

questionnaire

A scale consisting of 55 items in 7 domains in 

the form of 22 questions

 • Assisting health care providers 

in assessing patients' 

perceptions of aspects of their 

physical, mental and 

social health

 • The verification crowd is limited to 

French-speaking people

 • Participants were mostly community 

females, and measurements may 

be biased

For clinical care and 

research

Fracture risk 

assessment tool

 • Age

 • Sex

 • Weight

 • Height

 • Previous fracture

 • Parental hip fracture

 • Glucocorticoid use

 • Rheumatoid arthritis

 • Smoking

 • Alcohol consumption

 • Secondary osteoporosis

 • Bone mineral density with or without bone

 • The FRAX score without bone 

density can be calculated using 

an online calculator

 • High sensitivity (90.9%)

Non-response bias may exist

(Continued)
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summarizes imaging measurement tools as well as body composition 
measurement tools.

Magnetic resonance imaging (MRI) and computed tomography 
(CT) are considered the gold standard for noninvasive assessment 
of muscle mass (28). However these tools are not commonly used 
in primary care due to the high cost of the equipment, lack of 
convenience, and the need for a trained professional to use them. 
In addition, the cut-off point for measuring low muscle mass is not 
well defined. Studies have shown that CT images of specific lumbar 
spine markers correlate significantly with whole-body muscle. 
L3-CT imaging of the third lumbar spine is not limited to patients 
with cancer; this parameter has also been used as a predictor of 
mortality and other prognostic indicators in intensive care units 
and in patients affected by liver disease (29). Mid-thigh imaging 
(MRI or CT) is a good predictor of skeletal muscle mass 
throughout the body, and its correlation is stronger than the 
correlation between L1-L5 psoas muscle area and total body 
muscle (29).

Dual-energy X-ray bone densitometry (DXA) is a more widely 
available instrument for non-invasive determination of muscle mass. 
The advantage of the DXA is that it provides a reproducible estimation 
of ASM within a few minutes when using the same instrument and 
cut-off points. However, DXA instruments are not yet portable for use 
in the community, which is a disadvantage (30).

Bioelectrical impedance analysis (BIA) has been used to estimate 
SMM or ASM, BIA devices do not measure muscle mass directly but 
estimate muscle mass based on whole body conductivity. BIA requires 
specific conversion equations for calibration. For example, the Sergi 
equation is based on older European populations, and other relevant 
differences such as age and ethnicity of these populations and patients 
should be considered in clinical work, in addition to the fact that BIA 
measurements are affected by the hydration status of the patient. 
However, BIA needs more studies to validate population-specific 
prediction equations (31).

Muscle ultrasound assessment of pterygoid muscles such as the 
quadriceps can detect reductions in muscle thickness and cross-
sectional area in a relatively short period of time, and therefore the 

technique has great potential for clinical application. The EuGMS 
Myasthenia Gravis Group has recently proposed a consensus protocol 
for muscle assessment using ultrasound, which involves the 
measurement of muscle thickness, cross-sectional area, fascicle length, 
droop angle, and echogenicity. Echogenicity reflects muscle mass 
because the non-contractile tissue associated with myasthenia gravis 
is highly echogenic (32). Therefore, ultrasound has the advantage of 
being able to assess muscle quantity and quality. Echo intensity is 
shown to be  more useful than traditional sarcopenia-related 
parameters in predicting hospital-related complications in older 
acutely hospitalized patients (33).

Skeletal Muscle mass Index (SMI) is an indicator for assessing 
muscle mass, which is calculated by the formula ASM/height2 (34), so 
the measurement of SMI usually relies on the aforementioned imaging 
techniques, such as dual-energy x-ray absorptiometry (DXA), 
computed tomography (CT), and magnetic resonance imaging (MRI). 
As a superior index of sarcopenia, SMI not only predicts long-term 
survival in patients with urologic cancers, but also provides guidance 
on discharge management after surgery (35, 36). In addition, with 
advances in imaging technology, automated muscle segmentation and 
analysis methods are being developed to improve the accuracy and 
reproducibility of SMI measurements (37, 38). These studies 
contribute to a better understanding and application of SMI to 
improve the diagnosis and management of sarcopenia.

