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Introduction: Zinc plays a crucial role in glucose metabolism. The association

between serum zinc and insulin resistance has recently been investigated as

well, but the findings are inconsistent. The triglyceride-glucose index (TyG) is

frequently utilized in epidemiological research to assess insulin resistance. The

association between serum zinc levels and TyG has not yet been explored.

Therefore, we designed this cross-sectional study to assess the relationship

between serum zinc and TyG in adults using data from the National Health and

Nutrition Examination Survey (NHANES).

Methods: A cross-sectional analysis was performed on 1,610 adults aged

≥20 years who participated in the National Health and Nutrition Examination

Survey (NHANES) 2011–2016. The participants were stratified by age, and

the di�erences in log-transformed serum zinc quartiles and TyG were further

evaluated in age groups <60 years and ≥60 years using multivariable linear

regression with an interaction test. Additionally, a restricted cubic spline (RCS)

model was employed to examine the dose-response relationships between

log-transformed serum zinc and TyG.

Results: In this cross-sectional study, a significant interaction was observed

between log-transformed serum zinc and TyG in individuals aged <60 years and

those aged ≥60 years when log-transformed serum zinc was transformed into a

categorical variable (P-value for the likelihood ratio test for the interaction was

P = 0.017). Additionally, in the fully adjusted analyses, the association between

log-transformed serum zinc and TyG in the age <60 years group demonstrated a

J-shaped nonlinear pattern (P for nonlinearity= 0.014), with an inflection point at

∼1.94 µg/dL. While in the age≥60 years group, it exhibited an inverted-L shaped

nonlinear pattern (P for nonlinearity < 0.001∗∗∗).

Conclusion: There is a significant relationship between log-transformed serum

zinc and TyG in adults in the United States, with age potentially influencing this

association. Further prospective studies are needed to o�er additional evidence

and insights into these findings.
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1 Introduction

Zinc, the secondmost prevalent trace metal in the human body,

is a vital micronutrient essential for growth and development (1). It

is a component of numerous enzymes (2) andmay play a protective

role by regulating inflammation, reducing oxidative stress, and

participating in lipid and glucose metabolism (3). Additionally,

zinc is crucial in the biochemistry of insulin and glucagon within

pancreatic β- and α-cells (4), playing a key role in the synthesis,

storage, and release of insulin, and is linked to diabetes and

metabolic syndrome (3, 5). Over recent decades, zinc has been

extensively studied for its antioxidative and anti-inflammatory

properties. Mild or moderate zinc deficiency in humans can result

in stunted growth, delayed puberty in adolescents, hypogonadism

in males, dermatitis, decreased appetite, mental lethargy, and

delayed wound healing (6). However, several studies showed

high doses of zinc-based biomaterials may have adverse effects,

including liver, spleen, and pancreas damage in mice, disruption

of energy metabolism, and impairment of mitochondrial and cell

membrane function in rat kidneys (7–9). Assessing zinc status

is challenging due to tightly regulated zinc homeostasis. The

Biomarkers of Nutrition for Development Zinc Expert Panel and

the International Zinc Nutrition Consultative Group recommend

using plasma or serum zinc concentration as a biomarker for zinc

status (10).

Insulin resistance is closely linked to risk factors for

cardiovascular and metabolic diseases, including coronary heart

disease, stroke, hypertension, atherosclerosis, diabetes, and atrial

fibrillation (11–13). It significantly contributes to the morbidity

and mortality rates associated with these conditions, as well as

imposing a substantial economic burden (14). Currently, the

hyperinsulinemic-euglycemic clamp (HEC) is considered the gold

standard for evaluating insulin sensitivity in peripheral tissues

(15). However, this invasive method is complex, time-consuming,

and technically challenging, which has led to a preference for

simpler indicators of insulin resistance. Traditional measures like

the homeostatic model assessment for insulin resistance (HOMA-

IR) and the quantitative insulin sensitivity check index (QUICKI),

both of which rely on fasting insulin levels, are limited by

practical constraints and variability (16). The triglyceride-glucose

index (TyG) is a reliable and easily acquired indicator which

is derived from fasting plasma glucose and triglyceride (TG)

levels, serves as an indicator for assessing insulin resistance in

epidemiological research (17). TyG has emerged as a novel tool

that demonstrates superiority over HOMA-IR in evaluating insulin

resistance, particularly in individuals with diabetes undergoing

insulin therapy or those lacking functional beta cells (18–21).

A 12-year longitudinal study from the Korean Genome and

Epidemiology Study cohort found that a higher TyG index precedes

and significantly predicts type 2 diabetes in community-dwelling,

middle-aged, and elderly lean Koreans (22). Several studies have

provided evidences linking TyG to the onset and prognosis of

cardiovascular diseases, including stable coronary artery disease,

carotid plaque, coronary artery calcification, and acute coronary

syndrome (13, 23–25). Moreover, TyG is closely associated with

cardiovascular disease risk factors such as arterial stiffness and

hypertension (11, 12).

The association between serum zinc and insulin resistance has

recently been investigated as well, but the findings are inconsistent.

Some studies have documented that zinc deficiency may predispose

glucose intolerance and insulin resistance, diabetes mellitus, and

coronary artery disease (26–29). While previous studies suggest

that higher serum zinc concentrations may be associated with an

increased risk of metabolic syndrome (5, 30, 31), and serum zinc

concentration was significantly higher in both abnormal glucose

tolerance and the presence of diabetes individuals (32). Animal

research shows that the administration of zinc in small doses has

been demonstrated to confer protection against type 2 diabetes;

however, a high concentration of the element has been shown to

exert a toxic effect on the beta cells within the islets of Langerhans

(33). Meanwhile, a study found statistically significant positive

association between zinc and HOMA-IR in men aged 50–75 years

without diabetes, and the men with metabolic syndrome showed

statistically significant higher zinc (34). But a study report that there

is no statistically significant association between the concentration

of zinc and metabolic syndrome with its individual components in

adults from Lebanon aged 18–65 years (35).

