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Health benefits of fermented 
olives, olive pomace and their 
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Fermented foods have regained popularity in Western diets for their health-
promoting potential, mainly related to the role of lactic acid bacteria (LAB) 
during the fermentation process. Nowadays, there is an increasing demand for 
vegetable-based fermented foods, representing an environmentally sustainable 
options to overcome the limitations of lactose intolerance, vegetarian, or 
cholesterol-restricted diets. Among them, table olives and their co-products (i.e., 
olive pomace) represent important plant-origin matrices, whose exploitation is 
still limited. Olives are an important source of fiber and bioactive molecules 
such as phenolic compounds with recognized health-promoting effects. Based 
on that, this minireview offer a brief overview about the potential beneficial role 
of fermented table olives/olive pomace, with a particular focus on the role of 
LAB to obtain healthy and/or probiotic-enriched fermented foods.

KEYWORDS

lactic acid bacteria, fermented foods, table olives, olive pomace, polyphenols, 
prebiotic effects, health benefits

1 Introduction

Fermented foods have been a part of human diets for centuries, with the knowledge and 
practices being passed down through generations (1) and still today, fermentation represents 
one of the most used biotechnological processes for the biotransformation of raw materials 
into nutritious, palatable and organoleptically satisfying products (2). Recently, fermented 
foods have been scientifically defined as “those foods or beverages made through controlled 
microbial growth and enzymatic conversions of major and minor food components” (3). 
Almost all populations have applied the fermentation process to vegetal (such as fruits, seeds, 
tubers, and other materials) and animal matrices (such as eggs, fish, meat, and milk) (4). 
Fermentation is most often accomplished with selected microorganisms, mainly lactic acid 
bacteria (LAB), that when added to the substrate as starter cultures produce lactic acid and, 
eventually, other organic acids such as acetic acid, besides ethanol and carbon dioxide, 
lowering the pH of food matrix which, in its turn, contributes to the safety and shelf-life 
extension of the final product (5). Specifically, LAB improve food stability via physical and 
biochemical changes in fermented foods, contributing also to their distinctive taste, flavor and 
texture (6, 7).

In addition, LAB metabolic activities are associated with production of many beneficial 
compounds such as polyols, exopolysaccharides and antimicrobial compounds (i.e., 
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bacteriocins) (8). Indeed, many LAB strains have been studied for their 
health-promoting properties and recognized as potential probiotics 
based on well-established criteria (9, 10). LAB fermentation can 
improve the overall functionality of the food itself by the production of 
secondary bioactive metabolites (11), which can increase the nutritional 
value of the food and confer health benefits, showing to be able to 
modify gut barrier function and intestinal microbiota in a positive way 
to prevent and/or treat various metabolic and inflammatory diseases 
(12, 13). Moreover, during fermentation LAB can act synergistically 
with dietary fibers and/or non-fiber substances, such as polyphenols, 
in conferring also prebiotic effects, namely providing beneficial effect 
through a microbiota-mediated mechanism. Indeed, the current 
scientific definition developed by ISAPP in 2016 of a prebiotic as a 
“substrate that is selectively utilized by host microorganisms conferring 
a health benefit,” clarify the need to selectively elicit a limited group of 
microorganisms in the host rather than the entire microbial ecosystem 
(14). Based on that, it has been suggested that fermented foods should 
be  included as part of national dietary recommendations for their 
outstanding role in human nutrition (3). Moreover, the wide variety of 
raw material-microbe combinations results in a multitude of different 
fermented foods and beverages and the expanding range of vegetable-
based matrices has spurred new research into plant products as 
matrices for the production of fermented and probiotic products (5). 
In addition, plant-based fermented products can also be consumed by 
people with lactose intolerance and milk allergies (15).