2.2.4 Laboratory biomarkers
Creatine is produced by the liver and kidneys and taken up by 

myocytes, a portion of which is irreversibly converted to creatinine 
phosphate on a daily basis, and excess creatine in the circulation is 
converted to creatinine and excreted in the urine (39). Creatinine 
excretion rate is a promising metabolic index for assessing whole-
body muscle mass. Fasting patients were orally administered an 
appropriate dose of deuterium-labeled creatine, followed by 
determination of labeled and unlabeled creatine and creatinine in 
urine by liquid chromatography and tandem mass spectrometry (40). 
Study Shows Creatine Dilution Test Results Correlate Well with 
MRI-Based Measures of Muscle Mass and Moderately with BIA and 

TABLE 1 (Continued)

Name Domains measured Strengths Limitations Clinical 
scenarios

Taiwan Risk 

Score for 

Sarcopenia

 • Age

 • Sex

 • Underweight

 • Receipt of social assistance pension

 • Lack of exercise

 • Fasting blood glucose

 • Abnormal creatinine levels

 • High sensitivity (71.8%)

 • High specificity (71.1%)

Long time for evaluation; Rarely used at 

present

Be applied cost-

effectively in the 

community for early 

detection of 

sarcopenia.

Anthropometric 

prediction 

equation (PE)

Anthropometric equations constructed to 

predict skeletal muscle mass in the limbs 

based on weight, BMI, age, and sex. 

"ASM=10.05+0.35×Body weight-0.62×BMI-

0.02×age+5.10 (male)"

High specificity (male: 99.5%; 

female: 94.7%)

Only been used in the community's 

older population;

Screening for 

sarcopenia in primary 

and aged care

Chair rise  • Strength

 • Cut-off points >15 s for 5 chair rises

 • Easy to perform in clinic setting

 • Requires no specialized tools

SARC-F, Strength, Assistance Walking, Rise from a Chair, Climb Stairs, and Falls; MRSA, Mini Sarcopenia Risk Assessment Questionnaire; SarSA-Mod, Sarcopenia Scoring Assessment 
Models; SarQoL, Sarcopenia Quality of Life; FRAX, Fracture Risk Assessment Tool; BMI, Body Mass Index.
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DXA Measures (41, 42). The test currently requires a significant 
amount of research to provide further improvements.

Potential biomarkers may also include markers of neuromuscular 
junctions, muscle protein transitions, behaviorally mediated pathways, 
inflammation-mediated pathways, redox-related factors and 
hormones or other anabolic factors (43). However, due to the complex 
pathophysiology of sarcopenia, there is still no single biomarker to 
recognize this condition in heterogeneous populations of young 
and old.

3 Sarcopenia and benign diseases of 
the urinary system

3.1 Inflammation of the urinary system

Inflammatory cytokines have been shown to promote muscle 
wasting, stimulate protein metabolism and inhibit protein 
synthesis (44, 45). Among many inflammatory cytokines, the main 
ones are tumor necrosis factor-α (TNF-α), C-reactive protein 
(CRP), interleukin (IL)-6. TNF-α is a key stimulator of chronic 
inflammation that triggers skeletal muscle contractile dysfunction. 
TNF-α inhibits protein synthesis via the IGF1/AKT pathway, 
thereby triggering muscle atrophy (46, 47). Sarcopenia was 
strongly associated with serum CRP levels, an indicator of 
infection (p < 0.0001) (48). Sustained elevation of IL-6 aggravates 
muscle atrophy by reducing muscle anabolism and damaging 
energy homeostasis, and it also directly mediates muscle 
catabolism (49). Increased IL-6 stimulates muscle protein 
degradation by interfering with insulin/PI3K/AKT signaling 
(50, 51).

Urinary tract infections are a common infectious disease that can 
occur anywhere in the urinary tract. In addition to simple urinary 
tract infections that can resolve on their own or be  treated with 

antibiotics, there are more complex forms such as catheter-associated 
urinary tract infections. Catheter-associated urinary tract infections 
are also a common complication in trauma hospitalized patients, and 
a study by James DeAndrade et al. showed that myasthenia gravis was 
an independent risk factor for catheter-associated urinary tract 
infections (p = 0.011) (52).

3.2 Overactive bladder

Overactive bladder (OAB) is a syndrome characterized by 
symptoms of urinary urgency, typically accompanied by urinary 
frequency and nocturia, and may or may not involve urge 
incontinence. It is not associated with urinary tract infections or other 
definitive pathological changes. Recent studies have explored the 
relationship between sarcopenia and OAB, with promising findings.

