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Background: Recent studies have increasingly emphasized the strong

correlation between the lipidome and the risk of pancreatic diseases. To

determine causality, a Mendelian randomization (MR) analysis was performed to

identify connections between the lipidome and pancreatic diseases.

Methods: Statistics from a genome-wide association study of the plasma

lipidome, which included a diverse array of 179 lipid species, were obtained

from the GeneRISK cohort study with 7,174 participants. Genetic associations

with four types of pancreatitis and pancreatic cancer were sourced from the

R11 release of the FinnGen consortium. Two pancreatitis datasets from UK

Biobank were employed as the validation cohort. MR analysis was conducted to

assess the relationship between the genetically predicted plasma lipidome and

these pancreatic diseases. Inverse variance weighted was adopted as the main

statistical method. Bayesian weighted MR was employed for further verification.

The MR-Egger intercept test for pleiotropy and Cochrane’s Q statistics test for

heterogeneity were performed to ensure the robustness.

Results: MR analysis yielded significant evidence that 26, 25, 2, and 19 lipid

species were correlatedwith diverse outcomes of pancreatitis, and 8 lipid species

were correlated with pancreatic cancer. Notably, sterol ester (27:1/20:2) levels

(OR: 0.84, 95% CI: 0.78–0.90, P= 5.79× 10−7) were significantly associated with

acute pancreatitis, and phosphatidylcholine (17:0_20:4) levels (OR: 0.89, 95% CI:

0.84–0.94, P = 1.78 × 10−4) and sterol ester (27:1/20:4) levels (OR: 0.90, 95%

CI: 0.86–0.95, P = 2.71 × 10−4) levels were significantly associated with chronic

pancreatitis after the Bonferroni-corrected test. As for validation, 14 and 9 lipid

species were correlatedwith acute and chronic pancreatitis of UK Biobank. Some

lipid classes showed significant e�ects both in the FinnGen consortium and UK

Biobank datasets.

Conclusions: The findings of this study indicate a potential genetic

predisposition linking the plasma lipidome to pancreatic diseases and good

prospects for future pancreatic disease clinical trials.
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Introduction

The prevalent gastrointestinal pancreatic illnesses in Europe

include acute and chronic pancreatitis and pancreatic cancer (1).

Pancreatitis is a complex, progressive inflammatory condition

that affects the pancreas; its prevalence is increasing globally,

and it is gradually becoming the main cause of hospitalization-

related gastrointestinal diseases. Pancreatitis can cause abdominal

pain, insufficient pancreatic function, and reduced quality of

life (2–4). Acute pancreatitis (AP) and chronic pancreatitis (CP)

are the major clinical diagnoses. Some people with pancreatitis,

mainly due to excessive alcohol consumption, can be diagnosed

with alcohol-induced AP (AAP) or CP (ACP) (5, 6). Among

malignant tumors, pancreatic cancer has the poorest prognosis,

and its survival rate is much worse than that of other cancers

(7). A recent study indicated that the 5-year survival rate for

all patients with malignant pancreatic tumors in the US between

2012 and 2018 was only 11.5% (8). The incidence of malignant

pancreatic tumors will increase annually, and the incidence of

this condition is increasing at a rate of 0.5% to 1.0% per

year in the US (9). Therefore, it is important to explore the

etiology of pancreatitis and pancreatic tumors to understand

these diseases.

The role of lipid metabolism in the development of pancreatic

disease has garnered increasing attention. Recent studies have

highlighted the dysregulation of lipid metabolism in pancreatic

disease and indicated that alterations in the blood lipidome

may be associated with inflammation and tumor growth in

the pancreas (10–12). Lipids play multiple roles in human

metabolism, and lipidomics is a new tool for lipid analysis

(13, 14). A previous study comparing malignant pancreatic

tumor patients with normal controls revealed that the levels of

lysophosphatidylcholine 22:0, phosphatidylcholine (P-14:0/22:2)

and phosphatidylethanolamine are related to tumor stage (15);

another study comparing malignant pancreatic tumor patients

with normal controls revealed that the most dysregulated lipids in

the cancer stage were sphingomyelin 41:1 and sulfatides/sulfated

hexosyl ceramides 41:1 (OH) (12). However, past studies have been

based on observational data, and these studies are vulnerable to

challenges from residual confounding factors. In addition, reverse

causality may be of concern in these studies because the underlying

disease may influence certain biomarkers and behaviors. The

Abbreviations: MR, Mendelian randomization; AP, Acute pancreatitis;

