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Introduction: Nutrition is closely related to body health. A reasonable diet

structure not only meets the body’s needs for various nutrients but also

effectively prevents many chronic diseases. However, due to the general lack

of systematic nutritional knowledge, people often find it difficult to accurately

assess the nutritional content of food. In this context, image-based nutritional

evaluation technology can provide significant assistance. Therefore, we are

dedicated to directly predicting the nutritional content of dishes through images.

Currently, most related research focuses on estimating the volume or area

of food through image segmentation tasks and then calculating its nutritional

content based on the food category. However, this method often lacks real

nutritional content labels as a reference, making it difficult to ensure the

accuracy of the predictions.

Methods: To address this issue, we combined segmentation and regression

tasks and used the Nutrition5k dataset, which contains detailed nutritional

content labels but no segmentation labels, for manual segmentation annotation.

Based on these annotated data, we developed a nutritional content prediction

model that performs segmentation first and regression afterward. Specifically,

we first applied the UNet model to segment the food, then used a backbone

network to extract features, and enhanced the feature expression capability

through the Squeeze-and-Excitation structure. Finally, the extracted features

were processed through several fully connected layers to obtain predictions for

the weight, calories, fat, carbohydrates, and protein content.

Results and discussion: Our model achieved an outstanding average percentage

mean absolute error (PMAE) of 17.06% for these components. All manually

annotated segmentation labels can be found at https://doi.org/10.6084/m9.

figshare.26252048.v1.
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1 Introduction

Nutritional content in the diet is closely related to health. Our
bodies need various nutrients to maintain normal physiological
functions, with each nutrient having specific roles. A deficiency
or excess intake can negatively impact health (1). A reasonable
diet structure not only meets the body’s nutritional needs but also
prevents many chronic diseases. For example, a high-fiber diet can
reduce the risk of heart disease and diabetes (2), while foods rich in
antioxidants can help prevent certain types of cancer.

In modern society, many people have irregular eating habits
due to a fast-paced lifestyle. High-fat, high-sugar, and high-salt
foods dominate diets, often driven by convenience and availability.
These unhealthy dietary patterns increase the risk of obesity,
hypertension, and cardiovascular diseases, posing significant public
health challenges. Consequently, understanding and selecting
healthy foods, as well as maintaining a balanced nutritional intake,
has become increasingly important. However, understanding the
specific nutritional content of food is a complex and time-
consuming task for the average person. Determining nutritional
content typically requires knowledge of food composition, the use
of food scales, and extensive manual calculations, which can be a
deterrent for many. Simplifying this process by directly predicting
nutritional content from food images could provide an efficient and
accessible solution, especially for individuals seeking to improve
their dietary habits.

Currently, common dietary calorie and nutrition calculation
applications mainly provide users with channels for nutrition
inquiry and record-keeping. Users must provide the exact type
and weight of each food, which the application uses to calculate
specific nutritional content. This process requires using a scale to
weigh food for more accurate results. However, this method is
time-consuming and laborious, often leading users to estimate food
portions visually, resulting in inaccurate quantity calculations (3).
Additionally, these applications offer a limited variety of dishes
for inquiry, and many times our food cannot accurately match
the existing menu, greatly reducing the accuracy of nutritional
content prediction.

Image-based nutritional content prediction has gained
significant attention as an innovative approach to address
these challenges. Using mobile phone cameras to analyze food
images and estimate nutritional content can streamline the
process, eliminating the need for extensive manual input. This
technology not only enhances convenience but also provides
insights into foods not included in traditional databases, offering
personalized dietary recommendations based on actual meals.
By integrating visual recognition with nutritional analysis, such
methods could revolutionize dietary monitoring and promote
healthier eating habits.

In recent years, research in computer vision has made
substantial progress in food recognition, classification, and
segmentation. For example, Jiang et al. (4) proposed a three-step
algorithm using deep convolutional neural networks (CNNs) to
recognize multi-food images, generating proposal regions through
a region proposal network (RPN) and then classifying and locating
these regions. In nutritional content prediction, they preset the
weight of each food to calculate nutritional information. Similarly,
Situju et al. (5) used food image classification methods to estimate

food calorie and salt content, employing a two-stage transfer
learning method to enhance food component estimation. However,
these studies focus on food classification, calculating nutritional
information by classifying food into known menu items and
assuming that foods classified as the same dish have roughly the
same nutritional content.

Many studies focus on calculating food area or volume.
For example, Meyers et al. (6) segmented food images to
distinguish different food regions and converted 2D images into
3D volume representations to calculate food calories. Agarwal
et al. (7) proposed a hybrid architecture primarily utilizing the
Mask RCNN and YOLO V5 frameworks. Through the processes
of segmentation, classification, and calculating the volume and
calories of food items, it predicts the calorie content of food
in a bowl. Yang et al. (8) used an AI system mimicking the
thinking of human nutritionists, learning the volume of common
objects (e.g., teaspoons, golf balls, cups) to “mentally” measure
food volume. However, this method is limited to situations where
only one type of food is on a plate. Raju et al. (9) enhanced
hardware by proposing a new passive, independent, multi-spectral,
motion-activated, structured light-supplemented stereo camera
(FOODCAM) for food intake monitoring, capable of capturing and
reconstructing 3D images of complex-shaped foods. However, this
equipment is too complex for practical use.

Despite these advancements, many models still rely on
classifying food into predefined dish types to estimate nutritional
content, which introduces significant uncertainty due to the varying
densities and compositions of foods. Moreover, the lack of real
nutritional content labels in most datasets further undermines
accuracy and generalizability.