Our study aims to examine the association between serum

zinc levels and TyG, which has not yet been explored. To fill

this knowledge gap, we evaluated the relationship between serum

zinc and TyG in adults using data from the National Health

and Nutrition Examination Survey (NHANES). Our hypothesis

was that individuals with elevated TyG levels would have higher

serum zinc levels, based on observed nutritional patterns in

this population. Additionally, we assessed the dose-response

relationship between serum zinc and TyG.

2 Materials and methods

2.1 Data sources and study population

The National Health and Nutrition Examination Survey

(NHANES) is a series of health-related research aimed at

determining non-institutionalized Americans’ health and

nutritional status. As a representative sample, a multistage,

stratified probability strategy was used to select survey participants

(36). This cross-sectional study used the data from 2011–

2012, 2013–2014, and 2015–2016 cycles from the NHANES, as

the interesting trace metal was only examined in these three

survey waves. Demographic, socioeconomic and health-related

information were collected through questionnaires, physical

examinations, and laboratory tests. Health interviews were

conducted at participants’ homes, while thorough physical

examinations, including blood sample collection, were carried

out at the Mobile Examination Center (MEC). The collected

serum specimens were then tested at the National Center for

Environmental Health’s Division of Laboratory Sciences of the

Centers for Disease Control and Prevention (37).

The NHANES was authorized by the National Center for

Health Statistics Ethics Review Board (https://www.cdc.gov/

nchs/nhanes/irba98.htm). Before participating, all participants

completed written informed consent forms. The secondary analysis

did not require additional Institutional Review Board approval

Frontiers inNutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2024.1475204
https://www.cdc.gov/nchs/nhanes/irba98.htm
https://www.cdc.gov/nchs/nhanes/irba98.htm
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Lai et al. 10.3389/fnut.2024.1475204

(38). The NHANES data are accessible through the NHANES

website (http://www.cdc.gov/nchs/nhanes.htm; accessed on 19

Oct 2023).

2.2 Inclusion criteria

Our study’s participants were above the age of 20 and had

completed an interview and evaluation at a MEC.

2.3 Exclusion criteria

We excluded pregnant women or individuals with missing data

on serum zinc, fasting plasma glucose (FPG), triglyceride (TG)

or covariates. And we excluded participants with extreme energy

intake, consuming <500 or >5,000 kcal per day.

2.4 Serum zinc

Serum zinc was detected at the Environmental Health Sciences

Laboratory of the CDC National Center for Environmental Health

using the inductively coupled plasma dynamic reaction cell mass

spectrometry following extensive quality control procedures. The

lower limit of detection (LLOD) for serum zinc was 2.9 µg/dL, and

all the data was above the LLOD for all tests. In the multivariable

linear models, log-transformed serum zinc was categorized into

quartiles: Q1 (1.69–1.89 µg/dL; n = 397), Q2 (1.90–1.93 µg/dL; n

= 408), Q3 (1.94–1.97 µg/dL; n = 401), Q4 (1.98–2.37 µg/dL; n

= 404).

2.5 Triglyceride-glucose index

Triglyceride-glucose index (TyG) was calculated using the

formula Ln [fasting TG (mg/dL) × fasting plasma glucose (FPG;

mg/dL)/2] (18). Blood samples were taken in the morning after

fasting overnight to measure the levels of TG and glucose in the

blood. The concentration of TG and FPG was measured using

an automatic biochemistry analyzer. The serum TG levels were

determined using a Roche Cobas 6000 chemistry analyzer and

a Roche Modular P chemistry analyzer. A Roche/Hitachi Cobas

C 501 chemistry analyzer was used to measure FPG using the

hexokinase-mediated reaction.

2.6 Covariates

The covariates considered in this study consisted of

sociodemographic, behavioral, health characteristics and

laboratory data deemed a priori as potential confounders.

Sociodemographic variables consisted of age groups (20–

59 years and ≥60 years) (39–41), gender (female and male),

race/ethnicity (non-Hispanic White, non-Hispanic Black, Mexican

American, or other races), education level (<9, 9–12, or>12 years),

marital status (married, living with a partner, or living alone).

According to a US government report (42), family income was

categorized into three groups by the poverty income ratio (PIR):

low (PIR ≤ 1.3), medium (PIR > 1.3–3.5), and high (PIR > 3.5).

Behavioral characteristics comprised smoking status, drinking

status, and physical activity. According to previous literature

definitions (43), smoking status was classified into three categories:

never smokers (participants who had smoked fewer than 100

cigarettes), current smokers, and former smokers (those who

had quit smoking after smoking more than 100 cigarettes).

Furthermore, individuals who consumed at least 12 alcoholic

drinks per year throughout their lifetime were classified as drinkers

(37). Physical activity was categorized as sedentary, moderate

(involving at least 10min of movement within the past 30 days,

resulting in light sweating or a mild to moderate increase in

breathing or heart rate), and vigorous (involving at least 10min of

activity within the past 30 days, resulting in profuse sweating or a

significant increase in breathing or heart rate) (43).

Health factors included body mass index (BMI), trouble

sleeping, hypertension (no or yes) (44), diabetes (no or yes) (45)

and failing kidneys (no or yes) (46). BMI was computed using a

standardized technique which is weight (kg) divided by height (m)

and divided into four categories with cut-off values of 18.5, 25,

and 30 kg/m2 (underweight, normal, overweight, and obese) (47).