CP, Chronic pancreatitis; AAP, Alcohol-induced acute pancreatitis; ACP,

Alcohol-induced chronic pancreatitis; IV, instrumental variables; SNP, Single

nucleotide polymorphisms; CE, Cholesterol ester; Chol, Cholesterol;

Cer, Ceramide; SM, Sphingomyelin; LPC, Lysophosphatidylcholine;

LPE, Lysophosphatidylethanolamine; PI, Phosphatidylinositol;

PC, Phosphatidylcholine; PCO, Phosphatidylcholine-ether; PE,

Phosphatidylethanolamine; PEO, Phosphatidylethanolamine-ether; DAG,

Diacylglycerol; TAG, Triacylglycerol; OR, Odds ratio; CI, Confidence

interval; GWAS, genome-wide association studies; IVW, inverse variance

weighting; MR-PRESSO, Mendelian Randomized Polymorphism Residual

and Outlier; Radial MR, radial regression of MR; NR5A2, nuclear receptor

subfamily 5 group A member 2; DLPC, dilauroyl phosphatidylcholine; DUPC,

diundecanoyl phosphatidylcholine.

effects of the plasma lipidome on pancreatic disease are

still unclear.

Mendelian randomization (MR) analysis is increasingly being

used to explore relationships between risk factors and disease

outcomes by employing genetic variants as genetic instruments

(16). Because genetic variations are randomly distributed at

conception, MR analysis can emulate the conditions of a controlled

randomized experiment to assess the impact of these instrumental

variables (IVs) on specific diseases (17). The strength of MR

lies in its reduced susceptibility to biases from confounding

factors, reverse causation, and measurement errors, positioning

it at a higher level of evidence than traditional observational

studies, albeit not as conclusive as randomized controlled trials

(18). To date, several studies using MR method to investigate

the associations between various kinds factors and the risk of

pancreatic diseases have been published. Mao et al. revealed causal

associations between 18 dietary habits and pancreatitis (19). Some

scholars have investigated the causal effects of 30 genetically

relevant potential risk factors on the risk of pancreatitis (20).

Wang et al. elucidated the causal connection between the gut

microbiota and the risk of pancreatitis (21). Zhong et al. (22)

reported that genetically elevated blood metabolites had potential

causal effects on pancreatic cancer risk. These studies revealed

important influencing factors for pancreatic diseases through MR

methods and demonstrated the practicability and feasibility of

MR methods.

Currently, some researchers have conducted a lipidomic

study of 179 lipid species via univariate and multivariate

genome-wide analyses (23). The summary data from this

study facilitate an MR analytical approach to examine the

effects of the plasma lipidome on pancreatitis and pancreatic

cancer. This study aimed to determine the causal effects of

the plasma lipidome on the risk of developing pancreatic

disease using a two-sample MR framework, and the Bayesian

weighted MR (BWMR) was applied to further verify the results.

Additionally, reverse MR analysis was carried out to assess

whether pancreatic diseases could exert any causal effects on the

plasma lipidome.