Furthermore, there is a growing attention among the population for 
a more sustainable diet (i.e., vegetarianism, veganism, and 
flexitarianism) and for consuming low-cholesterol foods (16), and at the 
same time in line with the Mediterranean diet, associated with a 
reduced risk of developing chronic diseases and a longer life expectancy. 
Among the most popular plant-derived fermented products, table olives 
are one of the oldest fermented vegetable foods in the Mediterranean 
area, with a millenary tradition and a significant economic importance 
due to their high appreciation by consumers. Besides that, fermented 
table olives also represent an important fermented food included in the 
Mediterranean diet (17), whose guidelines suggest the daily 
consumption of 1–2 portions of olives, seeds and nuts as healthy snacks 
(18). The high nutritional value of table olives is mainly due to the 
presence of several compounds with biological and functional value (2, 
19, 20), and the nutritional composition is mainly influenced by several 
factors, including agronomical factors, type of cultivar and the ripening 
stage of the drupes as well as the fermentation and the storage processes 
(17, 21, 22). In general, the main constituents of olive pulp are water 
(60–75%) and lipids (10–25%). More in details, lipids are the most 
important fraction in contributing to the nutritional value of table 
olives, and most representative are triglycerides, combined with a small 
amount of sterols, fatty and triterpenic alcohols (23). In particular, table 
olives’ lipids are characterized by a high level of unsaturated fatty acids, 
as monounsaturated fatty acids (MUFA) (i.e., oleic acid), 
polyunsaturated fatty acids (PUFA) as linoleic acid and saturated fats 
(i.e., palmitic acid, steric acid) at lower level (23).

Soluble reducing and non-reducing sugars, such as glucose, 
fructose, galactose, mannitol and sucrose, are present in the raw olive 
pulp (3–6%), but they result almost absent in fermented table olives, 
due to their solubilization during washing step and their 
transformation during fermentation and storage in brine. The overall 
high nutrition value of table olives is also due to the presence of all 
essential amino acids, even though total proteins are very low (21).

Moreover, table olives can be considered a reservoir of dietary 
fiber (2.5–5%), mainly pectin, hemicelluloses, cellulose and lignin, 
and in small amount table olives provide also vitamins such as 
α-tocopherol, β-carotene, vitamin B complex (i.e., thiamin, niacin, 
pantothenic acid, vitamin B6), minerals and microelements (24).

Besides nutrients table olives contain high amount of phenolic 
compounds, with demonstrated biological and functional value. They 
include flavonols (i.e., quercetin-3-rutinoside); flavones (luteolin and 
apigenin glucosides), anthocyanins (cyanidin-3-O-glucoside), phenolic 
acids (5-O-caffeoylquinic acid), phenolic alcohols (i.e., tyrosol, 
hydroxytyrosol), secoiridoids (i.e., oleuropein, demethyloleuropein) 
and a hydroxycinnamic acid derivative (verbascoside). Although their 
composition depends on the olive variety, during fermentation 
processes the phenolic composition of table olives changed. Depending 
on the method, phenols can diffuse in the brine, or they were 
hydrolyzed. In particular, hydroxytyrosol and tyrosol result the major 
phenols in the fermented product with a significant reduction of 
secoridoids (oleuropein, demethyloleuropein) and their aglycon 
derivatives (3,4-DHPEA-EDA) in the olive pulp mainly due to 
microbial enzymatic activities while the decrease of verbascoside, is 
related to its release in the brine after the process (22, 24, 25). 
Oleuropein, hydroxytyrosol and tyrosol are considered the most 
natural and powerful antioxidants and their biological role, related on 
the protective role against oxidative stress, lipoprotein metabolism, 
inflammation and blood pressure has been widely assessed (17, 24).

A recent pilot study based on the administration of 12 green table 
olives (cv. Nocellara del Belice) per day for 30 days in healthy adult 
subjects demonstrated an anti-inflammatory and antioxidant effects 
related to the content of polyphenols and monounsaturated oleic acid, 
suggesting a clear nutraceutical potential of this food (26).