Hypertension was diagnosed based on a self-reported physician

diagnosis (a positive response to “Have you been diagnosed with

hypertension?”), and/or recent use of an antihypertensive agent (a

positive response to “Are you currently taking any antihypertensive

drugs to treat or control your blood pressure?”), and/or a systolic

blood pressure/diastolic blood pressure ≥140/90 mmHg (44).

Diabetes cases were defined as participants who fulfilled the

inclusion criteria: (1) FPG ≥126 mg/dL, (2) 2-h plasma glucose

≥200 mg/dL on an oral glucose tolerance test (OGTT), (3) HbA1c

≥6.5%, and (4) current use of insulin or diabetes pills to lower

blood glucose levels, or a self-report questionnaire that indicates a

previously diagnosed of T2DM by a physician (45). Failing kidneys

was determined for participants who positively responded to the

question has he/she ever been told by a doctor or other health

professional that had weak or failing kidneys (excluding kidney

stones, bladder infections, or incontinence) (46). A dietary recall

interview preceded and interview including total energy intake.

Laboratory data including HbA1c, high density lipoprotein

cholesterol (HDL-C), triglyceride, creatinine, total cholesterol, FPG

and uric acid.

2.7 Statistical analysis

Statistical analyses were performed using the statistical software

programs R (The R Foundation) and Free Statistics software

version 1.9.2 (Beijing Free Clinical Medical Technology Co., Ltd.)

(48). All statistical tests were two-sided, and significance was

considered at P < 0.05. Analyses were conducted according to the

Centers for Disease Control and Prevention (CDC) guidelines for

the analysis of NHANES data. As the sample size was determined

based solely on the available data, no a priori statistical power

estimates were conducted. We used fasting subsample MEC

weights for the weighted analysis. For the combined analyses
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of NHANES 2011–2016 data, a 6-year fasting subsample MEC

weights (WTSAF2YR) set was used, stratum (SDMVSTRA), and

primary sampling units (SDMVPSU) were taken into account for

the complex survey design (48).

Categorical data were expressed as unweighted numbers

(weighted percentages), whereas continuous data were expressed

as means (standard deviation, SD). One-way analyses of variance

(continuous variables) and chi-square tests (categorical variables)

were used to compare differences between the groups. To analyze

the association between serum zinc and TyG, we used univariate

and multivariable linear regression models. The models integrated

regression coefficients (β) and 95% confidence intervals (CI) while

controlling for significant covariates. Log-transformed serum zinc

was considered a continuous variable after undergoing a logarithm

10 transformation. The selection of confounding variables was

guided by clinical relevance, existing scientific literature, the

significance of covariates in univariate analysis, their correlation

with the outcomes of interest, or a change in effect estimate

exceeding 10%. In multivariable linear regression, we showed (1)

unadjusted models, (2) model 1 adjusted covariates with a change

in effect estimate exceeding 10%, including sex, BMI, HDL-C,

TC, uric acid, diabetes and trouble sleeping, (3) model 2 adjusted

for variables from model 1 plus covariates that P values were

<0.05 in the univariate analysis, including age, race and ethnicity,

educational level, physical activity, smoking status, HbA1c, failing

kidneys, hypertension, and (4) model 3 adjusted for variables from

model 2 plus covariates that on the basis of previous findings and

clinical constraints, including marital status, PIR, drinking status,

creatinine, total energy intake (17, 49).

In addition, we examined possible dose-response relationships

between log-transformed serum zinc and TyG after adjusting

variables in model 3, restricted cubic spline (RCS) regression was

performed with 4 knots at the 5th, 35th, 65th, and 95th percentiles

of the distribution (43).

We used a two-piece-wise linear regression model with

smoothing to analyze the association threshold between log-

transformed serum zinc and TyG after adjusting the variables in

model 3, the likelihood-ratio test and the bootstrap resampling

method were used in determining inflection points, in addition to

conducting separate analyses for the age groups <60 years and age

≥60 years.

Furthermore, we compared potential modifications of the

relationship between log-transformed serum zinc and TyG in the

groups with age <60 years and age ≥60 years. The heterogeneity

in the subgroup were assessed using multivariable linear regression

and interactions between the subgroup and log-transformed serum

zinc were examined through likelihood ratio testing.

3 Results

3.1 Study population

In total, 29 902 participants completed the interview, of whom

12,854 participants were <20 years old. We excluded pregnant

women (n = 192), those missing data on TG (n = 9,680), those

missing data on FPG (n = 9), those missing data on serum

zinc (n = 4,841), or those with covariates (n = 636). And we

FIGURE 1

Flow chart of the study population enrollment. TG, triglyceride; FPG,

fasting blood glucose.

excluded participants with extreme energy intake, consuming<500

or >5,000 kcal per day (n = 80). Ultimately, this cross-sectional

study included 1 610 participants from the NHANES between 2011

and 2016 in the analysis. The detailed inclusion and exclusion

process is shown in Figure 1. The figure delineates the study’s

design, sampling, and exclusion procedures. This study included

American adults (aged ≥20 years) who participated in the 2011–

2012, 2013–2014, and 2015–2016 cycles of NHANES, as the serum

zinc is only assessed during these survey waves.

3.2 Baseline characteristics

The Supplementary Table S1 describes the baseline

characteristics of the excluded and included participants. Table 1

illustrates the baseline characteristics of all subjects based on their

age, categorized into the age <60 group and age ≥60 group. The

average age of the study participants was 49.6 (17.6) years, and

839 (52.1%) individuals were male. In comparison to the age <60

group, the age ≥60 group exhibited elevated levels of HbA1c,

HDL-C, creatinine, FPG, uric acid, and TyG. Furthermore, they

demonstrated a higher prevalence of hypertension, diabetes, renal

impairment, and sedentary physical activity, along with a lower
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prevalence of current smoking, current alcohol use, and lower

educational attainment. The log-transformed serum zinc levels in

the age ≥60 group were comparable to those in the age <60 group

(P = 0.29).

