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Contextualizing toxic elements in 
the diet: a case for integration of 
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databases
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Food composition data plays a key role in the practice of nutrition. However, 
nutrition professionals may currently lack the resources they need to integrate 
information about toxic elements – such as arsenic, cadmium, and lead – in food 
into the advice they give consumers. Geographic, sociocultural, and individual 
factors may impact not only the toxic element content of food, but also how the 
balance between potentially toxic and health-promoting components of food 
must be  weighed. Better integration and contextualization of toxic element 
data into key food databases could allow for more nuanced, comprehensive 
nutrition guidance.
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1 Introduction

Food comprises a vast array of diverse chemicals, from carbohydrates to vitamins to fatty 
acids. Of these constituents, the structurally simplest are the chemical elements. However, the 
118 elements currently in the periodic table still differ from one another along many axes. 
Elements are broadly grouped into (several types of) metals, metalloids, lanthanides, actinides, 
halogens, noble gasses, and other nonmetals. Across these groupings, the concentrations of 
elements in foods can vary over at least 6 orders of magnitude, with macrominerals like 
sodium and potassium generally present at relatively high levels (10s of mg per g of food on a 
dry weight basis) and ultratrace elements like boron and nickel generally present at relatively 
low levels (10s of μg per g of food) (1). Considerations around dietary intake of elements also 
vary. While some elements, like zinc and iron, are essential for good nutrition, others, like 
arsenic and lead, can be toxic.

Consumers in the United States are used to seeing four nutritive elements (sodium, 
calcium, iron, and potassium) on nutrition facts labels. These labels do not – and cannot – 
communicate the vast chemical diversity contained in food. Nutritional databases, such as 
the United States Department of Agriculture’s FoodData Central (2), offer an expanded view 
of nutritionally important elements in commonly consumed foods by also including 
magnesium, phosphorus, zinc, copper, and manganese (among others). These data are 
frequently used to estimate average intakes of these nutrients across populations to evaluate 
health impacts and generate nutritional guidance. However, we argue that the absence of 
comprehensive, robust, and easily accessible information about toxic metals and metalloids 
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(such as arsenic, cadmium, and lead) in food creates a significant 
shortfall in nutrition education both for professionals and for 
members of the public. While high acute exposure to toxic elements 
can cause poisoning and even death (3–5), for the average consumer 
in the United States, food typically does not pose such acute 
concerns. (Significant contamination events can occur; for example, 
the US Food and Drug Administration recently investigated 
cinnamon applesauce products high in lead and chromium (6)). 
However, the health risks of lower-dose chronic exposure to these 
metals from the diet is an important public health consideration. 
Inorganic arsenic (i.e., chemical forms in which the metalloid is not 
bound to carbon) is a known carcinogen (4, 7), cadmium can 
damage kidney function (3), and the impacts of chronic lead 
exposure can be both wide-ranging and particularly deleterious for 
children and pregnant individuals (5). Importantly, depending on 
dietary intake, some metals can be  passed from the body of a 
lactating individual to an infant (8). It also seems likely that a variety 
of heavy metals can contribute to the etiology of cardiovascular 
disease (9).

Beyond these established effects, research suggests potential links 
between numerous other diseases states and toxic metals. Although 
the literature has not provided definitive conclusions on suggested 
connections between metabolic syndrome and intake of toxic metals 
(10), correlations (both positive and negative) have been identified in 
several retrospective analyses of the United States (11, 12) and Korean 
(13) National Health Examination Surveys. These studies have 
reported that the relationship between toxic metal exposure and 
metabolic syndrome may be nonlinear (12) and vary by metal (11), 
and that exposure to multiple metals may be more deleterious than 
the sum of risks for individual metals would suggest (13) (see also Liu 
et  al.’s more recent work on this topic (14)). Negative impacts on 
immune function have also been linked to several toxic elements (15) 
(for an in-depth review of cadmium’s effects, see Wang et al. (16)).