A retrospective study conducted by Song et al. demonstrated a 
positive association between sarcopenia and the risk of OAB in adults 
in the United States (53). The study also suggested that sarcopenia 
could serve as a predictor for OAB. Similarly, Ida S et al. conducted a 
cross-sectional study which revealed a significant association between 
sarcopenia and OAB in elderly male patients with diabetes (5). 
Furthermore, Hashimoto et al. identified sarcopenia and visceral fat 
accumulation as potential risk factors for severe storage symptoms in 
female patients aged 65 years and older (54). While these studies 
suggest a possible link between sarcopenia and OAB, there is a need 
for further research and validation using multi-center data and larger 
sample sizes. Additionally, the underlying mechanism by which 
sarcopenia contributes to the development of OAB remains unknown.

In conclusion, sarcopenia may be a risk factor for developing 
OAB, but more research is needed to establish a definitive relationship. 
Further studies should aim to explore the mechanisms underlying this 
association and confirm the findings using larger and more diverse 
study populations.

TABLE 2 Imaging modalities and body composition measurement tools for sarcopenia.

Name Strengths Limitations Clinical scenarios

L3-CT  • L3 levels are strongly correlated with 

whole body muscle mass and fat mass

 • Not universally used

 • Cannot control bias due to height error

 • Limited availability

 • Lack of portability

 • High cost and radiation exposure

Suitable for cancer patients, seriously ill 

patients, liver disease patients

Mid-thigh imaging (MR/CT)  • Considered the gold standard 

noninvasive tool for assessing 

muscle mass

 • Higher equipment costs

 • Lack of portability

 • Higher operator requirements

Not commonly used in primary care, 

generally used in specialist clinical 

settings

Muscle ultrasound  • Portable

 • Inexpensive

 • Non-invasive

 • No ionizing radiation

 • Highly reproducible

 • Lack of harmonized diagnostic criteria Clinical pilot studies

DXA  • Provides ASM reproducibility estimates 

in minutes

 • Inconsistent results from different brands 

of machines

 • Affected by patient hydration status

Generally not used in community 

hospitals

BIA  • Low cost

 • Portable

 • Lack of standardization limits its 

accuracy

Used in a variety of clinical 

environments

CT, Computed Tomography; MR, Magnetic Resonance; DXA, Dual-energy X-ray Absorptiometry; BIA, Bioelectric Impedance Analysis; ASM, Appendicular Skeletal Muscle Mass.
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3.3 Polycystic kidney

Polycystic kidney disease (PKD) is a benign urologic disorder of 
genetic origin. While generally non-malignant, it can still harm 
kidney function and necessitate dialysis treatment in extreme 
circumstances. PKD patients typically have numerous cysts, and their 
body mass index (BMI) may conceal underlying underweight issues. 
Consequently, Chih-Horng Wu and his team employed total 
abdominal muscle area (TAM) at the third lumbar vertebrae as a 
diagnostic standard for sarcopenia. Their research concluded that 
sarcopenia can be accurately diagnosed in PKD patients using CT and 
MRI scans (55). However, the disease may be hidden by the cysts. 
There was a negative correlation between kidney volume and 
abdominal muscle mass, but not with adipose tissue. Additionally, 
factors such as age, BMI, serum creatinine levels, and kidney volume 
play a crucial role in muscle loss in PKD patients.

A study by Lee et al. indicated that good nutritional status helps 
preserve renal function in PKD patients (56). Analysis from a two-year 
randomized controlled trial, CRAD001ADE12, suggests that the 
accelerated growth of cysts in patients with autosomal dominant 
polycystic kidney disease (ADPKD) can be slowed down with the use of 
everolimus, a mammalian target of rapamycin (mTOR) inhibitor (57). 
However, this substance is also associated with weight loss, particularly in 
women. This impact is possibly due to a decrease in food intake, including 
fat and protein, induced by the central nervous system, along with an 
increase in fat oxidation and mobilization. In skeletal muscles, glucose 
uptake and oxidation might be decreased, potentially leading to cachexia 
and muscle atrophy. Such findings are of significant importance for PKD 
patients undergoing immunosuppressive mTOR inhibitory therapy.