3.3 Relationship between serum zinc level
and TyG

The univariate analysis demonstrated that age, sex,

race/ethnicity, education level, BMI, physical activity, smoking

status, trouble sleeping, HbA1c, HDL-C, TC, uric acid, failing

kidneys, hypertension, diabetes, and log-transformed serum zinc

were associated with TyG (Table 2).

The findings of the multivariable linear regression analysis are

shown in Table 3. In the unadjusted model, there was a positive

association of log-transformed serum zinc with TyG (β = 1.16, 95%

CI = 0.55–1.78). Results were similar after adjusting for sex, BMI,

HDL-C, TC, uric acid, diabetes and trouble sleeping (β = 0.50, 95%

CI = 0.04–0.96). After adjusting for other possible confounders,

including age, race and ethnicity, educational level, physical

activity, smoking status, HbA1c, failing kidneys, hypertension,

marital status, PIR, alcohol, creatinine, and total daily energy

intake, the positive association remained significant (β = 0.50,

95% CI = 0.08–0.93; P < 0.05). When log-transformed serum

zinc was analyzed using quartiles, the association between TyG was

consistent across all models, indicating their robustness (Table 3).

The individuals with quartile 3 (Q3) group of log-transformed

serum zinc (1.94–1.97 µg/dL) were used as the baseline reference,

those with Q4 group of log-transformed serum zinc (1.98–2.37

µg/dL) had an adjusted β for TyG of 0.092 (95% CI 0.013–0.17,

P < 0.05; Table 3) after adjusting for the variables in Model 3.

Accordingly, in the fully adjusted analyses, the restricted

cubic spline (RCS) regression (Figure 2) indicated a non-linear

relationship between log-transformed serum zinc and TyG levels in

a J-shaped manner (P for nonlinearity = 0.019) (A). A segmented

regression model was employed to delineate the intervals and

calculate threshold effects, with an inflection point at ∼1.94

µg/dL. The results are presented in Table 4. When the log-

transformed serum zinc was <1.94 µg/dL, the estimated dose-

response curve exhibited a consistent horizontal trend, and the

relationships between the log-transformed serum zinc and TyG

was not significant (P > 0.05). Likewise, the TyG exhibited an

increase with rising log-transformed serum zinc after the inflection

point, with a correlation coefficient (β) of 0.96 (95% CI: 0.25–1.66)

after adjusting for the variables in Model 3 (Table 4). Furthermore,

within the age< 60 years group, the TyG demonstrated an increase

with escalating log-transformed serum zinc after the inflection

point, with a correlation coefficient (β) of 1.21 (95% CI: 0.49–

1.94) after adjusting for the variables in Model 3. Conversely,

within the age≥60 years group, the TyG exhibited an increase with

increasing log-transformed serum zinc prior to the inflection point,

with a correlation coefficient (β) of 1.98 (95% CI: 0.62–3.35) after

adjusting for the variables in Model 3 (Table 5).

And the RCS analysis was also applied to investigated the dose-

response association between log-transformed serum zinc level and

TyG with age ≥60 years and age <60 years. Figure 2 shows that in

TABLE 1 Baseline characteristics of participants.

Covariates Total
(n =
1,610)

Age <
60 (n =
1,065)

Age ≥
60 (n =
545)

P-
value

Age (mean± SD,

years)

49.6±

17.6

39.4±11.7 69.6± 6.6 <0.001

Gender, n (%)

Male 839 (52.1) 550 (51.6) 289 (53.0) 0.60

Female 771 (47.9) 515 (48.4) 256 (47.0)

Race/Ethnicity, n (%)

Non-Hispanic

White

696 (43.2) 415 (39.0) 281 (51.6) <0.001

Non-Hispanic

Black

303 (18.8) 209 (19.6) 94 (17.2)

Mexican

American

219 (13.6) 157 (14.7) 62 (11.4)

Others 392 (24.4) 284 (26.7) 108 (19.82)

Education level, n (%)

<9 137 (8.5) 59 (5.5) 78 (14.3) <0.001

9–12 556 (34.5) 357 (33.5) 199 (36.5)

>12 917 (57.0) 649 (60.9) 268 (49.2)

Marital status, n (%)

Living alone 969 (60.2) 634 (59.5) 335 (61.5) 0.45

Married or living

with a partner

641 (39.8) 431 (40.5) 210 (38.5)

PIR, n (%)

Low (PIR ≤1.3) 526 (32.7) 349 (32.8) 177 (32.5) 0.37

Medium (PIR

>1.3–3.5)

604 (37.5) 388 (36.4) 216 (39.6)

High (PIR >3.5) 480 (29.8) 328 (30.8) 152 (27.9)

BMI (kg/m2),

mean± SD

29.3± 7.1 29.3± 7.4 29.3± 6.4 0.93

BMI, n (%)

<18.5 kg/m2 30 (1.9) 23 (2.2) 7 (1.3) 0.33

18.5–24.9 kg/m2 442 (27.4) 301 (28.3) 141 (25.9)

25–29.9 kg/m2 526 (32.7) 336 (31.6) 190 (34.9)

≥30 kg/m2 612 (38.0) 405 (38.0) 207 (38.0)

Physical activity, n (%)

Sedentary 743 (46.2) 452 (42.4) 291 (53.4) <0.001

Moderate 537 (33.4) 354 (33.2) 183 (33.6)