Therefore, we aim to combine image segmentation and
nutritional content prediction. Currently, most existing datasets
focus on increasing the number of food categories or improving
food segmentation accuracy. For example, Recipe1M (10) is a
dataset generated from images scraped from recipe websites,
containing ingredients used in dishes. However, these annotations
do not fully correspond to the images, as the quantities of
ingredients shown in the images are not explicitly marked. Thus,
directly using this dataset for nutritional content prediction may
not yield accurate results.

UEC-FoodPix (11) and UEC-FoodPix Complete (12) are
large-scale food image segmentation datasets derived from UEC-
Food100 (13). UEC-FoodPix adds semi-automatic segmentation
templates to existing food images, and UEC-FoodPix Complete
manually refines them. Since most images in this dataset contain
rice, the authors estimated the food area through rice grains to
calculate food calories.

Methods predicting nutritional content by estimating food
area or volume cannot measure accuracy without real nutrition
labels. Nutrition5k (14) is a dataset collected in cafeterias, using
professional instruments to weigh, scan, and record each dish,
containing 5,000 different dish video streams and depth images.
Each dish has detailed ingredient and content labels, with calorie,
fat, protein, and carbohydrate content calculated using the USDA
Food and Nutrient Database (15), providing highly accurate
nutritional information.

Nutrition5k is one of the few datasets that provides complete
nutritional information and content for the corresponding food
in images. Research on the relationship between food images
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and nutritional content based on Nutrition5k mainly falls into
three directions.

One approach involves estimating food content based on
volume or area, such as the method proposed by Shao et al.
(16)., who introduced an end-to-end food portion estimation
framework based on monocular image 3D shape reconstruction.
This method estimates the energy value of food from monocular
images using deep learning. This approach primarily focuses
on food images, but does not fully utilize the nutritional
information provided by the dataset. Another approach is to
sequentially perform food classification followed by nutrient
content prediction. For example, Wang et al. (17) integrated
EfficientNet, Swin Transformer, and Feature Pyramid Network
(FPN) to develop an efficient, lossless, and accurate method for
food nutrient recognition and quantification. A third approach
is to predict nutrition by fusing raw images and depth images
after a series of processing steps. For example, Shao et al. (18)
uses raw RGB images and depth images captured by special
equipment, integrating multimodal feature fusion (MMFF) and
multi-scale fusion for vision-based nutrition assessment. Han
et al. (19) proposes an end-to-end nutrition estimation method
based on monocular images, DPF-Nutrition. By introducing a
depth prediction module to generate depth maps, this method
improves the accuracy of food content estimation. While this
approach effectively utilizes depth information and eliminates the
need for volume reconstruction, the process of simultaneously
handling both color and depth images significantly increases
memory overhead.

We aim to make effective use of the Nutrition5k dataset
while minimizing or avoiding the shortcomings of the above
methods. Therefore, we selected 3,224 top-view food images from
Nutrition5k, manually adding segmentation labels to build a model
that segments first and predicts later, along with corresponding
detailed nutritional content labels. This model first segments the
food portion from the original image and then predicts the content
of weight, calories, fat, carbohydrates, and protein. Our method
achieved an average percentage mean absolute error (PMAE) of
17.06% for these five components.

The innovations of this paper are as follows:

• Dataset Selection and Annotation: We selected 3,224
food images from the Nutrition5k dataset and manually
segmented them. These images and their detailed
ingredient labels can be used for nutritional content
prediction tasks.
• Segmentation-First Prediction Framework: We

constructed a segmentation-first prediction framework.
First, the UNet network segments the original image,
and the resulting pure food image is feature-extracted
through a backbone network, further enhancing feature
expression through the SE module. The enhanced
features are input into a series of fully connected layers
to output the predicted values of food weight, calories,
fat, carbohydrates, and protein. This method accurately
segments the food area and efficiently extracts and utilizes
image features, improving the accuracy of nutritional
content prediction.

• Reducing Environmental Impact: By segmenting the food
in the image before predicting nutritional content, the
method effectively reduces the impact of surrounding
environments, focusing the model on the food itself.
• Using Real Nutritional Content Labels: We use real

nutritional content labels as training data, and the results
on the test set can be compared with real data. Compared
to previous methods focusing on food area or volume
calculation, our approach is more realistic and practical.

The structure of this paper is as follows: Chapter 1 introduces
the research background, objectives, and innovations. Chapter 2
describes the dataset and methods used in the study, including data
sources and selection, ingredient label annotation methods, and
the overall network architecture. Chapter 3 presents experimental
results, starting with food segmentation effects and then detailing
nutritional content prediction results, including specific details
of the experimental setup, comparative analysis of experimental
results, and ablation experiments to verify the effectiveness of
model components. Chapter 4 discusses the significance and
limitations of the research results and provides some dietary
plan guidelines. Chapter 5 summarizes and concludes the
content of this paper.

2 Materials and method

2.1 Dataset

2.1.1 Source Dataset
We used data from the Nutrition5k dataset collected by Thames

et al. (14). This dataset, collected from campus cafeterias using
professional instruments, contains 5,000 real-world food dishes
with video streams, depth images, ingredient weights, and high-
precision nutritional content annotations. The dataset aims to
provide diverse, realistic, and challenging data for improving visual
nutrition estimation by capturing authentic cafeteria food photos.

During data collection, dishes were added to plates or bowls
item by item. Each addition was recorded as a new entry, with
each recorded item having a detailed ingredient list. The detailed
ingredient information for each dish was obtained based on the
recorded weights. Subsequently, the USDA Food and Nutrient
Database (15) was used to calculate the calorie, fat, protein, and
carbohydrate content of each dish.