Toxic metals in food come from the environments (soil, water, and 
air) where foods are produced. Toxic metals occur naturally 
throughout these environments and may also be introduced through 
industrial activity (17). Concentrations of toxic metals vary 
substantially across landscapes and methods of food production, and 
crops differ from one another in their tendencies to accumulate these 
metals (17). This variability can make it difficult to estimate population 
levels of toxic metal exposure through food consumption and to 
generate meaningful consumer guidance on how to minimize toxic 
metal exposure in their diets. Independent analyses by the 
United  States FDA (6) and the nonprofit organization Consumer 
Reports (18) have elevated concerns of toxic metal contamination in 
various foods into public discourse. However, interpreting the 
implications of these types of studies and directing future research in 
this space requires a nuanced approach. The ubiquity and variability 
of toxic metals across the food supply necessitates an evaluation of 
trade-offs between the health-promoting effects of certain foods and 
the risk associated with toxic metal exposure at the dietary level. 
Important questions that need to be answered more comprehensively 
include (Figure 1): What sources of commonly consumed foods are 
associated with meaningful levels of toxic metals? How might different 
sourcing or production strategies mitigate the prevalence of toxic metals 
in the food supply? What are the potential health benefits and tradeoffs 
of consuming different types and amounts of foods, given the balance of 
beneficial and potentially harmful compounds contained therein?

2 Availability and utility of data on 
toxic metals in food

For food composition data to inform nutritional guidance, the data 
must be available and accessible to professionals who provide consumer 
dietary advice, such as physicians and dietitians. To the best of our 
understanding, while training in the medical and dietetics fields may 
include some discussion of dietary toxic metals, there is a lack of 
emphasis on the integration of this knowledge into clinical practice. 
Further exacerbating the problem, of the primary food composition 
databases available to US nutrition professionals (19), only the FDA 
Total Diet Study (TDS) includes acutely toxic elements such as arsenic 
and lead. (FoodData Central does incorporate a number of elements 
like selenium and copper that, though nutritionally relevant at low 
levels, may be concerning at high levels (2)). Although the TDS is a 
wealth of valuable information and the FDA provides a helpful 
summary report (20), if the user wishes to interact with all the food-
level data it appears they must do so through a flat file that has 
approximately 69,000 rows (21). Unless the user has coding or Excel 
programming experience, extracting information from these files would 
likely be challenging. Internationally, some large food databases do 
integrate information about acutely toxic elements. The Canadian 
FooDB project incorporates arsenic, cadmium, and lead alongside a 
wide range of nutritive food components (22). It is important to 
consider the sources of this data to evaluate its relevance across contexts. 
A few foods are linked with specific references to published literature; 
many foods seem to be associated with other databases. One key citation 
for quantitative arsenic, cadmium, and lead information is to a USDA 
plant database that, while rich, only offers insight into plant foods and 
seems to largely reference toxic element data that is now 25 or more 
years old (23). To the best of our understanding, another key reference 
seems to be Frida, the Danish Food Composition Database, which does 
incorporate arsenic, cadmium, and lead values in a variety of foods and 
was last updated in May 2024 (24). The Australian Food Composition 
Database also includes arsenic, cadmium and lead (25). The 
aforementioned influence of environmental factors on foods’ toxic 
element content suggests that these example resources are unlikely to 
offer complete solutions for all nutrition professionals. However, such 
resources do demonstrate the feasibility of further expanding databases 
already familiar to many United States providers.

Although the US FDA does test for toxic metals in the food supply 
and has a Toxic Elements Working Group (26), currently another data 
challenge stems from an apparent lack of clear tolerable dietary intake 
levels within United States policy for several acutely toxic metals. The 
Food and Agriculture Organization (FAO) /World Health 
Organization (WHO) Joint Expert Committee on Food Additives 
publishes a searchable database of food additives and contaminants, 
which provides provisional tolerable intakes for cadmium and 
(methyl) mercury, but such values are not currently available for 
inorganic arsenic and seem unlikely to be feasible for lead (27). There 
are also some sources of food-level guidance around certain toxic 
metals. Among the toxic metals measured in the FDA TDS, only lead 
in apple juice and candy and inorganic arsenic in apple juice and 
infant rice cereal are assigned action levels (20). The FAO and WHO 
publish the Codex Alimentarius, which contains standards suggesting 
maximum allowable levels of (inorganic) arsenic, cadmium, lead, 
(methyl) mercury, and tin in a variety of foods that may be part of 
international trade (28). Nutrition professionals should be aware of 
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these important resources, but it is not clear how a provider should 
triangulate across them and integrate individual and social factors to 
determine the best advice for many patients.