Vigorous 330 (20.5) 259 (24.3) 71 (13.0)

Smoking status, n (%)

Never 890 (55.3) 625 (587) 265 (48.6) <0.001

Former 408 (25.3) 192 (18.0) 216 (39.6)

Current 312 (19.4) 248 (23.3) 64 (11.7)

Drinking status, n (%)

≥12 alcohol

drinks a year

1,189

(73.8)

816 (76.6) 373 (68.4) <0.001

(Continued)
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TABLE 1 (Continued)

Covariates Total
(n =
1,610)

Age <
60 (n =
1,065)

Age ≥
60 (n =
545)

P-
value

Trouble sleeping,

n (%)

431 (26.8) 260 (24.4) 171 (31.4) 0.0029

HbA1c (%), mean

± SD

5.77±

1.08

5.62±1.05 6.07± 1.08 <0.001

HDL-C (mg/dL),

mean± SD

54.0±

15.8

52.7±14.9 56.5±17.3 <0.001

TG (mg/dL),

mean± SD

114.1±

65.4

112.4± 67.1 117.4±61.8 0.14

Creatinine

(mg/dL), mean±

SD

0.89±

0.45

0.84± 0.36 1.00± 0.57 <0.001

TC (mg/dL),

mean± SD

191± 41 191± 40 190± 41 0.62

Energy (kcal),

mean± SD

2,119±

873

2,233± 912 1,897±744 <0.001

FPG (mg/dL),

mean± SD

109±34 105±32 116±36 <0.001

Uric acid

(mg/dL), mean±

SD

5.53±

1.37

5.45± 1.38 5.68± 1.35 0.0014

TyG, mean± SD 8.55

±0.64

8.49± 0.66 8.67±0.60 <0.001

log-transformed

serum zinc

(µg/dL), mean±

SD

1.94

±0.07

1.94±0.07 1.94±0.07 0.29

Hypertension, n

(%)

748±46 386±36 362±66 <0.001

Diabetes, n (%) 365 (22.7) 144 (13.5) 221 (40.6) <0.001

Failing kidneys, n

(%)

60 (3.7) 22 (2.1) 38 (7.0) <0.001

Data presented are mean± SD or N (%).

SD, standard deviation; PIR, family poverty income ratio; BMl, body mass index; HbA1c,

glycated hemoglobin A1c; HDL-C, high density lipoprotein cholesterol; TG, triglyceride; TC,

total cholesterol; FPG, fasting blood glucose; TyG, triglyceride-glucose index.

the fully adjusted analyses log-transformed serum zinc was related

to level of TyG in a J shaped nonlinear manner (P for nonlinearity

= 0.014) in age <60 years group (B), but in a inverted-L shaped

nonlinear manner (P for nonlinearity < 0.001) in age ≥60 years

group (C).

3.4 Stratified analyses

A stratified analysis was conducted according to age, gender,

BMI and diabetes to determine whether there were differential

effects in the association between log-transformed serum zinc

and TyG in American adults (aged ≥20 years). The results

demonstrated that no statistically significant interactions were

identified in any of the subgroups after stratification by gender, BMI

and diabetes in model 3 (Supplementary Table S2). However, when

log-transformed serum zinc was transformed into a categorical

TABLE 2 Association of convariates and triglyceride-glucose index.

Variable β (95% CI) P-value

Age (years) 0.01 (0.01 to 0.01) <0.001

Gender

Male 0 (reference) <0.001

Female −0.19 (−0.27 to−0.12)

Race/Ethnicity

Non-Hispanic White 0 (reference)

Non-Hispanic Black −0.26 (−0.36 to−0.15) <0.001

Mexican American 0.02 (−0.09 to 0.13) 0.710

Others −0.05 (−0.13 to 0.03) 0.219

Education level

<9 0 (reference)

9–12 −0.09 (−0.23 to 0.05) 0.199

>12 −0.22 (−0.34 to−0.11) <0.001

Married or living with a

partner

−0.05 (−0.13 to 0.02) 0.154

BMI kg/m2 0.03 (0.02 to 0.03) <0.001

BMI

<18.5 kg/m2 0 (reference)

18.5–24.9 kg/m2 −0.02 (−0.19 to 0.16) 0.845

25–29.9 kg/m2 0.41 (0.22 to 0.59) <0.001

≥30 kg/m2 0.52 (0.34 to 0.70) <0.001

Physical activity

Sedentary 0 (reference)

Moderate −0.16 (−0.27 to−0.05) 0.005

Vigorous −0.10 (−0.21 to 0) 0.053

Smoking status

Never 0 (reference)

Former 0.13 (0.02 to 0.23) 0.02

Current 0.17 (0.04 to 0.31) 0.014

Drinking status 0 (reference)

≥12 alcohol drinks a year 0.04 (−0.06 to 0.14) 0.384

Trouble sleeping 0.14 (0.05 to 0.24) 0.004

HbA1c (%) 0.28 (0.23 to 0.34) <0.001

HDL (mg/dL) −0.02 (−0.02 to−0.02) <0.001

TC (mg/dL) 0.01 (0 to 0.01) <0.001

Creatinine (mg/dL) 0.20 (0.04 to 0.36) 0.107

Uric acid (mg/dL) 0.14 (0.11 to 0.18) <0.001

Failing kidneys 0.25 (0.09 to 0.41) 0.003

Hypertension 0.32 (0.25 to 0.40) <0.001

Diabetes 0.60 (0.51 to 0.69) <0.001

Log-transformed serum

zinc (µg/dL)

1.16 (0.55–1.78) <0.001

Data presented are β and 95% CI.