Ryu et al. demonstrated in a cross-sectional study that adopting 
the Dietary Approaches to Stop Hypertension (DASH) dietary pattern 
can help protect muscle strength in PKD patients. Therefore, a DASH 
diet might be effective in maintaining muscle strength and preventing 
sarcopenia among patients with ADPKD (58).

3.4 Kidney stone

Kidney stone disease is one of the most common benign diseases 
of the urinary system. A recent study points to a strong correlation 
between kidney stones and sarcopenia and that sarcopenia is an 
independent risk factor for kidney stones (59). Another study also 
noted that the risk of developing kidney stones decreased with an 
increase in the muscle-fat ratio (60). However, more research is needed 
to confirm these studies as they were all cross-sectional studies from 
the same database and did not look more closely at the relationship 
between stone composition, stone location, stone size and sarcopenia.

4 Sarcopenia and malignant diseases 
of the urinary system

4.1 Bladder cancer

Bladder cancer is one of the most common malignant tumors of 
the urinary system. Worldwide, the incidence of bladder cancer ranks 
10th among malignant tumors, and the incidence in men is four times 
higher than that in women (61). Bladder cancer is categorized into 

non-muscle-invasive (NMIBC) and muscle-invasive (MIBC) (62). 
These two subtypes are treated differently and have different 
prognoses. Treatment of NMIBC includes transurethral cystectomy 
of the bladder tumor and postoperative intravesical instillation of 
chemotherapeutic agents or immunotherapy (63). Radical cystectomy 
and pelvic lymphadenectomy are considered the gold standard for the 
treatment of MIBC and high-grade NMIBC, which may be followed 
by chemotherapy or neoadjuvant chemotherapy (64).

Mechanistically, BCa has been shown to induce an inflammatory 
microenvironment through the release of cytokines including TNF-α 
(65, 66). Up-regulation of the ATP-ubiquitin-protein pathway may also 
protein degradation and tissue wasting. In addition, animal models have 
demonstrated that BCa also affects mitochondrial phospholipid 
dynamics and overall mitochondrial function that influences skeletal 
muscle activity (8, 67). PI3K/Akt signaling plays a key role as a general 
regulator of skeletal muscle homeostasis (including protein synthesis 
and degradation) in skeletal muscle tissues. Multiple factors (e.g., TNF-α 
and IL-6) can promote skeletal muscle depletion by inhibiting the PI3K/
Akt signaling pathway in cancer cachexia. In addition, oxidative stress 
promotes skeletal muscle depletion by increasing protein degradation 
and inducing myofiber apoptosis through damage to mitochondrial 
DNA (68, 69). Therefore, decreasing the secretion of associated factors 
and reducing inflammation are possible therapeutic ideas.

From a therapeutic aspect, sarcopenia is a strong adverse prognostic 
factor in patients with a variety of cancers including uroepithelial 
carcinoma (68). Chemotherapy regimens for BCa may further accelerate 
muscle wasting and lead to weight loss, e.g., cisplatin may cause muscle 
dysfunction by altering a variety of mechanisms including the ubiquitin-
protein pathway, calcium homeostasis, mitochondrial damage, and 
cytokine upregulation (70). For patients treated with neoadjuvant 
chemotherapy, Tobias Tuse Dunk Hansen et  al. observed a higher 
prevalence of skeletal sarcopenia in patients receiving NAC compared 
with patients undergoing surgery alone or in combination with NAC (71). 
Timothy D. Lyon et al. demonstrated that patients with sarcopenia who 
received neoadjuvant chemotherapy prior to radical cystectomy were 
associated with poorer CSS, suggesting that that sarcopenia is associated 
with NAC prognosis, but this does not suggest that skeletal muscle 
reduction is significantly associated with pathologic response to 
chemotherapy. Pierre Regnier et al. showed that skeletal muscle reduction 
was an independent predictor associated with risk of renal damage during 
NAC and early postoperative complications after RC (72).