Materials and methods

Study design

An MR study was conducted to determine the relationship

between the plasma lipidome and pancreatic diseases. To

ensure the reliability of our results, MR analysis is based on

three critical assumptions: IVs must be associated with the

risk factors; IVs must not be related to any confounding

variables that could affect the diseases under study; and IVs

must influence the outcomes solely through their association

with the risk factors (24). Additional ethics approval or

informed consent was not required due to the characteristics

of public database research, and the data used in this

study were public, anonymized, and deidentified (25). The

flowchart of this bidirectional MR study design is presented

in Figure 1.
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FIGURE 1

The flowchart of the study design of the bidirectional Mendelian randomization analysis between the plasma lipidome and pancreatic diseases. MR,

Mendelian randomization; IV, instrumental variable; SNP, single nucleotide polymorphism; LD, linkage disequilibrium; GWAS, genome-wide

association studies; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; Radial MR, Radial regression of MR.
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Data sources

GWAS data for lipidome
Single nucleotide polymorphisms (SNPs) of the human

plasma lipidome were identified as IVs for the MR study.

Ottensmann et al. (23) conducted a comprehensive lipidomic

analysis by the shotgun method on the GeneRISK cohort

with 179 lipid species. The lipid classes were detected

included cholesterol ester (CE), cholesterol (Chol), ceramide

(Cer), sphingomyelin (SM), lysophosphatidylcholine (LPC),

lysophosphatidylethanolamine (LPE), phosphatidylinositol (PI),

phosphatidylcholine (PC), phosphatidylcholine-ether (PCO),

phosphatidylethanolamine (PE), phosphatidylethanolamine-

ether (PEO), diacylglycerol (DAG), and triacylglycerol (TAG),

as detailed in Supplementary Table S1. Data on genome-wide

association studies (GWAS) summary statistics for the plasma

lipidome are accessible online in the GWAS catalog (https://www.

ebi.ac.uk/gwas/) with the study accession numbers GCST90277238

to GCST90277416 (23).

GWAS data for pancreatic diseases
Summary GWAS statistics for pancreatitis and pancreatic

cancer outcomes were obtained from the FinnGen consortium.

The R11 release of the FinnGen research program (https://r11.

finngen.fi/), which draws on genetic data from more than 500,000

individuals associated with the Finnish Biobank, was utilized for

this analysis. This dataset comprises AP with 7,562 cases and

397,583 controls, CP with 4,222 cases and 397,583 controls, AAP

with 1,144 cases and 452,589 controls, ACP with 2,158 cases

and 451,575 controls, and pancreatic cancer with 1,992 cases and

345,118 controls. The genetic linkages were carefully adjusted to

consider various factors, such as sex, age, genetic background, and

variations of genotyping batches. Thismeticulous approach ensures

the reliability and validity of findings from genetic linkages within

this extensive dataset.

GWAS data for validation cohort
Although the main results are dominated by the FinnGen

consortium R11 dataset, we did a replication study by using

the AP and CP of UK Biobank datasets for validation, for a

more comprehensive understanding of the differences in MR

analysis between different data. Summary GWAS statistics for

validation cohort of AP and CP were obtained from the UK

Biobank GWAS round 2 (https://www.nealelab.is/uk-biobank).

UK Biobank was approved by the North West Multi-Center

Research Ethics Committee in Scotland and was approved by the

Community Health Index Advisory Group. This dataset comprises

AP with 1,292 cases and 359,902 controls, CP with 246 cases and

360,948 controls.

Instrumental variable selection

To enhance the credibility and accuracy of conclusions about

the relationship between the plasma lipidome and pancreatic

diseases, we implemented several quality control measures. We

used a more inclusive threshold of P < 1 × 10−5 at the genome-

wide significance level to secure a greater number of SNPs

rather than a stricter threshold of P < 5 × 10−8 (21). This

threshold allows for a sufficient set of SNPs to be considered.

Additionally, to address the effects of linkage disequilibrium,

SNPs were chosen with a r2 of <0.001 and at least spaced

within a genomic window of 10,000 kilobases, ensuring minimal

overlap and independence among genetic variants. These measures

collectively aim to solidify the reliability of our findings by using

appropriately strong and independent IVs. Generally, SNPs with

F-statistic values > 10 cannot be considered weak IVs and are

recommended for subsequentMR analyses. F-statistics utilizing the

subsequent equation: F = beta2/se2 (26). Palindromic SNPs and

SNPs absent from outcome data and with incomplete information

were removed from the IVs during the harmonization process.