Further complicating this calculation are cases in which the risk of 
harm from toxic metals must be balanced with the benefits provided by 
otherwise nutritious foods. For example, while spinach is widely 
understood to be a healthy food, this crop may also be particularly prone 
to accumulate cadmium (1, 29). Similarly, in wheat, higher levels of iron, 
magnesium, and manganese may be associated with higher levels of 
bioavailable cadmium (30). Conflicts can also arise around processing 
and preparation techniques. Polishing rice is an effective technique for 
removing arsenic, but converting brown rice to white also reduces the 
iron and zinc content of the grain (31), decreases protein and fiber 
content, and may negatively alter the grain’s glycemic effect on the body 
(32). The US FDA suggests that most consumers manage the tension 
between nutrition and risk from arsenic in food by maintaining a diverse, 
balanced diet (33). Though this is sensible and familiar advice, it lacks 
specificity, and economic realities may make following diverse and 
balanced dietary patterns difficult or impossible for many consumers.

Health equity concerns around nutrition could be amplified when 
we add toxic metals to the equation. A participatory research project in 
Santa Ana, California demonstrated that even before considering 
dietary intake, the burden of environmental exposure to arsenic, 
cadmium, and lead may fall disproportionately on lower-income and 
Latino/a/e or Hispanic consumers (34). Disparities can also start to 
arise at the foundational level of drinking water. Many readers will 
recall the drinking water crisis that began in 2014  in the 
socioeconomically vulnerable, predominantly Black city of Flint, 
Michigan and likely compounded inequities in childhood lead exposure 
(35). Furthermore, consumers with less socioeconomic privilege may 
have limited choice and access to a wide variety of nutritious foods due 
to financial constraints. Urban gardening might help ameliorate this 
problem in some contexts, and consumers see a wide variety of benefits 
to these systems, including control over the addition of potentially toxic 
compounds like pesticides (36, 37). Unfortunately, urban garden soils 
can be contaminated with toxic metals (38, 39) and these metals can 
be taken up into crops (40). Consumers may suspect risks from soil 

contamination at the garden planning phase, and their concerns must 
be  taken seriously (41). Without location-specific testing, better 
information about toxic metals in the full diet, and tools to interpret this 
data, this promising public health strategy for improving access to fresh 
produce in urban areas may be compromised.

3 Conclusions and proposed solutions

To begin addressing the challenges described above and enhance 
consumers’ protection from the effects of lower-dose chronic exposure 
to toxic elements, it is imperative to make data on toxic metals in foods 
more robust and accessible to provide actionable dietary guidance. 
Nutrition professionals require appropriate data and tools to help 
consumers determine which foods in which amounts are nutritious and 
safe to consume, balancing potentially competing dietary priorities as 
well as economic considerations. Although the scientific literature 
contains many reports on toxic metals in foods, the most readily available 
centralized and comprehensive survey of such information in the 
United States seems to be the FDA TDS. Creating a more interactive, 
user-friendly web interface for this database could be a good starting 
point. Such a database should also integrate what information is available 
on acceptable metal levels in foods and provisional tolerable intakes, 
though clearer guidance in these areas is needed. Although some links 
between chronic diseases and toxic elements are well-established (e.g., 
inorganic arsenic and cancer (4, 7); cadmium and kidney disease (3)), 
additional work should be done to clarify and communicate potential 
interactions or additive effects of low-level dietary toxic elements across 
the lifespan. Ideally, this data would ultimately be integrated with existing 
food composition databases, such as USDA’s FoodData Central, 
alongside nutrient information that is regularly accessed by nutrition 
professionals. However, such an effort might be met with reservations 
from companies in the food production space, which may be concerned 
about impacts on consumer perception and behavior. The health-
focused rationale for expanding collection and use of data on toxic 
elements in food should be clearly communicated to corporations, and 
strategies to engage their support should be evaluated collaboratively. 

FIGURE 1

An overview of factors that may influence dietary considerations related to toxic element composition of food, using rice as an example. Different rice 
sources (geographic and genetic) may accumulate different levels of toxic elements. Cultivation practices, processing techniques, and preparation methods 
can also impact toxic element composition. The benefits of approaches that can reduce dietary toxic element intake, such as polishing brown rice to make 
white rice, must be weighed against their potential nutritional costs. (Created in BioRender. Prenni, J. (2024) BioRender.com).
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FIGURE 2

A comparison of the current and future scopes of food elemental composition data readily accessible to United States nutrition professionals. Many toxic 
elements can be measured, but still need to be incorporated into interactive food composition databases that are widely used by US nutrition professionals. 
To make this information actionable, toxicity thresholds and speciation data, or information about the chemical forms of an element present in food, are 
required for a number of toxic elements. Further work is also needed to differentiate guidance according to consumers’ environments and health statuses, 
and to understand interactions among food components for appropriately balanced recommendations. (USDA – United States Department of Agriculture; 
US FDA – United States Food and Drug Administration; Created in BioRender. Prenni, J. (2024) BioRender.com).