In addition, the Mediterranean Diet promotes the centrality of the 
consumption of extra-virgin olive oil, whose production generates 
high amount of olive pomace as a main co-product, still very rich in 
monounsaturated fatty acids, and polyphenols and their derivatives 
(i.e., hydroxytyrosol, tyrosol, oleuropein, hydroxytyrosol glucoside, 
etc.) (27–29), whose role in disease prevention has been recently 
recognized with a claim by the European Food Safety Authority 
(EFSA) for their potential health benefits, mainly in reducing oxidative 
stress and inflammation (30), boosting the research interest on 
investigating their potential health benefits (27–29, 31–34).

Although the huge health potential of these food matrices, their 
application as vegetable-based functional foods is still limited. Although 
olive oil and its nutritional and non-nutritional components have been 
extensively investigated for their effects on human health, regarding 
fermented table olives there is a lack in in vitro studies (17) and only 
few studies have investigated the beneficial effects of table olives and 
olive pomace as fermented foods in vivo (31, 35) in either animal or 
human trials. With that in mind, this mini-review provides a brief 
overview about the potential beneficial role of fermented table olives/
olive pomace as functional foods, with a particular focus on the role of 
LAB to obtain healthy and/or probiotic-enriched fermented foods.

2 Table olives and olive pomace as 
vehicle for probiotics

Diet may represent a vehicle of exogenous microorganisms with 
positive effects on human health, and probiotics and prebiotics are the 
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most used strategies for this purpose. Generally, probiotics are bacteria 
isolated from human sources, mostly from the gastro-intestinal tract, 
and are defined as “live microorganisms which, when administered in 
adequate amounts, as part of a food or a supplement, confer a health 
benefit on the host” (2).

Several studies have showed how native strains isolated from table 
olives, mainly belonging to Lpb. plantarum and Lacticaseibacillus casei 
taxonomic groups also possess specific probiotic traits and showed 
adhesion and co-aggregation capabilities to form biofilms on the 
surface of the fruit (36, 37). This could be  considered beneficial 
because their presence appeared to effectively inhibit the adhesion of 
undesirable microorganisms during storage (38).

Scientific evidence has been reported on the genetic features of 
LAB strain adhesion on olive surfaces.

Different studies revealed that genes enoA1, gpi and obaC were 
necessary in Lpb. pentosus to form an organized biofilm on the olive 
skin during fermentation (39), as well as the presence of four 
moonlighting proteins over-produced in Lpb. pentosus strains isolated 
from green table olives (38).

Therefore, the above mentioned properties turn table olives into 
valid carriers of potential probiotics (2, 38, 40–48). In fact, over the 
last 10 years, an increasingly growing number of experimental studies 
have emerged to evaluate the suitability of LAB probiotic strains to 
be inoculated during the fermentation (Table 1). Montoro et al. (49) 
have investigated the probiotic potential of 31 different Lpb. pentosus 
strains, which exhibited good growth capacity and survival under 
gastro-intestinal conditions, adherence to intestinal and vaginal cells, 
auto-aggregation and co-aggregation due to the presence of key 
protein involved in mucus adhesion. In addition, these 
microorganisms showed the capacity to improve lactose digestibility 
(38, 49). Other study revealed high cell viability on table olive surfaces 
of microencapsulated Lpb. pentosus strain that also exhibits 
antioxidative ability, antibiotic resistance and survivability after 
simulated digestion (50). Nikfarjam et al. (51) have demonstrated that 
the using of Lpb. plantarum PGNM8 in fermented olive as a starter 
with probiotic potential improved remarkably organoleptic properties 
of the product as well as had suitable survival in fermented olive 
containing NaCl (6%) after 75 days (106 CFU/mL) (51).

In their study, Tataridou and Kotzekidou (52) have used 
oleuropeinolytic strains of the Lpb. plantarum group as both the 
debittering agent of black and green olives. The results show the ability 
of these strains to increase biophenols, especially hydroxytyrosol and 
tyrosol, and inactivate the pathogens Escherichia coli O157 EDL-932 
and Listeria monocytogenes ScottA (52).