MR Steiger filtering was also applied to test whether the IVs were

more strongly associated with outcomes than with exposure, and

the SNPs that did not pass the test were excluded to avoid reverse

causality (27).

Analysis for MR

We evaluated the relationships between 179 lipid species

and various forms of pancreatic disease, including AP, CP, AAP,

ACP, and pancreatic cancer. To ensure the robustness of our

findings, we utilized five popular MR methods: inverse variance

weighting (IVW), weighted median, simple modal, MR–Egger

regression, and weighted modal methods. Our main method was

IVW, and the other four methods were used as supplemental

methods. The IVW relies on an asymptotic estimate of the

standard error of the causal ratio estimate for each variable

(28), while the weighted median model can provide an unbiased

estimate even if there are many unqualified IVs (29). MR–

Egger regression can provide a valid test for the null causality

hypothesis and a valid causality estimate even if genetic variants

are invalid (30). When the set of maximally similar causal effect

estimates from valid instruments, the weighted modal model

result is consistent regardless of most of the instruments are

invalid (31).

Heterogeneity was assessed using Cochrane’s Q statistic, and

there was no significant heterogeneity if the P value exceeded

0.05 (28). Horizontal pleiotropy was assessed using the MR–

Egger intercept test, and there was no presence of horizontal

pleiotropy if the P value exceeded 0.05 (30). If pleiotropy

existed, the MR Pleiotropy Residual Sum and Outlier (MR-

PRESSO) method and radial regression of MR (Radial MR)

were performed to identify abnormal SNPs as outliers, and

then we removed these outliers to obtain valid causal effect

estimates (32, 33).

Furthermore, the BWMR was employed to further verify the

causal effects of exposure and outcome. The advantage of this

approach is to reduce potential bias because it can solve the

strong horizontal pleiotropy problem by a weighting scheme. This

method also takes into account the uncertainty of weak effects

due to polygenicity, further enhancing the robustness of causal

inference (34).
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Reverse MR analysis

Reverse MR was utilized to determine whether pancreatic

disease has any causal effect on the plasma lipidome using SNPs

associated with pancreatic diseases; in other words, this statistic

included pancreatic diseases as exposures and 179 lipid species

as outcomes. We still used a threshold of P < 1 × 10−5 at the

genome-wide significance level for selecting instrumental variables

for pancreatic disease. And the SNPs with a considerable distance

in genomic window (≥10,000 kilobases) and less probability of

linkage disequilibrium (r2 < 0.001) were included. The F-statistic

and MR Steiger filtering was also applied in IVs selection of reverse

MR analysis as mentioned above.

Validation analysis for AP and CP

We used a same standard for selecting instrumental variables

for 179 lipid species as mentioned above. We adopted a P < 1 ×

10−5 in selecting SNPs, and we employed a linkage disequilibrium

threshold where r2 < 0.001, coupled with clumping distances

≥10,000 kilobases. The F-statistic and MR Steiger filtering was

also applied in IVs selection. Then the harmonization process was

performed and the two-sample MR was proceeded subsequently.

The AP and CP of UK Biobank datasets were used for MR analysis

as outcomes. ReverseMR analysis of UK Biobank datasets was done

according to the same standards for IVs selection with a P < 1 ×

10−5, r2 < 0.001 and clumping distances ≥10,000 kilobases, this

statistic included the UK Biobank datasets as exposures and 179

lipid species as outcomes.

Statistical analyses

All research used R Software version 4.3.2 for statistical

analysis, with the R packages “TwoSampleMR,” “psych::r.test,”

“MR-PRESSO,” and “RadialMR.” The results from IVW and the

accompanying BWMR tests were visualized by forest plots. The

scatter plots, funnel plots, leave-one-out plots and MR effect size

plots were generated for visual inspection. Data visualization was

carried out using the R packages “ggplot2” and “forestploter.”