Ultimately, the dataset comprises over 5,000 dishes made up
of more than 250 different ingredients, ranging from 1 to 35
ingredients per dish, with an average of 5.7 ingredients per dish.
These dishes span from a few calories to over 1,000 calories each.
Each dish has detailed ingredient and content labels. Among these,
3,500 dishes also include top-view images and top-down RGB-D
images taken using an Intel RealSense camera.

We used data primarily from 3,490 top-view images and
their ingredient labels from Nutrition5k. Compared to existing
datasets, Nutrition5k provides more accurate ingredient content
and nutritional information annotations. These annotations were
obtained through step-by-step weighing, scanning, and recording
of each ingredient in an actual cafeteria, using custom sensor arrays
to scan and weigh each dish, ensuring high data accuracy.
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FIGURE 1

Original food images and their segmentation labels. Columns 1 and 4 show the original images, columns 2 and 5 show images with segmentation
labels overlaid on the original images, and columns 3 and 6 show the segmented food images (foreground images).

2.1.2 Data screening, annotation and analysis
The dataset contains 3,490 top-view RGB images, which

we manually screened, ultimately selecting 3,224 images for
all subsequent experiments. The original images, images with
segmentation labels, and segmented images are shown in Figure 1.

We first annotated all original images with segmentation
labels. We used EISeg (20), an interactive segmentation
annotation software developed based on PaddlePaddle. During the
segmentation annotation process, we identified the following issues
in some images: overly uneven lighting, misaligned shots causing
parts of dishes to be out of frame, multiple occurrences of the same
dish, and unrelated non-dish images. As shown in Figure 2, we
excluded 250 problematic images in this stage.

After completing image screening and segmentation, we
further checked the ingredient labels and found some data where
images and ingredient labels did not match. We compared images
and ingredient labels one by one to see if the foods appearing in
the dishes matched the recorded ingredients and if there were any
noticeable discrepancies in quality, ultimately excluding 16 entries.
The complete data screening process is shown in Figure 3.

Finally, we used the EISeg tool to segment the food portions
in the remaining 3,224 images, saving the segmentation results as
JSON files, foreground images, binary images, and pseudo-color
images. All segmentation labels have been publicly uploaded
to https://doi.org/10.6084/m9.figshare.26252048.v1 (Note: the
original dataset authors have open-sourced the data; please refer
to the original text (14). We only uploaded the segmentation label
files). Additionally, during the comparison of food images and
nutritional content labels, we recorded detailed issues for each
discarded entry, uploading these records along with the label files.

We analyzed 3,224 annotated images with food region
segmentation labels and plotted a distribution histogram of the
food area ratio in the images, as shown in Figure 4. The x-axis
represents the ratio of the number of pixels occupied by the food
to the total number of pixels in the image (%), and the y-axis
represents the number of images corresponding to each ratio. As
can be seen, the majority of food regions occupy between 5 and 30%
of the image area. After 30%, the proportion of images with larger

food areas gradually decreases, and very few samples have food
regions occupying more than 50% of the image. A small number
of food regions are smaller than 5% or larger than 50%, but overall,
the distribution of food region areas is relatively even, with extreme
cases being rare.

2.1.3 Ingredient labels
All data used in this experiment can be represented as:

X = {Ii, Yi}
N
i=1, where Ii represents the image of the i-th data

point, and Yi represents the ingredient label of the i-th data
point, with a total of N such data points. The ingredient
labelYi = (ymass

i , ycaloriei , ycarbi , yfati , yproteini ) is a five-element vector,
where these elements, respectively, represent the weight, calorie
content, carbohydrate content, fat content, and protein content of
sample i. Among these, ymass

i (in grams) is recorded during data
collection, while ycaloriei , ycarbi , yfati , yproteini are calculated based on
the food type and yweighti . In Figure 5, we show an example of a
food image and its corresponding ingredient labels.

2.2 Method

To combine food segmentation and nutrient content prediction
tasks, we constructed a network framework that first segments the
image and then performs regression. This framework integrates
segmentation and regression models to predict the weight, calories,
fat, carbohydrates, and protein content. The overall structure of the
network is shown in Figure 6.

First, for the segmentation network, we used the U-Net
(21) architecture. U-Net consists of an encoder and a decoder.
The encoder progressively extracts features from the image,
while the decoder progressively restores the spatial resolution
of the image through upsampling. Skip connections between
the encoder and decoder pass high-resolution feature maps
to retain more detailed information. Next is the regression
model for predicting nutritional content. This part first uses
a backbone network [ultimately ResNet-101 (22)] to extract
feature information. The Squeeze-and-Excitation (23) structure
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FIGURE 2

Some excluded data. The top left image is non-food, the top right image is misaligned, the bottom left image has overly uneven lighting, and the
bottom right image shows overlapping dishes.

FIGURE 3

Data screening process.

captures critical information from the input features, enhancing
the network’s expressive power. Finally, three fully connected layers
output the final predictions for calories, weight, carbohydrates,
fat, and protein.

2.2.1 Segmentation network
The first step of the model is to segment the input food image,

separating the food portion from the background. For this, we
used the U-Net segmentation network. U-Net has a symmetrical
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FIGURE 4

Histogram of the proportion of food regions in the 3,224 annotated images. The x-axis represents the ratio of the number of pixels occupied by the
food to the total number of pixels in the image (%), and the y-axis represents the number of images corresponding to each ratio.

FIGURE 5

Label example. On the left is the image of dish_1559678127, and on the right are its corresponding ingredient labels.

encoder-decoder structure that effectively captures multi-scale
features of the image.