Other researchers evaluated the performance of Lpb. plantarum 
and Lpb. pentosus strains co-inoculated in olive fermentations. 
Specifically, the probiotic strains, Lpb. pentosus B281 and Lpb. 
plantarum B282, could be considered also promising starter cultures 
to produce a high added value final product with improved sensory 
profile and probiotic potential. Among the two strains, Lpb. pentosus 
B281 was able to survive better in the different salt levels employed in 
fermentation and to colonize the olive surface at higher concentration 
compared to Lpb. plantarum B282, dominating even in the case of 
mixed inoculum (41, 53).

Among others, Lacticaseibacillus paracasei strains are assessed for 
their potential probiotic role in olive fermentations, also because this 
species has a close taxonomical relationship with Lcb. casei, involved 
in the natural fermentation of table olives (54). Indeed, De Bellis et al. 

(54) have investigated the dynamics of microbial populations adhering 
on the surface of debittered green olives cultivar cv. Bella di Cerignola 
combined with the probiotic strain Lcb. paracasei IMPC2.1 during the 
fermentation. The results illustrated a successfully colonization of the 
olive surface dominating the natural LAB population, establishing an 
accelerate fermentation process and reducing the survival period of 
potential spoilage microorganisms.

Moreover, related works concern the addition of Lcp. paracasei 
N24 strain in Sicilian table olives and its persistence after fermentation. 
This strain shows high acidification and debittering rate, strong 
oleuropeinolytic activity at low salt concentration and increased 
volatile organic compounds (VOCs), contributing to more pleasant 
flavors (54, 55).

Among the different species that predominate in table olives, Lcb. 
rhamnosus is not commonly found, but in their study Randazzo et al. 
(56) demonstrated that two probiotic Lcb. rhamnosus strains were able 
to survive during fermentation, even if their main ecological niche is 
dairy products. The presence of Lcb. rhamnosus at the end of the 
process is therefore attributed to the artificial addition of 
probiotics (56).

Recently, it has also been suggested the use of yeasts in 
combination with LAB to enhance the organoleptic quality and shelf-
life of table olives (57, 58).

In their experimental study, De Angelis et al. (57) used different 
combination of potential probiotic LAB and yeasts with positive 
effects on the taste perception and sensory profile of table olives and 
olive pomace. The results highlight an increase in some volatile 
organic compounds, in carotenoids and free amino acids (FAA) (57, 
58). Other studies applied a combined inoculum of LAB and yeasts to 
ferment table olives with beneficial impact on health-promoting 
compounds, antioxidant activity and total polyphenolic content 
(59–61).

Concerning by-products of olive oil process, Foti et  al. (62) 
fermented the pâté olive cake with different microbial strains (Lpb. 
plantarum, Wickerhamomyces anomalus and Candida boidinii) 
obtaining an improvement of the VOCs profiles and the biological 
activity, as the antioxidant and anti-inflammatory potential. In 
particular, Lpb. plantarum positively affect the ester concentration 
whereas the yeasts mostly affect the alcohols (62).

Thus, all this experimental evidence suggests that the application 
of microorganisms characterized by probiotic properties could 
significantly improve the functional characteristics of table olives and 
their derivatives, conferring greater health benefits, opening a novel 
scenario on the development of functional/probiotic table olives and 
related matrices as healthy vegetable-based fermented foods.

3 Olive’s health benefits and LAB

The use of plant-based matrices and LAB in the production of 
fermented foods is an ancient tradition that is now being supported 
by scientific understanding and technological advancement (63).

Some plant-based matrices present undesirable properties that 
LAB species have proven to ameliorate by their fermenting action. In 
particular, olives and their co-products (i.e., olive pomace) contain 
high amount of bitter secoiridoids that must be hydrolyzed before 
consumption in order to reduce and/or remove the olives bitterness 
and, in turn achieve acceptable palatability. Following IOC standard 
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TABLE 1 Experimental studies for the development of functional/probiotic olives.