To address multiple hypothesis testing, we applied Bonferroni

correction to the IVW results, setting the significance level at P

< 2.79 × 10−4 (0.05/179). P values between 2.79 × 10−4 and 0.05

were considered suggestive causal associations. This method helps

ensure robust control of false positives in our analysis.

Results

Overview

A total of 179 lipid species were included in the analyses as

potential risk factors. After the genome-wide significance threshold

and linkage disequilibrium test screening steps, 4,506 eligible SNPs

were included for subsequent MR analysis. The F-statistic of all

included SNPs >10 ranged from 19.54 to 1946.15, indicating that

there were no weak IVs in our study (Supplementary Table S2).

Then the two-sample MR was performed after the harmonization

process and Steiger filtering.

Causative e�ects of the plasma lipidome on
pancreatic diseases

Plasma lipidome and AP
According to the IVWmethod, 26 lipid species were correlated

with AP risk (P < 0.05), and the lipid classes included CE, LPE,

PC, PE, PEO, PI, SM, and TAG (Supplementary Table S3). Eight

lipid species showed an increased risk of AP, while 18 lipid

species were linked to a reduced risk. However, we found that

sphingomyelin (d40:2) (P-BWMR = 0.054), triacylglycerol (50:4)

(P-BWMR = 0.07), triacylglycerol (52:6) (P-BWMR = 0.062) and

triacylglycerol (56:8) (P-BWMR = 0.081) did not pass further

BWMR verification. Possible pleiotropy was observed for sterol

ester (27:1/20:2) and AP, MR-PRESSO analysis and Radical MR

analyses were conducted to remove outliers. Finally, the correlation

remained significant for the corrected result (OR: 0.84, 95% CI:

0.78–0.90, P = 5.79 × 10−7; Supplementary Table S4). Bonferroni

correction (P < 2.79 × 10−4) for this corrected result indicated

that sterol ester (27:1/20:2) were notably linked to a reduced risk

of AP. The estimate of the BWMR analysis showed a consistent

significant result for sterol ester (27:1/20:20) (OR: 0.83, 95%

CI:0.77–0.90, P-BWMR = 1.59 × 10−6). Some heterogeneities

were observed for sterol ester (27:1/16:0), sterol ester (27:1/20:2),

phosphatidylethanolamine (18:2_0:0), phosphatidylethanolamine

(18:1_18:1), phosphatidylinositol (18:0_20:3), sphingomyelin

(d34:2), triacylglycerol (54:3) and triacylglycerol (56:7) with

AP (Supplementary Table S3). The corrected result of sterol

ester (27:1/20:2) showed no heterogeneity with a P value >

0.05 according to Cochran’s Q tests (Supplementary Table S4).

The results from IVW are our primary criterion, and the

accompanying BWMR tests are shown together in the forest

plot (Figure 2). The data visualization of the leave-one-out

analysis, MR effect size, scatter plot and funnel plot are shown in

Supplementary Figures S1–S27.

Plasma lipidome and CP
According to the IVW method, 25 lipid species were

correlated with CP risk (P < 0.05), and the lipid classes

included CE, Chol, LPC, LPE, PC, PCO, PE, PEO, PI and

SM (Supplementary Table S5). Eight lipid species exhibited an

increased risk of CP, while 17 lipid species were linked to a reduced

risk. Phosphatidylcholine (17:0_20:4) (OR: 0.89, 95% CI: 0.84–0.94,

P = 1.78 × 10−4) and sterol ester (27:1/20:4) (OR: 0.90, 95%

CI:0.86–0.95, P = 2.71 × 10−4) decreased the risk of CP which

passing the Bonferroni correction. The estimate of the BWMR

analysis of sterol ester (27:1/20:5), phosphatidylcholine (18:0_18:2),

phosphatidylcholine (18:1_18:2) and phosphatidylcholine (O-

18:2_18:1) had P values > 0.05. A pleiotropy was observed

for phosphatidylethanolamine (18:1_18:1), but the relationship

remained significant after correction (OR: 1.15, 95% CI: 1.05–

1.26; P = 0.003). The estimate of the BWMR analysis showed
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FIGURE 2