BMl, body mass index; HbA1c, glycated hemoglobin A1c; HDL-C, high density lipoprotein

cholesterol; TC, total cholesterol; 95% CI, 95% confidence interval.
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TABLE 3 Multivariable linear regression was used to determine the relationship between log-transformed serum zinc and triglyceride-glucose index,

weighted.

Variable No. Crude model Model 1 Model 2 Model 3

β (95% CI) P

value
β (95% CI) P

value
β (95% CI) P

value
β (95% CI) P value

log-transformed

serum zinc

(µg/dL)

1,624 1.16 (0.55 to

1.78)

<0.001 0.50 (0.04 to

0.96)

0.033 0.50 (0.08 to

0.92)

0.022 0.50 (0.08 to

0.93)

0.023

Quartiles [log-transformed serum zinc (µg/dL)]

Q1 (1.69–1.89) 397 −0.07 (−0.19

to 0.06)

0.28 0.004 (−0.08

to 0.09)

0.92 0.004 (−0.08

to 0.09)

0.93 0.01 (−0.08 to

0.09)

0.89

Q2 (1.90–1.93) 408 −0.08 (−0.20

to 0.05)

0.28 0.01 (−0.06 to

0.08)

0.76 0.01 (−0.05 to

0.07)

0.75 0.01 (−0.06 to

0.07)

0.83

Q3 (1.94–1.97) 401 0 (Ref) 0 (Ref) 0 (Ref) 0 (Ref)

Q4 (1.98–2.37) 404 0.13 (0.02 to

0.23)

0.016 0.09 (0.02 to

0.17)

0.015 0.087 (0.012 to

0.16)

0.025 0.09 (0.01 to

0.17)

0.025

P for trend 0.031 0.011 0.018 0.020

Data presented are β and 95% CI.

Model 1: Adjusted for gender, BMI, HDL-C, TC, uric acid, diabetes, trouble sleeping.

Model 2: Adjusted for Model 1+ age, race and ethnicity, educational level, physical activity, smoke, HbA1c, failing kidneys, hypertension.

Model 3: Adjusted for Model 2+marital status, PIR, alcohol, creatinine, energy.

BMl, body mass index; HbA1c, glycated hemoglobin A1c; HDL-C, high density lipoprotein cholesterol; TC, total cholesterol; PIR, family poverty income ratio; 95% CI, 95% confidence interval.

FIGURE 2

Restricted cubic spline model of the β coe�cient of log-transformed serum zinc level with TyG with age ≥20 years (A) or with age <60 years (B) or

with age ≥60 years (C). Adjusted for gender, body mass index (BMI), high-density lipoproteins (HDL), total cholesterol (TC), uric acid, diabetes, trouble

sleeping, age, race and ethnicity, educational level, physical activity, smoke, HbA1c, failing kidneys, hypertension, marital status, poverty to income

ratio (PIR), drinking status, creatinine, total energy intake. The dashed lines represent the 95% confidence intervals. Heavy central lines represent the

estimated adjusted correlation coe�cient (β), with LightSkyBlue shaded ribbons denoting 95% confidence intervals. The horizontal dotted lines

represent the correlation coe�cient (β) of 0 (Reference point). The reference point was set at the median level of log-transformed serum zinc (1.94

µg/dL), and the vertical dotted lines indicate the threshold value of log-transformed serum zinc at 1.94 µg/dL.

variable, an interaction between log-transformed serum zinc and

TyG was observed in individuals aged <60 years and those aged

≥60 years (P value for the likelihood ratio test for the interaction

was P = 0.017; Table 6). The individuals with the log-transformed

serum zinc quartile 3 (Q3) group (1.94–1.97 µg/dL) were used as

the baseline reference. In the group of individuals aged <60 years,

those with the Q4 group of log-transformed serum zinc (1.98–2.37

µg/dL) exhibited an adjusted β for TyG of 0.096 (95% CI 0.009–

0.18; P < 0.05) in comparison to the Q3 group, after adjusting

for the variables in Model 3. In the group of individuals aged

≥60 years, those with the Q1 group of log-transformed serum

zinc levels (1.69–1.89 µg/dL) exhibited an adjusted β for TyG of

−0.169 (95% CI −0.280 to −0.058; P < 0.05) in comparison to the

Q3 group.
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4 Discussion

In this cross-sectional analysis of US adults aged ≥ 20

years, using NHANES data from 2011 to 2016, we identified a

positive association between log-transformed serum zinc levels

and TyG. Across all models, the effect size for log-transformed

TABLE 4 Association between log-transformed serum zinc level and

triglyceride-glucose index using two-piece-wise regression models.

Variable log-
transformed
serum zinc
(µg/dL)

Crude model Adjusted model

β (95%
CI)

P

value
β (95% CI) P

value

<1.94 0.33

(−0.85 to

1.50)

0.58 0.26 (−0.65 to

1.16)

0.56

≥1.94 1.52 (0.34

to 2.70)

0.013 0.96 (0.25 to

1.66)

0.01

Data presented are β and 95% CI.

Adjusted for gender, BMI, HDL-C, TC, uric acid, diabetes, trouble sleeping, age, race and

ethnicity, educational level, physical activity, smoke, HbA1c, failing kidneys, hypertension,

marital status, PIR, drinking status, creatinine, total energy intake.

BMl, body mass index; HbA1c, glycated hemoglobin A1c; HDL-C, high density lipoprotein

cholesterol; TC, total cholesterol; PIR, family poverty income ratio; 95% CI, 95%

confidence interval.

serum zinc with TyG (β = 0.50) remains relatively consistent

in Models 1, 2, and 3. Notably, we observed a J-shaped non-

linear relationship between log-transformed serum zinc levels

and TyG, with an inflection point at ∼1.94 µg/dL. Furthermore,

a statistically significant interaction was identified between log-

transformed serum zinc levels and TyG in individuals aged ≥60

years and those < 60 years (P < 0.05). These findings have

significant clinical implications.