Potential probiotics Outcomes and bioactivity References

Table olives fermentation

Lpb. plantarum PGNM8 Faster acidification and reduced possibility of spoilage

Improved organoleptic properties of fermented olive

Survivability in fermented olive containing NaCl (6%) after 75 days 

(106 CFU/mL)

Nikfarjam et al. (51)

Lpb. plantarum Lp 15-Lp 20 - Lp 28-Lp 40-

Lp 48

Reduction of the fermentation time

Decrease the risk of Enterobacteriaceae spoilage

Increase in hydroxytyrosol and tyrosol

Inactivation of E. coli O157 EDL-932 and L. monocytogenes ScottA

Tataridou and Kotzekidou (52)

Lpb. pentosus B281, Lpb. plantarum B282 Faster acidification and survive at high numbers (>6 Log UFC/g) at 

the end of the fermentation and during the storage

Sensory acceptability of fermented olives

Argyri et al. (41), Blana et al. (53), Argyri et al. (81), 

Blana et al. (82)

Lpb. pentosus CF2-10N, CF1-6, AP2-16N, 

CF1-43N

Good growth capacity and survival under gastro-intestinal 

conditions

Auto-aggregation and co-aggregation due to the presence of key 

protein involved in mucus adhesion

Adherence to intestinal and vaginal cells

Improving lactose digestibility

Pérez Montoro et al. (38), Montoro et al. (49)

Lpb. pentosus i106 Benefits as a supplementary additive or adjunct culture Coimbra-Gomes et al. (83, 84)

Lcb. paracasei IMPC2.1 Colonized the olive surface dominating the natural LAB population

Survived on the matrix with a load ≥7 log CFU/g

Survived simulated gastro-intestinal digestion

De Bellis et al. (54)

Lpb. pentosus NRRL B-227 High cell viability of microencapsulated Lpb. pentosus on table olive 

surfaces (8 log CFU/g) after 72 weeks of storage

Antibiotic, antioxidant, and digestion fluids resistant properties

Elvan et al. (50)

Lpb. pentosus TOMC-LAB2 Survived during shelf-life at room temperature

Sensorial profile acceptability

Strain predominance influenced by olive maturation and the type of 

inoculum

Rodríguez-Gómez et al. (85, 86), López-López et al. 

(87)

Lpb. plantarum UT2.1 - Lcb. paracasei N24 

- Lpb. pentosus TH969

Faster acidification

High biodiversity that positively correlates with ester compounds 

which give fruity and floral aromas

Preventing Enterobacteriaceae growth at the end of fermentation

Randazzo et al. (88, 89)

Lcb. paracasei N24 Higher acidification and debittering

Strong oleuropeinolytic activity at low salt concentration

Enhanced VOCs and sensory profile

High viability in the final product

De Angelis et al. (57), Pino et al. (90)

Lcb. rhamnosus H25, Lcb. rhamnosus GG Impact on VOCs and sensory characteristics

Survival during fermentation of table olives

Randazzo et al. (56)

Lpb. pentosus LPG1, Lpb. pentosus Lp13, 

Lpb. plantarum Lpl15, W. anomalus Y12

Rapid acidification, sugar consumption, LAB growth

Enhanced biofilm formation with the production of Autoinducer-2 

(AI-2) as signaling molecule

Benítez-Cabello et al. (46, 91)

Commercial Lpb. plantarum-W. anomalus 

DiSSPA73 (SY); commercial Lpb. 

plantarum-W. anomalus DiSSPA73-Lpb. 

plantarum DiSSPA1A7-Lpb. pentosus 

DiSSPA7 (SYL)

Sweeter taste perception and the highest sensory appreciation for 

SYL

Increase in some phenolic and volatile compounds for SY and SYL

Increase in carotenoids and FAA

De Angelis et al. (57), Cosmai et al. (58)

Leu. mesenteroides K T5-1, S. cerevisiae KI 

30-16, Lpb. plantarum A135-5, 

Debaryomyces hansenii A15-44

Increased hydroxytyrosol and tyrosol with sequential inoculation 

(first yeast, then LAB)