The U-Net network structure is shown in the upper left dashed
box of Figure 6. For an input food image, it first undergoes
a series of convolutional and pooling layers for downsampling,
progressively extracting high-level features. Then, a series of
upsampling and convolution operations gradually restore the
spatial resolution. At each upsampling step, U-Net concatenates
the corresponding downsampled feature maps with the current
upsampled feature maps through skip connections. After four
stages of encoding and decoding, the feature maps are adjusted to
the same size as the original image. Finally, a convolution layer
maps the feature maps to the desired number of output channels
(i.e., the number of segmentation categories).

Using U-Net for food segmentation has the following
advantages: First, the skip connection mechanism of U-Net
can retain high-resolution features from the encoding stage
during decoding, ensuring that the segmentation results have fine
boundary information, which is crucial for complex shapes and
details in food segmentation. Second, U-Net has a simple structure

and fewer parameters, achieving good segmentation results even
with limited data. Although we ultimately used 3,224 images for
training and testing, the model already showed excellent results.
Additionally, the skip connections in U-Net facilitate gradient
backpropagation, allowing the network to converge faster and
training to be more efficient.

2.2.2 Regression network
The segmented food images are used in the regression network

to predict nutritional content. The model for this part is shown
in the lower left of Figure 6 (Regression section). First, we use a
backbone network to extract feature information, which can be any
feature extraction network. After several experiments, we selected
ResNet-101 as the backbone network. The features extracted by
the backbone are enhanced using the Squeeze-and-Excitation (SE)
structure and finally passed through three fully connected layers to
obtain individual outputs for each nutritional component.

The SE module selectively emphasizes useful features and
suppresses less useful ones through two stages: Squeeze and
Excitation. The model diagram is shown on the right side of
Figure 6. In the Squeeze stage, global average pooling compresses
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FIGURE 6

Overall architecture of the model. The upper left shows the network for food segmentation, the lower left shows the regression network for
predicting food nutritional content, and the right side details the SE module’s structure.

the spatial information of each channel into a single value,
generating channel-level descriptors. This step can be expressed as:

zc =
1

H ×W

H∑
i=1

W∑
j=1

Xijc (1)

Where Xijc represents the value at position (i, j) in the c-th channel
of the input feature map. H and W denote the height and width of
the feature map, and zc is the descriptor for the c-th channel.

Next is the Excitation stage, which includes two fully connected
layers and two activation functions. The first fully connected layer
compresses the number of channels, and the second fully connected
layer restores the number of channels, using the learned weights to
excite the original feature map:

s = σ2(W2 · σ1(W1 · z)) (2)

where z represents the vector of descriptors for all channels, W1
and W2 are the weight matrices of the two fully connected layers,
σ1 is the ReLU activation function, σ2 is the Sigmoid activation
function, and s represents the channel weights obtained through
the excitation process.

Finally, each channel in the original feature map is multiplied
by the corresponding weight to complete feature recalibration
(denoted by⊗ in the model diagram):

X̃c = sc · Xc (3)

where X̃c is the recalibrated feature of the c-th channel, and sc is the
weight of the c-th channel.

The recalibrated features emphasize the more important parts
of the feature channels, improving the accuracy of subsequent
nutritional content predictions.

3 Results

3.1 Food segmentation

First, we trained the model on segmentation using the
annotated data. During this process, besides using the UNet model,
we also compared it with the classic semantic segmentation models
DeepLabv3 (24) and FCN (25). We randomly split the 3,224
original data instances into training and test sets in an 8:2 ratio. The
three models were trained for 50 epochs on the training set and then
evaluated on the test set to obtain results on four evaluation metrics:
Dice, Jaccard, Precision, and Recall. The following are the formulas
for these evaluation metrics:

Dice =
2× TP

2× TP+ FP+ FN
(4)

Jaccard =
TP

TP+ FP+ FN
(5)

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

where TP is the number of pixels correctly predicted as food
regions, FP is the number of pixels incorrectly predicted as food
regions, FN is the number of pixels incorrectly predicted as non-
food regions, and TN is the number of pixels correctly predicted as
non-food regions. The final average test results on the test set are
shown in Table 1.
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TABLE 1 Results of all segmentation models on Dice, Jaccard, Precision,
and Recall metrics.

Methods Dice Jaccard Precision Recall

DeepLabV3 92.40 86.19 88.89 96.55

FCN 95.52 91.67 95.20 96.09

UNet 97.69 95.52 97.40 98.02

UNet achieved the best results across all four evaluation
metrics. As shown in Table 1, the UNet model performed the best
on all evaluation metrics, with a Dice coefficient of 97.69%, an
improvement of 2.17% over FCN and 5.29% over DeepLabV3. For
the Jaccard index, UNet reached 95.52%, 3.85% higher than FCN
and 9.33% higher than DeepLabV3. Additionally, UNet’s Precision
was 97.40%, 2.20% higher than FCN’s 95.20%, and 8.51% higher
than DeepLabV3’s 88.89%. In terms of Recall, UNet also excelled,
achieving 98.02%, 1.93% higher than FCN’s 96.09%, and 1.47%
higher than DeepLabV3’s 96.55%.

These results indicate that UNet not only leads in overall
performance but also significantly outperforms FCN and
DeepLabV3 on each specific metric. Particularly in the Dice
coefficient and Jaccard index, which are key segmentation
performance metrics, UNet shows higher segmentation accuracy
and better region overlap. Furthermore, UNet demonstrates better
balance in Precision and Recall, indicating its significant advantage
in accurately and comprehensively identifying food regions.
Overall, the UNet model performs the best in food segmentation
tasks, providing higher quality segmentation results.