Triple therapy (TMT) is a well-established alternative to radical 
cystectomy (RC) for patients with muscle-invasive bladder cancer 
(MIBC) seeking to preserve their native bladder or who are inoperable 
due to comorbidities. Fukushima et al. demonstrated through a literature 
response that sarcopenia does not affect the response and prognosis of 
triple therapy in patients with MIBC on bladder-preserving therapy. 
However, the effect of sarcopenia on the complication rate of bladder 
preserving therapy is uncertain due to limited evidence (73, 125). Liu et al. 
showed that both sarcopenia and a high systemic immunoinflammatory 
index (SII) were useful predictors of response to intravesical BCG in 
intermediate- and high-risk NMIBC patients (74). Intermediate- and 
high-risk NMIBC patients with sarcopenia or high SII at diagnosis are 
associated with poorer RFS, and the combination of sarcopenia and SII 
may be  a better predictor of RFS. Ferini et  al. demonstrated that 
sarcopenia could not be  considered a negative prognostic factor for 
elderly patients with MIBC receiving radiotherapy (75). Stangl-Kremser 
et al. also concluded that that sarcopenia has no prognostic effect on 
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survival in patients with high-risk urothelial carcinoma of the bladder 
undergoing radiotherapy (76). Thus, radiotherapy is a viable and effective 
option for these patients, especially if surgery is not indicated.

Not only that, but there is a potential impact of sarcopenia on the 
surgical management of bladder cancer patients. Several studies have 
reported the prognostic role of skeletal muscle reduction in patients 
undergoing radical cystectomy for bladder cancer. Studies have shown 
that skeletal muscle reduction is a significant predictor of cancer-
specific survival (CSS) and overall survival (OS). Psutka et  al. 
demonstrated, for the first time, that skeletal muscle reduction was an 
independent predictor of poor CSS and OS in bladder cancer. Patients 
with skeletal muscle reduction had lower 5-year CSS and OS rates 
than non-skeletal muscle reduction patients (49% vs. 72% for CSS and 
39% vs. 70% for OS) (77). Similar results were reported in the studies 
by Shimpei Yamashita and Roman Mayr et al. (78, 79). In conclusion, 
it has been shown through most studies that skeletal sarcopenia is an 
important factor in the poor prognosis of patients undergoing radical 
cystectomy for bladder cancer (80, 81).

4.2 Prostate cancer

Prostate cancer is one of the most common malignant tumors of 
the male reproductive system, the second most common cancer in 
men and the fifth leading cause of cancer death (82). The prognostic 
value of sarcopenia in advanced prostate cancer has been evaluated, 
and the study showed that sarcopenia was significantly associated with 
progression-free survival in advanced prostate cancer (HR = 1.61, 95% 
CI: 1.26, 2.06, p < 0.01), but sarcopenia did not have a significant effect 
on overall survival and cancer-specific survival, suggesting that 
sarcopenia is a an important prognostic factor for progression-free 
survival in patients with advanced PCa (81).

Androgen deprivation therapy (ADT) stands as the current treatment 
modality for metastatic prostate cancer; however, the majority of cases 
ultimately advance toward desmoplasia-resistant prostate cancer typified 
by the escalation of prostate-specific antigen levels and the progression of 
both primary and metastatic sites. Given the chronic nature of prostate 
cancer, these therapies tend to be administered over an extended duration, 
thereby establishing a strong association between long-term 
chemotherapy and the development of sarcopenia. Consequently, the 
urgent need to investigate the relationship between chemotherapy for 
prostate cancer and sarcopenia emerges as a paramount clinical concern 
that significantly impacts the prognosis of patients undergoing 
chemotherapy for prostate cancer. ADT therapies significantly impact the 
human body, inducing side effects such as skeletal sarcopenia and bone 
loss, notably among the elderly demographic (83). Active intervention can 
successfully mitigate these adverse effects posed by ADT therapy. On a 
mechanistic level, sarcopenia accelerated by hormone deprivation therapy 
is a result of prostate tumor-derived growth differentiation factor 11 
(GDF11) signaling from the tumor to the muscle tissue (84). Liver-
targeted testosterone therapy (LTTT) presents a promising, simplistic 
approach to prevent sarcopenia and bone loss during ADT (85). 
Furthermore, Zhang and his team proposed the potential of eldecalcitol 
to counteract sarcopenia caused by ADT treatment, utilizing the PI3K/
AKT/FOXOs signaling pathway in a constructed mouse model (86). Also, 
a resistance-focused exercise regimen proves effective in ameliorating 
sarcopenia in men with prostate cancer undergoing ADT (87, 88).