Enhanced antioxidant content

Chytiri et al. (92)

(Continued)

https://doi.org/10.3389/fnut.2024.1467724
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Montagano et al. 10.3389/fnut.2024.1467724

Frontiers in Nutrition 05 frontiersin.org

procedures (64) olive debittering can be carried out through chemical 
hydrolysis by adding alkalin solution (2.5–3% w/v) followed by 
spontaneous fermentation (3–7 months) driven by LAB (Spanish-style 
method) (65, 66) or in the Greek-style method, the bitterness is 
removed by the enzymatic activities of the olives microbiota combined 
with the diffusion of polyphenols into a saline brine (6–10% w/v) in 
which olives are directly soaked, during a long spontaneous 
fermentation (8–12 months) driven by LAB and yeast (65).

More recently, the biotransformation using selected LAB as starter 
cultures with oleuropenolytic activity to drive olives and olive pomace 
fermentation has emerged as a valid and sustainable process, being 
highly recommended for table olives fermentation (2). The careful 
selection of microbial strains with inherent desirable characteristics has 
a critical impact on a predictable and reproducible improvement of the 
different quality and nutritional attributes of fermented products (27, 
28). In fact, an appropriate inoculum (usually 6–7 log CFU/ml) reduces 
the phenomena of spoilage by deteriorating microorganisms, inhibits 
the growth of pathogenic microbes and contributes to obtain a controlled 
and standardized process, improving the sensorial and hygienic quality 
of the final product and significantly reducing fermentation times (2). 
LAB starter cultures are usually represented by a single strain or by a 
mixture of strains in a limited number selected based on their 
technological aptitude and their suitability to be  cultivated, and 
subsequently used as an inoculum to accelerate and improve the 
fermentation process (17). The use of selected starter cultures, 
significantly improve the fermentation process, allowing to overcome 
unexpected outcomes due to the variability of spontaneous fermentation 
that occurs in both Spanish-style and Greek-style method (2, 22, 65).

Among LAB, Lactiplantibacillus (Lpb.) pentosus and Lpb. 
plantarum are the most characterized and used species as starter 
cultures, as a single inoculum or in combination with other bacterial 
or yeast species to drive the biological debittering process of olives (2). 
The use of these species is mainly due to their enzymatic (β-glucosidase 
and esterase) activities (67), able to degrade oleouropein and, in turn, 
release elenolic acid and hydroxytyrosol (65), recognized as beneficial 
compound against oxidative stress and inflammation (30), to their 
high survival capacity in the fermentation environment (low pH and 
high concentrations of salts), which allows, thanks to a greater rapidity 
of growth, to quickly dominate the endogenous microbiota present in 
the fermentation brines. Furthermore, these species are equipped with 
additional specific enzymatic activities to produce volatile compounds 
which contribute to the development of the sensorial characteristics 
of the product (68). Moreover, the LAB-mediated fermentation 
process can enhance the nutritional and functional value of the raw 

foods, by the production of a high portion of other beneficial 
substances such as phenolic acids, bioactive peptides and short-chain 
fatty acids (SCFAs), among others (69).

Several studies reported that the beneficial properties (i.e., 
antioxidant and anti-inflammatory activity) in plant-based matrices 
can be increased by using Lpb. plantarum, alone or in combination 
with other LAB, in the fermentation process (32–35, 63, 65, 67, 69, 70).

Moreover, the application of bacteria characterized by probiotic 
properties could significantly improve the functional characteristics 
of table olives and their derivatives, conferring greater health benefits.