Insulin resistance has been suggested to play a noteworthy role

in the pathogenesis of metabolic syndrome (30, 50, 51), and some

evidences (51–54) suggests a direct association between serum

zinc and insulin resistance which is consistent with our studies.

For example, an 11-year prospective follow-up investigation was

carried out among 683 male participants from the Kuopio

Ischaemic Heart Disease Risk Factor Study (51) who were aged

42–60 years at baseline between 1984 and 1989. Teymoor Yary

et al. (51) revealed that elevated serum zinc levels were linked

to increased Homeostatic Model Assessment (HOMA) of insulin

resistance and HOMA of beta cell. Additionally, a positive

correlation was observed between higher serum zinc levels and

the development of metabolic syndrome, as well as three of

its constituent features, namely increased waist circumference,

hypertension, and low serum HDL cholesterol (30). And a cross-

sectional observational study (55) using NHANES data from

TABLE 5 Association between log-transformed serum zinc level and triglyceride-glucose index using two-piece-wise regression models within the age

< 60 years group and the age ≥ 60 years group (All participants).

Variable <60 years (n = 1,065) ≥60 years (n = 545)

Crude model Adjusted model Crude model Adjusted model

Log-transformed
serum zinc (µg/dL)

β (95%CI) P-value β (95%CI) P-value β (95%CI) P-value β (95%CI) P-value

<1.94 0.39 (−1.23∼2.00) 0.63 −0.41 (−1.65∼0.84) 0.50 0.20 (−1.71∼2.10) 0.83 1.98 (0.62∼3.35) 0.01

≥1.94 1.85 (0.54∼3.16) 0.01 1.21 (0.49∼1.94) 0.002 0.38 (−1.58∼2.34) 0.70 −0.05 (−1.98∼1.89) 0.95

Adjusted model: gender, BMI, HDL, TC, uric acid, diabetes, trouble sleeping, age, race and ethnicity, educational level, physical activity, smoke, HbA1c, failing kidneys, hypertension, marital

status, PIR, drinking status, creatinine, total energy intake.

BMl, body mass index; HbA1c, glycated hemoglobin A1c; HDL-C, high density lipoprotein cholesterol; TC, total cholesterol; TyG, Triglyceride-glucose index; PIR, family poverty income ratio;

95% CI, 95% confidence interval.

TABLE 6 Interactive e�ect of log-transformed serum zinc and triglyceride-glucose index in patients within the age < 60 years group and the age ≥ 60

years group (All participants).

Variable <60 years (n = 1,065) ≥60 years (n = 545) P for interaction

β (95%CI) P-value β (95%CI) P-value

Log-transformed serum zinc (µg/dL) 0.301 (−0.190, 0.791) 0.215 0.968 (0.297, 1.639) 0.007 0.166

Quartiles (log-transformed serum zinc (µg/dL))

Q1(1.69-1.89) 0.070 (−0.028, 0.169) 0.151 −0.169 (−0.280,−0.058) 0.005

Q2(1.90-1.93) 0.010 (−0.070, 0.089) 0.801 −0.001 (−0.111, 0.109) 0.985

Q3(1.94-1.97) 0 (reference) 0 (reference) 0.017

Q4(1.98-2.37) 0.096 (0.009, 0.184) 0.033 0.049 (−0.069, 0.167) 0.39

Adjusted model: gender, BMI, HDL, TC, uric acid, diabetes, trouble sleeping, age, race and ethnicity, educational level, physical activity, smoke, HbA1c, failing kidneys, hypertension, marital

status, PIR, drinking status, creatinine, total energy intake.

BMl, body mass index; HbA1c, glycated hemoglobin A1c; HDL-C, high density lipoprotein cholesterol; TC, total cholesterol; TyG, Triglyceride-glucose index; PIR, family poverty income ratio;

95% CI, 95% confidence interval.
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2011 to 2016 also revealed that serum zinc concentration was

significantly higher in both abnormal glucose tolerance and

diabetes mellitus groups when compared to the normal glucose

tolerance group.

However, other studies have produced contrasting results.

According to a cross-sectional study (56), it was found that the

prevalence of insulin resistance (HOMA-IR; categorized according

to the 75th percentile of the sample distribution) was elevated

among Brazilian adolescents falling within the lower quartiles of

zinc intake (<7.5mg), with a prevalence ratios (PR; 95% CI) of 1.23

(1.10–1.38) compared to those in the higher quartiles of zinc intake

(>16.3mg; P <0.05).

One randomized, placebo-control study (57) found that zinc

supplementation at 30mg daily for 4 weeks significantly decreased

fasting insulin and HOMA values in Brazilian obese women aged

25–45 years, but that plasma zinc, BMI, fasting glucose, and leptin

levels were unaffected by zinc supplementation.

However, a study conducted in Korea (58) revealed that a daily

zinc supplementation of 30mg over an 8-week period enhanced

serum zinc and urinary zinc concentrations in obese Korean

women (BMI≥25 kg/m2) aged 19–28 years. Nevertheless, the study

found that zinc supplementation did not lead to improvements

in insulin resistance (HOMA-IR) or in any other metabolic risk

factors. Similarly, Beletate et al. (59) found that a 4-week zinc

supplementation did not result in any significant improvements

in insulin resistance, fasting glucose, or lipid levels in women who

were obese and aged 25–45 years with normal glucose tolerance.