The impact of sarcopenia, a negative prognostic factor, on prostate 
cancer treated with docetaxel or abiraterone acetate has been confirmed 

through a series of clinical trials (89–92). Additional research implies 
that sarcopenia may interact with excessive visceral fat accumulation, 
thereby adversely affecting early urinary function following I-125 
low-dose brachytherapy against prostate cancer (93). However, it is 
important to note that such acceleration in sarcopenia was not 
observed in men with metastatic castration-resistant prostate cancer 
(mCRPC) undergoing Ra-223 treatment (94). Furthermore, a related 
study that explored the correlation between sarcopenia in castration-
resistant prostate cancer (CRPC) and treatment outcomes with 
androgen receptor axial therapy (ARATs) revealed that the latter could 
potentially offer enhanced efficacy among CRPC patients with 
sarcopenia, compared to those devoid of it (95).

Furthermore, the prognosis of prostate cancer patients who are 
undergoing surgical intervention varies significantly between those with 
sarcopenia and those sans sarcopenia. According to research conducted 
by Mitsui Y et al., patients diagnosed with sarcopenia have reportedly 
expressed greater clinical dissatisfaction concerning postoperative urinary 
function than their counterparts lacking this condition, in the context of 
robot-assisted radical prostatectomy (96). It is plausible that sarcopenia 
might serve as a predictive factor for postoperative erectile dysfunction 
following robot-assisted radical prostatectomy (97). Mason et al. showed 
that sarcopenia did not predict biochemical recurrence in patients 
undergoing radical prostatectomy (98). In contrast, Pak et al. showed that 
preoperative sarcopenia led to a higher risk of biochemical recurrence in 
patients undergoing radical prostatectomy (99). More clinical samples are 
needed to demonstrate the link between sarcopenia and biochemical 
recurrence of prostate cancer.

4.3 Renal cell cancer

Globally, Renal Cell Carcinoma (RCC) is ranked as the sixth and 
tenth most prevalent forms of cancer in males and females, respectively 
(100). A meta-analysis highlighted a significant correlation between 
reductions in skeletal muscle (sarcopenia) and Overall Survival (OS), 
Cancer-Specific Survival (CSS), and Progression-Free Survival (PFS) of 
RCC patients regardless of variables like age, tumor location, and stage 
(101). Notably, the study also suggested a persistent and potentially 
intensifying implication of skeletal muscle reduction on all-cause 
mortality and cancer-specific mortality throughout prolonged follow-ups 
in RCC. Nonetheless, this inference may be skewed, as the researchers 
could not unequivocally attribute the survival outcomes to tumor 
development or skeletal muscle reduction, a challenge that has baffled 
previous studies as well. Another meta-analysis reiterated these 
inconclusive results, showing no significant difference in PFS between 
sarcopenic and non-sarcopenic RCC patients. Consequently, 
supplemental data-oriented studies are necessitated (102).

Sarcopenia is a significant prognostic factor in metastatic renal cell 
carcinoma (103). In patients diagnosed with metastatic renal cell 
carcinoma undergoing chemotherapy, the presence of skeletal 
sarcopenia could potentially heighten the risk of treatment-related 
toxicity while simultaneously shortening survival rates. This finding 
originates from a retrospective analysis conducted by Hideto Ueki et al., 
utilizing the Skeletal Muscle Minority Index (SMI) as a predictor for the 
therapeutic efficacy of nivolumab in the treatment of this disease. 
Concurrently, the study draws parallels between sarcopenia - diagnosed 
via the Psoas Muscle Index (PMI) - and an unfavorable prognosis in 
patients diagnosed with RCC. It is important to underscore, however, 
the considerable variation in diagnosis rates of sarcopenia and the lack 
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of a demonstrable association between sarcopenia, as identified by SMI, 
and prognosis (104, 105). During the course of cabozantinib therapy, it 
has been observed that a considerable proportion of patients manifested 
significant early skeletal muscle deterioration correlating to an 
unfavorable progression-free survival (PFS) (106, 107). Furthermore, 
myasthenia gravis emerged as a crucial prognostic indicator in 
metastatic renal cell carcinoma (mRCC) patients undergoing primary 
treatment with sunitinib (108). Additionally, a study by S. Antoun et al., 
demonstrated that patients displaying sarcopenia were prone to 
encounter dose-limiting adverse events during targeted therapy 
regimes, as indicated by clinical data presenting skeletal muscle loss as 
a predictor of such therapies’ toxicity. Notably, a body mass index (BMI) 
less than 25 kg/m^2 coupled with diminished muscle mass emerged as 
a significant predictor of targeted agents’ toxicity (109–111). 
Intriguingly, sarcopenia was found to predict the response to 
Interleukin-2 (IL-2) treatment in metastatic RCC scenarios (112).