In our latest research, we have shown that the combined oral 
administration of a diet enriched with biologically debittered olive 
pomace and a specific probiotic strain (Lpb. plantarum IMC513) has 
a synergistic impact with anti-inflammatory and antifibrotic effects in 
a DSS-induced chronic colitis mice model (31). In addition, 
biologically debittered olive patè enriched with Lpb. plantarum with 
probiotics features showed to positively modulate intestinal human 
microbiota with a clear prebiotic effect (by increasing the abudance of 
Lactobacillales, Bifidobacteriaceae, Akkermansia municiphila and 
Faecalibacterium prausnitzii) and a positive correlation with the 
increased production of beneficial metabolites (i.e., SCFAs) in an 
ex-vivo gut model, confirming olive patè to be  a good matrix for 
deliver beneficial microbes and, in turn, for the development of 
innovative fermented functional foods (32).

A similar ex-vivo fecal fermentation model has been also used by 
Ribeiro et  al. (71) showing gastro-intestinal health benefits and 
prebiotic effects of olive pomace powders related to the stimulation of 
SCFAs production by gut microbiota as well as to asses the prebiotc 
role of olive pomace-enriched bread by Nissen et al. (72).

Similar prebiotic effect has been confirmed also in vivo in 
spontaneously hypertensive rats, after 7 weeks of daily intake of 
Arbequina table olives subjected to natural fermentation (73). The 
consumption of table olives promoted selectively the growth of 
intestinal beneficial microbes, such as Lactobacillus spp., 
Bifidobacterium spp. and Akkermansia muciniphila among others, 
with a related reduction in plasmatic concentrations of 
malondialdehyde and angiotensin II, demonstrating a clear 
antihypertensive activity (73), mainly due to the high amount of 
bioactive compounds, such as polyphenols delivered by table olives.

Olive polyphenols have been used to enrich yogurt, 
demonstrating a clear impact on body weight, body mass index, 
blood pressure, low density lipoprotein (LDL) cholesterol as well as 
a prebiotic effect by selectively increasing LAB population after 
2 weeks of daily intake in a randomized, double-blind, 

TABLE 1 (Continued)

Potential probiotics Outcomes and bioactivity References

Olive pomace fermentation

Lpb. plantarum, W. anomalus, C. boidinii Increase % alcohol content produced by yeasts

Increase % esters content produced by Lpb. plantarum

Increase inhibition of COX-2 and antioxidant activity

Tarantini et al. (59)

Leu. mesenteroides KT 5-1, Lpb. plantarum 

BC T3-35, TB 11-32, C 180-11, 

Saccharomyces cerevisiae LI 180-7, KI 

30-16, D. hansenii A15-44

Increase total polyphenolic compounds produced in spontaneous 

and controlled fermentation also after pasteurization

Increase antioxidant activity

Excellent source of health promoting compounds (i.e., 

hydroxytyrosol and tyrosol)

Tarantini et al. (59), Tufariello et al. (60), D’Antuono 

et al. (61)
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placebo-controlled, crossover trial (74). This study indicates that 
50 mg/day of olive polyphenols can help in decreasing LDL 
cholesterol and lipid peroxidation in healthy subjects.

Previously, a long term (12 months) administration of an olive 
polyphenol extract (Bonolive®) showed to improve lipid profile by 
decreasing total and LDL cholesterol in a double blind, randomized 
trial involving postmenopausal women (75). Hydroxytyrosol from 
olives fruit has been investigated for its potential cardioprotective 
effects in hypercholesterolemic (76) and hypertensive patients (77) in 
two pilot studies, confirming the positive effects of olives bioactive 
compounds in reducing LDL and preventing oxidation and 
inflammation, suggesting a promising use in the clinical management 
of hypercholesterolemic, hypertensive and metabolic disease.

More recently, the potential therapeutic role of these bioactive 
compounds, due to their antioxidant and anti-inflammatory 
properties, is emerging also as a potential strategy in the management 
of irritable bowel syndrome (IBD), for which successful and resolutive 
therapies are still missing (78). Up to now, experimental evidence are 
limited to intestinal cells and IBD-animal models that have indicated 
promising beneficial effects of olive polyphenols, (i.e., hydroxytyrosl, 
oleuropein) in decreasing pro-inflammatory cytokines (i.e., IL-1β, 
IL-6, IL-8, IL-17, TNF-α) and triggering NF-κB signaling and p38 
MAPK pathway (68, 79, 80).