As seen in Figure 7, UNet captures more details when
segmenting food, especially excelling at food edges. For foods with
complex shapes and small parts, UNet better preserves their shape
features. For example, in the upper part of the green beans in the
third row of images in Figure 7, UNet can precisely segment the
prominent slender parts. Additionally, UNet can also handle small
food items outside the main food area. Even in the second row
of images in Figure 7, where the food color is very close to the
container color, UNet can exclude background interference and
accurately segment the food region. Overall, UNet’s segmentation
results are very close to the ground truth.

The FCN model can segment the main food regions well
and accurately grasp the overall shape. Compared to UNet, the
FCN model is slightly lacking in detail, with some edge parts and
smaller food regions possibly missed or inaccurately segmented.
Additionally, the FCN’s performance is slightly insufficient when
dealing with foods whose color is very close to the background.

DeepLabV3 lags behind the other two models overall because
it overly focuses on global information and overlooks some small
local features, leading to less precise detail segmentation than UNet.

3.2 Nutrient prediction

3.2.1 Experimental setup
3.2.1.1 Implementation details

Building on the previous segmentation task, we conducted
nutrient prediction experiments using pure food images obtained
from UNet segmentation. For the images used in the regression
task, the pixel values in regions outside of the food area
were set to zero. All nutritional information was stored in a

text file in the format [image_name, calories, mass, fat, carb,
protein], with the nutrition information corresponding to the input
images by image name.

All models were implemented using Python 3.7 and PyTorch
1.13, and we used the Adam optimizer with an initial learning
rate. During training, the learning rate was adjusted using an
exponential decay rule with a decay rate of 0.99. The default
initial value for the random seed was 42. The experiments were
conducted on a single NVIDIA GeForce RTX 4060 GPU. For
all comparison models, we used official pre-trained weights (if
available) for initialization and further training.

We randomly split the 3,224 data samples into training and
testing sets at a ratio close to 8:2, with 2,576 samples assigned to
the training set and 648 samples to the testing set (The split is not
strictly 8:2 to ensure that both the training and testing sets have
sample counts that are multiples of 8, which facilitates subsequent
batch size division). Before inputting each training image into
the regression network, random horizontal flipping and random
cropping were applied as preprocessing steps to enhance image
diversity and improve the model’s generalization ability.

The batch size for all experiments was set to 8, and each
model was trained for 300 epochs with 322 iterations per epoch
on the 2,576 training samples. After each epoch, the model was
tested on the 648 test samples. The average training time for each
model was about 6 h. Finally, we compared and analyzed the top-1
results for each model.

3.2.1.2 Loss functions
During training, loss functions are used to measure the

discrepancy between predicted and actual values, allowing for
the adjustment of model parameters during backpropagation to
minimize the loss. Since this experiment aims to predict five metrics
(mass, calories, fat, carbohydrate, protein), we divided them into
five subtasks. Let M = {weight, cal, fat, carb, protein} . For each
subtask mmm (m ∈ M), the loss calculation formula is as follows:

lm =
∑N

i=1 |ŷ
m
i − ym

i |∑N
i=1 y

m
i

(8)

whereŷm
i represents the predicted value for the i-th sample in

subtask m, ym
i represents the actual value for the i-th sample

in subtask m, and N represents the total number of samples.
Compared to the more commonly used mean absolute error
(MAE), this loss function calculates the sum of the absolute errors
between predicted and actual values and normalizes it by the sum
of the actual values.

This approach addresses the issue of the significantly higher
magnitudes of mass and calorie values compared to fat, protein,
and carbohydrate values. In most samples, the values of mass
and calories are more than ten times those of fat, protein,
and carbohydrates. Directly summing the losses of all subtasks
would make it difficult to optimize the subtasks with lower
magnitudes. By normalizing the absolute error, we avoid the
impact of different magnitudes of metrics, allowing the losses
of each subtask to be compared on the same scale. This
processing method helps maintain balance among different metrics
during training, improving the overall performance and prediction
accuracy of the model.

The final total loss is:

L = lweight + lcal + lcarb + lfat + lprotein (9)
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FIGURE 7

Comparison of visual results of food segmentation tasks using UNet, FCN, and DeepLabV3 models. The first column is the original image, the
second column is the ground truth, the third column is the segmentation result of UNet, the fourth column is the segmentation result of FCN, and
the fifth column is the segmentation result of DeepLabV3.

where lweight, lcal, lcarb, lfat, lprotein represent the losses for mass,
calories, carbohydrates, fat, and protein, respectively.

To better measure the differences in nutrient prediction
performance across various methods, we use PMAE as the
evaluation metric. PMAE normalizes the MAE by dividing it by the
mean of the actual values. This normalization effectively mitigates
the impact of different magnitudes of the metrics, ensuring
better comparability and consistency in error measurement across
different metrics. A lower PMAE value indicates a smaller
discrepancy between predicted and actual values, signifying a more
accurate prediction by the model.

The formula for PMAE is as follows:

MAE =
1
N

N∑
i=1

|ŷi − yi| (10)

PMAE =
MAE

1
N

∑N
i=1 yi

(11)

where ŷi represents the predicted value for the i-th sample,
yi represents the actual value, and N denotes the total
number of samples.

3.2.2 Experimental results
When selecting the backbone, we experimented with several

classical models, including various deep convolutional neural
networks: the classic deep residual networks ResNet50 and

ResNet101 (22), GoogLeNet (26), which uses Inception modules
to enhance computational efficiency and accuracy, InceptionV3
(27), which further optimizes the Inception modules of GoogLeNet,
DenseNet (28), which uses dense connections to alleviate the
vanishing gradient problem and improve feature reuse and model
efficiency, MobileNetv3 (29), a lightweight network optimized for
mobile devices with efficient convolutional layers and attention
mechanisms, VGG (30), a simple yet deep network structure
widely used in image tasks, and ShuffleNetV2 (31), a lightweight
network achieving efficient computation through channel shuffling
and efficient convolution operations. Additionally, we also tried
the Vision Transformer (ViT) (32) for processing image data
using the Transformer architecture, including versions with patch
sizes of 32 and 16.