Regina El Dib et al. (29) included three randomized controlled

studies in their review. The duration of zinc supplementation

ranged between four and 12 weeks. The trials’ primary outcome

measure was insulin resistance, which was assessed using the

Homeostasis Model Assessment of Insulin Resistance (HOMA-

IR). The comparative analysis of this parameter between the zinc

supplemented cohort and the control group revealed no statistically

significant disparities across two trials, which collectively enrolled

114 participants.

Table 3 indicates a significant association between the highest

quartile of serum zinc and TyG. However, the underlying

mechanisms remain unclear, with several potential mechanisms

having been proposed. First, elevated zinc concentrations may

influence hormonal homeostasis, including leptin. Such hormonal

imbalances could potentially lead to an increase in BMI, which in

turn may precipitate insulin resistance (53). Second, it has been

demonstrated that zinc plays a significant role in the function of

β-cells and the secretion of insulin (60). Consequently, it has been

proposed that the activity of β-cells should be enhanced in order

to facilitate the management of glucose levels among individuals

with type 2 diabetes. However, excessive zinc intake may result in

hyperactivity of β-cells and insulin production, potentially leading

to insulin resistance through receptor exhaustion or prolonged zinc

stimulation, which could have adverse effects on β-cells. Third,

excessive zinc intake can also result in adverse effects, including

altered copper and iron homeostasis, decreased concentrations of

HDL cholesterol and serum lipoprotein, and impairment of liver

function (61, 62). As previous studies have demonstrated that

patients with type 2 diabetes have lower serum zinc concentrations

and higher urinary zinc excretion compared to healthy controls

(63, 64), this might be a protective mechanism aimed at eliminating

surplus zinc to avert the onset of zinc-induced toxicity.

Very few studies have focused on relationship between serum

zinc and TyG combined with age. In this study, the associations

between serum zinc levels and TyG in participants aged ≥60

and <60 years were evaluated, adjusting for relevant variables. In

Table 6, The results indicate a significant association between serum

zinc and TyG in the ≥60 years group (β = 0.968, P = 0.007),

but not in the <60 years group (β = 0.301, P = 0.215). However,

the underlying mechanisms remain unclear. On the one hand,

zinc plays a crucial role in immune function, and its deficiency

is more prevalent in older adults, documented by a decline in

serum or plasma zinc levels with age. Low zinc status is associated

with a weakened immune system, but long-term and high-dose

zinc supplementation may lead to some potential adverse effects,

such as copper deficiency (65) and immunosuppressive, especially

suppress T cell mediated events which will have a significant

impact on the immunological outcome (66). This process may

be associated with insulin resistance. On the other hand, in

contrast to younger individuals, elderly patients experience a

decline in physiological functions, making them more prone to

various metabolic disorders (3). Abnormal bioelement levels can

contribute to metabolic syndrome, especially in aging men. Zinc

plays a crucial role in the function of beta cells within the islets

of Langerhans. Animal studies indicate that low doses of zinc

can protect against type 2 diabetes, whereas high concentrations

can be toxic to these beta cells. This toxicity may lead to insulin

resistance (34).

This study has several strengths. Firstly, the study encompasses

a large, nationally representative sample of US adults. Secondly,

the investigation modeled the associations between serum zinc

and TyG while accounting for established and potential covariates.

Thirdly, the study explored associations stratified by age groups

of ≥60 and <60 years. Furthermore, a dose-response analysis was

conducted to assess the relationship between serum zinc and TyG,

as well as with age groups of ≥60 and <60 years.

Despite the strengths of the study, several limitations should

be noted. First, this study was conducted with a US population,

additional research is required to confirm whether our results can

be generalized to other populations. Second, residual confounding

effects could not be excluded. We constructed multivariable

linear regression models and performed subgroup and sensitivity

analyses to control for the effects of potential confounders on the

relationship between serum zinc and TyG. Third, the study is in the

lack of data on zinc intake in the population under investigation.

High-quality, interventional and prospective studies are required

to clarify the effects of zinc intake on TyG. Four, we recognize

that nonrandom missing data could influence our findings due to

baseline differences between included and excluded participants.

To address this, we adopted a rigorous methodological approach.

Following NHANES guidelines, we conducted a weighted analysis

to account for survey design intricacies, including stratification

and weighting, ensuring our results are representative of the

broader U.S. population. Additionally, we performed model

adjustments to enhance the reliability and robustness of our

outcomes. Finally, because this was a cross-sectional observation

study, the associations found in this study may not result in
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direct causality (67). Our study, a secondary analysis of publicly

available data, explores the association between serum zinc

and TyG index in adult Americans. While the evidence level

from such secondary analyses is lower than that from primary

studies, they effectively utilize existing data and can lay the

groundwork for future research. Therefore, longitudinal studies

are required to determine whether the observed relationship

between the serum zinc and TyG is causal, as well as to explore

the interactive effect of age on serum zinc and TyG. There

may be a mechanistic association between age and TyG, which

requires further investigation due to the biological distinctions

it creates.

5 Conclusions

A J-shaped, non-linear positive correlation was observed

between serum zinc levels and TyG, with an inflection point at

∼1.94 µg/dL. Additionally, a statistically significant interaction

was noted between serum zinc levels and TyG in individuals aged

≥60 years and those <60 years. In the age <60 years group,

serum zinc exhibited a J-shaped non-linear association with TyG,

while in the age ≥60 years group, the relationship followed an

inverted-L shaped non-linear pattern. These outcomes suggest

that there are potential adverse effects of high serum zinc levels

on glucose metabolism by levels of TyG. Although this study

offers valuable clinical insights, further prospective research is

warranted to substantiate these findings, and to delve into the

underlying mechanisms.
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