Although findings of elevated toxic element content in a given food 
could lead to negative press, perhaps rigorous practices within a 
company to monitor and mitigate toxic element content could win favor 
with consumers. Guidance from nutrition professionals about the 
continuum of risk from toxic elements and balancing the contributions 
of healthful food components may also help consumers make decisions 
based on a more nuanced assessment, rather than reacting solely out of 
fear to an increased awareness of dietary toxic elements.

As databases expand, it will be important to characterize variation in 
toxic metal content related to geographic origin, cultivation practices, and 
storage and processing conditions. A recent report on arsenic in rice 
suggests that this may be especially salient as climate change progresses 
and creates conditions that may impact uptake of toxic metals into foods 
(42). As illustrated by the discussion of urban garden soils, it will 
be particularly important for this type of work to be designed and assessed 
through a health equity lens. This includes consideration of the economic 
implications of characterizing particular foods or food sources as 
containing toxic elements – both for consumers who may not be able to 
afford alternatives, and to producers for whom sale of these foods is a sole 
or primary source of income. The prospect of adding spatial and social 
layers (and, ideally, their interactions) to the already-immense task of 
characterizing dietary chemical diversity naturally raises questions about 
analytical resources and data interpretation. There is no way around the 

need for real-world data. However, construction of a sufficiently large and 
robust dataset may eventually allow for development of tools (e.g., based 
on machine learning) that can “flag” foods of concern more rapidly. The 
time and materials needed for comprehensive analysis could be focused 
on foods where they are most likely to have the greatest impact within a 
given region or community.

In the longer term, information about the distribution of chemical 
forms of metals – i.e., speciation data – in foods should also 
be incorporated into food composition databases. Some chemical forms 
of toxic metals, such as arsenic (43), are more dangerous than others; 
similarly, bioavailability of nutritive elements, such as zinc (44), can vary 
among chemical forms. Nutrition professionals already have a grounding 
in this concept – for example, the heme iron in meat is more bioavailable 
than the nonheme iron prevalent in plant foods (45). In the world of toxic 
metals, an analogous division exists between inorganic arsenic, which is 
classified as a known human carcinogen in the US EPA’s Integrated Risk 
Information System (7), and organic arsenic, which is not (note that the 
small organic species monomethylarsonic acid and dimethylarsinic acid 
are listed as possible human carcinogens by the WHO International 
Agency for Research on Cancer (46)). Speciation data is currently very 
limited in major US food composition databases (in the FDA TDS, 
arsenic speciation is performed on a small subset of foods (20)). These 
considerations are summarized in Figure 2.

https://doi.org/10.3389/fnut.2024.1473282
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://BioRender.com/z86d400


Jones et al. 10.3389/fnut.2024.1473282

Frontiers in Nutrition 05 frontiersin.org

Expanding the knowledge base of toxic elements in food will take 
time and a coordinated global effort, as will understanding how to 
appropriately integrate the data into nutrition advice. To the best of our 
understanding, the history of national dietary toxic metal regulation for 
US consumers is relatively recent: The EPA set enforceable limits for 
various toxic metals in drinking water over the course of the early 1990s 
(47, 48), and revised the allowable arsenic level to a lower value in 2001 
(49). From a chemical analysis standpoint, food is much more complex 
than water, and the interface of food science and food policy is further 
complicated by the myriad sociocultural dimensions of food. The US 
FDA only finalized its (non-binding) infant rice cereal inorganic arsenic 
action level guidance of 100 ppb in 2020 (50). However, this recent 
movement should be  taken as an encouraging sign that researchers’ 
continual improvement of techniques for food composition analysis – in 
tandem with epidemiological, toxicological, and nutrition-focused work 
– will allow further action in this space. Pressing concerns about escalating 
climate stress on global agricultural systems necessitates further 
advancement and broader application of these methods. The effort to 
better characterize and communicate about toxic metals in food is a 
critical investment in the promotion of a safer and more equitable 
understanding of nutrition.
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