To ensure fairness, all models were tested under the same
experimental setup, with only the backbone network being
replaced. If official pre-trained models were available, we used pre-
trained weights for initialization before training on our dataset. The
final experimental results are shown in Table 2.

Our model, using ResNet101 as the backbone network,
achieved PMAE values of 15.68% for calories, 11.75% for mass,
21.41% for fat, 18.79% for carbohydrates, and 17.68% for protein,
with an average PMAE of 17.06%. Compared to the worst-
performing method, GoogLeNet, our method improved by 19.86%,
and compared to the best method, VGG16, it improved by 1.14%.
Specifically, PMAE for calories improved by 0.53–12.19%, for mass
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TABLE 2 Comparison of PMAE results for calorie, mass, fat, carb, and protein between our method and all other methods, with the best values in bold.

Methods Calorie PMAE
(%)

Mass PMAE
(%)

Fat PMAE
(%)

Carb PMAE
(%)

Protein PMAE
(%)

Mean PMAE
(%)

GoogLeNet 27.87 24.27 44.65 47.53 40.28 36.92

GoogLeNetV3 20.59 16.41 32 28.25 28.15 25.08

DenseNet121 19.67 14.53 30.33 24.77 26.4 23.14

ViTb32 17.78 14.83 27.8 23.9 24.2 21.7

MobileNetv3 18.98 13.91 28.85 23.13 23.24 21.62

ShuffleNetV2 18.11 13.94 28.29 23 23.54 21.37

ViTb16 16.83 13.32 24.87 21.2 21.37 19.52

VGG 16.21 12.02 24.66 19.29 20.44 18.52

Resnet50 16.48 11.87 24.18 19.9 19.24 18.33

Ours 15.68 11.75 21.41 18.79 17.68 17.06

The bold values represent the best value across all methods.

FIGURE 8

Comparison of the predicted values and actual values for five components between our method, ViT, and DenseNet.

by 0.12–12.52%, for fat by 2.77–23.24%, and for carbohydrates
by 1.56–22.6%.

In the overall network architecture, using UNet for food image
segmentation effectively eliminated the interference of background
information in predicting food components. ResNet101 was
able to capture rich feature representations, effectively avoiding
gradient vanishing and accelerating network convergence. The
SE module emphasized important features in the channels and
suppressed less useful features. Finally, fully connected layers
were used to predict the five components: mass, calories,
fat, carbohydrates, and protein. This overall architecture not
only improved prediction accuracy but also demonstrated good
generalization ability.

Next, we compared the model’s predicted values with the actual
values and plotted scatter plots, as shown in Figure 8. In addition to

our final model, we also compared the results of the Transformer-
based ViT16 and the convolutional neural network DenseNet. Each
row in Figure 8 represents the prediction results of a model, with
DenseNet, Vision Transformer base 16, and our method from top
to bottom. Each column represents a food component, showing
the performance of the three different models in predicting food
calories, mass, fat, carbohydrates, and protein from left to right.
In each sub-figure, the x-axis represents the actual values, and
the y-axis represents the predicted values, with the black diagonal
line indicating the ideal prediction line (i.e., predicted values equal
to actual values). The closer the scatter points are to the black
diagonal line, the closer the predicted values are to the actual values.
The more concentrated and dense the scatter distribution near
the diagonal line, the higher the model’s stability and accuracy,
and the lower the PMAE value. Our model’s scatter distribution
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TABLE 3 Evaluation results of our method using mean squared error
(MSE), root mean squared error (RMSE), mean absolute error (MAE), and
R-squared (R2 ).

MSE RMSE MAE R2

Calories 3,875.84 62.26 37.03 0.9

Mass 1,306.14 36.14 23.3 0.94

Fat 20.58 4.54 2.39 0.87

Carb 33.29 5.77 3.42 0.86

Protein 39.19 6.26 2.9 0.89

TABLE 4 Comparison of Mean PMAE, GFLOPs, and Params between our
method and comparison models.

Mean PMAE
(%)

GFLOPs Params (M)

VGG 18.52 20.35 149.38

ViTb16 19.52 16.87 109.23

resnet50 18.33 9.07 33.62

DenseNet 23.14 3.85 29.75

MobileNetv3 21.62 3.80 23.72

Ours 17.06 10.28 51.96

was more concentrated across all components, consistent with the
experimental results.

Next, we analyzed the results of the models on all test samples,
calculating the mean squared error (MSE), root mean squared
error (RMSE), mean absolute error (MAE), and R-squared (R2). As
shown in Table 3, the errors for calories and mass are significantly
higher than those for fat, carbohydrates, and protein due to
their larger magnitudes. However, by using the PMAE metric to
calculate the errors, we balanced the differences caused by varying
magnitudes, allowing a more intuitive view of the actual accuracy
of each component’s prediction.

Additionally, we selected several comparison models to
evaluate our model in terms of parameter count (Params) and
computational cost (GFLOPs), as shown in Table 4. Our model
has 51.96 M parameters, falling between ResNet50 (33.62 M) and
ViTb16 (109.23 M). Although the parameter count is slightly
higher than that of the lightweight MobileNetv3 (23.72 M),
our model achieves a significant improvement in accuracy.
Meanwhile, compared to models with similar accuracy, such as
VGG (149.38 M) and ViTb16 (109.23 M), our model substantially
reduces the parameter count, demonstrating superior efficiency. In
terms of GFLOPs, our model achieves 10.28 GFLOPs, which is also
at a moderate level, slightly higher than ResNet50 (9.07 GFLOPs)
but far lower than VGG (20.35 GFLOPs) and ViTb16 (16.87
GFLOPs). Considering the three metrics—Mean PMAE, parameter
count, and GFLOPs—our method achieves a better balance
between performance and computational resource consumption,
showcasing strong overall competitiveness.