Based on that, the combination of bioactive compounds and 
beneficial microbes delivered by table olives and olive pomace can 
provide to the olive industry a new image of table olives and olive 

TABLE 2 Ex-vivo and clinical studies investigating the health benefits of olive-derived products.

Study Olive 
products

Timeline Sample type 
or subjects

Outcomes References

Ex-vivo

Fermented olive 

pomace

24 h Feces from healthy 

donors

Prebiotic effect by increasing the abundance of beneficial 

bacterial groups, such as Bifidobacteriaceae, 

Lactobacillales, Akkermansia muciniphila and 

Faecalibacterium prausnitzii

Increased production of beneficial SFCAs

Decrease of detrimental VOCs related to proteolytic 

fermentations (i.e., indole, skatole)

Nissen et al. (32)

Olive pomace 24 h Feces from healthy 

donors

Prebiotic effect due to the SCFAs production by gut 

microbiota

Bioactive phenolic compounds with potential antioxidant 

activity and antiadhesion ability against food pathogens

Ribeiro et al. (71)

Olive pomace-

enriched bread

24 h Feces from healthy 

donors

Prebiotic effect by increasing the abundance of beneficial 

bacterial groups, such as Bifidobacteriaceae and 

Lactobacillales

Increased production of SCFAs and reduction in 

abundance of harmful Branched-Chain Fatty Acids 

(BCFAs), indole, and skatole

Nissen et al. (72)

Clinical

Green table olives 30 days Healthy subjects Significant modulation of malondialdehyde with 

antioxidant effect

Significantly decreased level of interleukin-6

Reduction of fat mass with an increase of muscle mass

No statistically significant differences in the abundance of 

Lactobacilli

Accardi et al. (26)

Olive fruit 

polyphenol-

enriched yogurt

2 weeks Healthy subjects Significantly reduction of body weight, body mass index, 

hip circumference and systolic blood pressure

Decreased levels of LDL cholesterol and thiobarbituric 

acid reactive substances

increased abudance of LAB in yogurt

Georgakouli et al. (74)

Olive polyphenol 

extract

12 months Post-menopausal 

women

Increased levels of the pro-osteoblastic marker 

osteocalcin

Decrease in total-and LDL-cholesterol

Filip et al. (75)

Olive fruit extract 8 weeks Hypercholesterolemic 

patients

Protection of LDL cholesterol from oxidation

Prevention of the inflammatory status

Fonollá et al. (76)

Olive fruit extract 2 months Hypertensive and 

diabetic patients

Reduction of systolic and diastolic blood pressures

Improved markers of hypertension and metabolic 

syndrome

Hermans et al. (77)
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cream as health-promoting fermented foods with high nutraceutical 
value, with promising therapeutical application even though clinical 
evidence remain still limited (Table  2), and more well-designed 
randomized clinical trials are needed to confirm these beneficial effects.

4 Conclusion/future perspective

Consumers are increasingly interested in a healthy diet, mainly by 
decreasing their dietary intake of high-fat and animal-based food 
products, due to health, sustainability and ethical concerns. Plant-
based matrices are in line with those consumers’ needs, and among 
them, olives represent suitable matrices to produce healthy innovative 
and environmentally sustainable fermented foods. Table olives 
represent an important fermented food included in the Mediterranean 
diet as a source of fiber and bioactive molecules such as phenolic 
compounds with recognized health-promoting effects.

The transformation of these products through fermentation and the 
exploitation of the potential combined effects of olive bioactive 
compounds and olive-associated LAB would lead (1) to overcome 
limitations on their consumption, (2) to open new market trends by 
meeting the needs of lactose free, vegan-vegetarian or low-cholesterol 
diets, (3) to improve adherence to the Mediterranean Diet, despite the 
constraints of modern society, and (4) to suggest a potential therapeutical 
application in dietary intervention (i.e., hypercholesterolemia, IBD).
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