Jongpil Lee and collaborators explored the correlation between the 
decrement in skeletal muscle mass and the overall survival rate in patients 
undergoing radical surgery for localized renal cell carcinoma (113). The 
study implicates that sarcopenia in conjunction with a modified Glasgow 
scale could serve as a more robust prognostic marker following the 
surgical procedures for localized renal cell carcinoma (114). Additionally, 
limited mobility, when coupled with serum albumin levels, could also 
prefigure the prognosis after surgery (115, 116). A separate study by 
Pranav Sharma et al. postulated that hypokinesia might act as a potential 
prognostic indicator for overall survival subsequent to a nephrectomy for 
metastatic renal cell carcinoma (117, 118). Moreover, a study conducted 
on a Chinese cohort further substantiated that sarcopenia post 
nephrectomy is indicative of a poor prognosis (119). Additionally, a 
significant correlation has been found between sarcopenia and an 
increased risk of recurrence of clear cell renal cell carcinoma in male 
patients (120). Consequently, emergent prognostic tools, including the 
novel index derived from the integration of albumin-globulin score and 
sarcopenia, known as the CAS, have been developed to forecast the 
progression of renal cancer subsequent to a surgical intervention (121). 
Furthermore, the low ratio of creatinine to cystatin-C (Cr/Cys-C) could 
potentially function as a serum biomarker indicating the development of 
sarcopenia in patients undergoing nephrectomy treatment for RCC (122).

4.4 Germ cell carcinoma of the testis (GCT)

GCT is a common solid tumor among young men that is sensitive to 
chemotherapy and has a high cure rate. Patients with GCT are 
characterized by their general youth and are therefore unlikely to have 
aging-related muscle loss at the time of diagnosis. Phuong et al. showed 
that in patients with testicular germ cell carcinoma (GCT) receiving 
cytotoxic chemotherapy, decreased skeletal muscle mass during 
chemotherapy was independently associated with a higher incidence of 
chemotherapy-related adverse events (123). Therefore, intervening in 
GCT patients with decreased skeletal muscle mass during chemotherapy 
may be able to reduce the incidence of adverse events. In addition, a 
prospective study found that reduced muscle mass was significantly 
associated with poor postoperative prognosis in patients with metastatic 
germ cell tumors (mGCTs) receiving postoperative chemotherapy who 
underwent post-chemotherapy retroperitoneal lymphadenectomy 
(PC-RPLND) after oncolytic chemotherapy, and that further evaluation 
of the preoperative nutritional status of this population may be helpful in 
reducing morbidity after PC-RPLND (124).

5 Conclusion

In recent years, there has been an increasing amount of research 
on skeletal sarcopenia and urologic diseases, and the importance of 
sarcopenia in urologic diseases has received increasing attention. 
Sarcopenia and urologic diseases interact with each other; urologic 
diseases cause sarcopenia, and sarcopenia aggravates the condition 
of the original disease, thus falling into a vicious circle. This review 
systematically analyzes the relationship between sarcopenia and 
urological diseases and reveals the potential role of sarcopenia in 
the development and progression of urological diseases. Our 
analysis suggests that sarcopenia is not only a common complication 
of urologic diseases, but may also be an important predictor of 
disease progression and poor prognosis. And this review highlights 
potential interventions for sarcopenia, such as nutritional support 
and physical activity, which may help improve the prognosis of 
patients with urologic diseases. Although our review provides 
valuable insights, we also recognize that limitations exist. First, the 
included studies were diverse in design, which may have contributed 
to the heterogeneity of results. Second, most of the studies were 
cross-sectional, and future studies need to be  further validated 
using more uniform study designs and methods, as well as 
prospective studies with large samples. Early screening, diagnosis, 
and intervention of sarcopenia in urologic diseases is important. 
Therefore, we  suggest that recommendations for screening and 
management of sarcopenia be included in clinical guidelines for 
urologic diseases. In conclusion, this review provides new 
perspectives for understanding the role of sarcopenia in urologic 
diseases and provides valuable information for future research and 
clinical practice.
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