To better demonstrate the effectiveness of our proposed
method in practical nutrition prediction, we compared the actual
prediction results of a specific food image, dish_1563984296, across
all comparison methods, as shown in Figure 9. Figure 9a displays
the food image used for prediction, which contains multiple
ingredients, and Figure 9b presents a table detailing the prediction

results for various nutritional components, including calories,
mass, fat, carbohydrates, protein, and the mean absolute error
(MAE) compared to the ground truth. The last row of the table
contains the ground truth values as a reference. It can be observed
that our model achieves an MAE of 3.07, significantly lower
than other methods. For instance, ShuffleNetV2 and VGG, which
have relatively high accuracy, report MAEs of 30.07 and 27.14,
respectively, while DenseNet and ViTb16 reach MAEs as high as
60.24 and 42.89. This highlights the superior overall prediction
accuracy of our model. For each specific nutritional component,
the predictions from our method are also the closest to the ground
truth. These results indicate that our approach can more accurately
predict the nutritional components of food and demonstrates
strong practical value, particularly when applied to real-world food
images.

In experiments that also used top-view images from the
Nutrition5k dataset for nutrient prediction, the method by
Shao et al. (18) is highly representative. They used both the
original RGB images and depth images, integrating multimodal
feature fusion (MMFF) and multi-scale fusion for vision-based
nutrition assessment. Since both their method and ours are based
on Nutrition5k and use the same evaluation metric, PMAE,
we conducted a comprehensive comparison between the two
approaches, as shown in Table 5.

The reason for comparing our method with this approach is
that both use the same dataset and evaluation metrics, making
the comparison more realistic. However, the results of this depth
image fusion method are heavily influenced by the quality of
the depth images. If the depth images are of poor quality or
inaccurate, it may adversely affect the subsequent feature fusion
process, thereby impacting the accuracy and stability of nutrient
prediction. In contrast, our method does not rely on depth images
and depends solely on food images. As a result, it can maintain
stable performance even in scenarios where depth information is
missing or inaccurate.

From the experimental results, our method outperforms the
depth-image fusion method in average PMAE. For specific metrics,
our method significantly surpasses the RGB-D fusion method
in predicting carbohydrates and protein. The segmentation-then-
prediction method helps capture fine-grained features within
the food, whereas the RGB-D fusion method focuses more on
depth information, which can be influenced by background
and other irrelevant information, potentially overlooking some
details in the original image. For calorie and fat prediction, the
differences between the two methods are minimal. However, in
mass prediction, our method is less accurate than the RGB-D
fusion method. The planar image method, compared to the depth
information fusion method, might miss some overall shape or
structural features, leading to lower accuracy in mass prediction.

Additionally, the depth image fusion method from Shao
et al. (18) performs multi-level feature extraction and fusion
for the original image and depth map, resulting in higher
computational overhead and making it less suitable for resource-
limited environments or real-time applications. In contrast, our
method features a more streamlined structure, requiring only a
single backbone network for image feature processing, followed
by an SE module for attention-based feature weighting, thus
reducing unnecessary computational redundancy. To demonstrate
the differences in model complexity, we compared the parameters
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FIGURE 9

(a) The food image corresponding to dish_1563984296; (b) The specific results of nutritional component predictions for this food image using the
proposed method and comparison methods, including the mean absolute error (MAE) between the predicted and ground truth values for five
nutritional components. Bolded values in the table indicate the predictions closest to the ground truth.

TABLE 5 Comparison of our method with models using RGB-D fusion for prediction.

Methods Calorie PMAE
(%)

Mass PMAE
(%)

Fat PMAE
(%)

Carb PMAE
(%)

Protein PMAE
(%)

Mean PMAE
(%)

RGB-D fusion 15.0 10.8 23.5 22.4 21.0 18.5

Ours 15.68 11.75 21.41 18.79 17.68 17.06

The bold values represent the best value across all methods.

TABLE 6 Comparison of our method with the RGB-D fusion method in
terms of Params and GFLOPs.

Method Params (M) GFLOPs

RGB-D fusion 110.87 68.96

Ours 51.96 10.28

The bold values represent the best value across all methods.

and GFLOPs metrics of our method with the RGB-D fusion
model in Table 6. The results show that our model significantly
outperforms the RGB-D fusion model. In terms of parameter
count, our model has approximately half the parameters of the
RGB-D fusion model, and in terms of floating-point operations, our
model’s GFLOPs are only about 15% of the RGB-D fusion model.
This indicates that our model requires less memory during training
and inference, operates faster, and also achieves higher average
performance metrics.

Additionally, the method combining color and depth images
requires specialized equipment to collect depth data, which is
difficult for the average person to obtain. Thus, predicting directly
using color images is more feasible.

3.2.3 Ablation experiment
To rigorously validate the effectiveness of our model design,

we conducted a series of ablation experiments by comparing
the performance of models using original RGB images versus
segmented images, as well as evaluating the impact of incorporating
the SE (Squeeze-and-Excitation) module. The experiments were
aimed at investigating how each component influences the model’s
performance in predicting nutrition values, including calories,
mass, fat, carbohydrates, and protein.

We measured the PMAE (percentage mean absolute error) for
each nutrient, along with the average PMAE across all nutrients.
The results of the experiments are summarized in Table 7. Four
different experimental combinations were tested, varying the image
input type (Original vs. segmented) and the use of the SE module
(with or without).

When the SE module was kept consistent, models using
segmented images as input showed improved performance over
those using the original RGB images. The improvement in average
PMAE ranged from 2.73 to 4.03%. This suggests that segmenting
the food items helped to reduce the influence of background
noise and irrelevant elements, thereby improving the precision of
nutrition prediction. Segmenting the food regions appears to help
the model focus on relevant information, which contributes to the
performance gains observed.

When the input dataset was fixed, incorporating the SE
module resulted in an improvement in average PMAE, ranging
from 0.45 to 1.75%. This result indicates that the SE module
enhances the model’s ability to emphasize critical features in
the channel dimensions, leading to more accurate nutrient
estimation. The SE module likely improves feature extraction by
weighting more important channels, which has a positive effect on
prediction accuracy.

4 Discussion

We based our study on the Nutrition5k dataset, selecting
3,224 usable images from the original 3,490 top-down images. We
manually annotated the food portions with segmentation labels
and saved various segmentation results, including JSON files,
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TABLE 7 Results of the ablation study.

Dataset SE Calorie PMAE
(%)

Mass PMAE
(%)

Fat PMAE
(%)

Carb PMAE
(%)

Protein PMAE
(%)

Mean PMAE
(%)

Original
√

18.52 15.09 25.84 23.49 24.77 21.54

× 16.34 12.85 25.10 20.51 24.16 19.79

Segmented
√

16.08 12.08 22.73 18.66 17.98 17.51

× 15.68 11.75 21.41 18.79 17.68 17.06

Comparison of the impact of using original images or segmented images and whether or not using the SE module on the experimental results. The bold values represent the best value across
all methods.

foreground images, binary masks, and pseudo-color images. These
segmented images, along with their detailed nutrition labels, were
used for the nutrition prediction task.

First, we trained the UNet model for segmentation using the
labeled data. The model achieved Dice, Jaccard, Precision, and
Recall scores of 97.69, 95.52, 97.40, and 98.02%, respectively,
indicating that the segmented results were very close to
the ground truth.

Next, we used the segmented pure food images to train
the nutrition prediction model. We compared various backbones
and found that the model with ResNet101 as the backbone
achieved the best performance. The PMAE for calories, mass,
fat, carbohydrates, and protein were 15.68, 11.75, 21.41, 18.79,
and 17.68%, respectively, with an average PMAE of 17.06%.
This represents an improvement of 1.14 to 19.86% over other
comparison models.

The predictions of calorie, mass, carbohydrate, protein, and fat
content from our model can help in scientifically planning diets.
Here are some guidelines:

1. Calculate the Basal Metabolic Rate (BMR) and Total Daily
Energy Expenditure (TDEE) based on age, gender, weight,
height, and activity level.

2. Set daily caloric and macronutrient (protein, fat,
carbohydrate) intake goals based on health objectives
such as weight loss, muscle gain, or weight maintenance.

3. After preparing food, use photo-based prediction to
calculate the nutritional content of the meal and
determine if it meets the set goals. Adjust the food
proportions or make appropriate changes for the next
meal based on the results to ensure daily nutritional intake
aligns with the goals.

4. Regularly record diet and weight changes to monitor
progress and adjust the diet plan as needed.

Despite these positive results, our work is subject to several
practical limitations that may impact its performance in real-world
scenarios:

1. First, since the Nutrition5k dataset was captured
under controlled conditions with uniform lighting
and minimal noise, images taken in real-world settings
using smartphones under varying conditions may lead
to decreased model performance. To address this, we
have applied data augmentation to improve the dataset’s
generalizability, but a larger dataset or more robust models
could further enhance performance in such cases.

2. Secondly, the dataset comes from a single restaurant
with limited food types, and the model’s performance
may decline when applied to food types beyond the
dataset. Future work could focus on training models on
more diverse datasets, capturing different cuisines, meal
presentations, and environmental settings, to improve the
model’s robustness and applicability across various real-
world scenarios.

3. Finally, in real life, food items are often stacked or mixed
together, making them harder to detect and separate.
In practical applications, undetected or inaccurately
segmented food items may lead to incorrect nutrition
predictions. For instance, a bowl of mixed salad may be
more difficult for the model to segment compared to
the neatly arranged portions in Nutrition5k. Techniques
such as multi-instance segmentation and hierarchical
labeling could help improve segmentation accuracy in
these complex food arrangements.

While our model demonstrated effective nutrition prediction
in this study, additional advancements are necessary for
practical, real-world dietary monitoring. For instance, integrating
continuous learning methods could allow the model to improve as
it is exposed to more varied data from different users. Additionally,
developing user-friendly mobile applications with built-in real-
time correction for segmentation or prediction errors would
further enhance the practical value of this work.

5 Conclusion

To help ordinary people better understand and manage their
diets, we propose a food image nutrition prediction scheme based
on a segmentation-regression method. This study is based on
the Nutrition5k dataset, where we manually annotated the food
images with segmentation labels and combined them with detailed
nutritional content labels to construct a segmentation-regression
model for nutrition prediction.

Our model achieved an average PMAE of 17.45% across
multiple nutrient predictions, validating its effectiveness and
accuracy. Our method employs the UNet model for image
segmentation, uses a backbone network to extract features, and
enhances feature representation through the SE structure. This
approach enables accurate prediction of weight, calories, fat,
carbohydrates, and protein.

Our research not only addresses the gap in current methods
regarding comparison with real nutritional labels but also provides
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reliable technical support for future vision-based food nutrition
evaluation. The manually annotated segmentation labels are now
publicly available for use in subsequent research.
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