Forest plot to visualize the causal e�ect of plasma lipidome on AP using the inverse variance weighted method. The accompanying BWMR tests are

shown together. AP, acute pancreatitis; SNP, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; BWMR, Bayesian weighted

Mendelian randomization.

a consistent significant result (OR: 1.15, 95% CI: 1.04–1.26, P-

BWMR = 0.005; Supplementary Table S4). Similar adjustments for

pleiotropy confirmed a remained significant correlation between

phosphatidylinositol (16:0_18:1) and increased CP (OR: 1.19,

95% CI: 1.04–1.36, P = 0.01), and similar results were obtained

from the BWMR analysis (OR: 1.21, 95% CI: 1.04–1.39, P-

BWMR = 0.01; Supplementary Table S4). Some heterogeneities

were noted in the effects of phosphatidylcholine (18:1_20:4),

sterol ester (27:1/20:5), phosphatidylcholine (18:0_18:2) and

phosphatidylinositol (16:0_18:1) on CP (Supplementary Table S5).

The corrected result for phosphatidylinositol (16:0_18:1) showed

no heterogeneity (Supplementary Table S4). The results from IVW

are our primary criterion, and the accompanying BWMR tests are

shown together in the forest plot (Figure 3). The data visualization

of the leave-one-out analysis, MR effect size, scatter plot and funnel

plot are shown in Supplementary Figures S28–S54.

Plasma lipidome and AAP
According to the IVW method, 2 lipid species,

phosphatidylethanolamine (18:1_0:0) (OR: 1.25, 95% CI: 1.01–

1.55; P = 0.037) and phosphatidylethanolamine (18:1_18:1)

(OR: 1.18, 95% CI: 1.00–1.39; P = 0.048), were correlated with

an increased risk of AAP (Supplementary Table S6). As for the

BWMR analysis, there was a genetic association between the

phosphatidylethanolamine (18:1_0:0) and an increased risk of

CP (OR = 1.28; 95% CI: 1.02–1.61; P-BWMR = 0.031), but

phosphatidylethanolamine (18:1_18:1) did not pass the BWMR

verification (P-BWMR = 0.075). Substantial heterogeneities or

pleiotropies were not observed for these two lipids on AAP

(Supplementary Table S6). The results from IVW are our primary

criterion, and the accompanying BWMR tests are shown together

in the forest plot (Figure 4). The data visualization of the leave-

one-out analysis, MR effect size, scatter plot and funnel plot are

shown in Supplementary Figures S55, S56.

Plasma lipidome and ACP
According to the IVWmethod, 20 lipid species were correlated

with ACP risk (P < 0.05), and the lipid classes included CE, LPC,

LPE, PC, PCO, PEO, PI, SM, and TAG (Supplementary Table S7).

Six lipid species were linked to an increased risk of ACP, while

14 lipid species were linked to a reduced risk. In addition, these

lipids all passed the BWMR verification with a P value < 0.05.

Notably, sterol ester (27:1/16:0) showed potential pleiotropy with

ACP, the possible pleiotropy remained significant after correction,

and the cause effect of sterol ester (27:1/16:0) for ACP was lost

on the basis of the IVW result (OR: 0.91, 95% CI: 0.81–1.01, P

= 0.078; Pintercept = 0.048; Supplementary Table S4). We decided

to eliminate the correlation result of sterol ester (27:1/16:0) due
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FIGURE 3

Forest plot to visualize the causal e�ect of plasma lipidome on CP using the inverse variance weighted method. The accompanying BWMR tests are

shown together. CP, chronic pancreatitis; SNP, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; BWMR, Bayesian weighted

Mendelian randomization.

FIGURE 4

Forest plot to visualize the causal e�ect of plasma lipidome on AAP using the inverse variance weighted method. The accompanying BWMR tests are

shown together. AAP, alcohol-induced acute pancreatitis; SNP, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; BWMR,

Bayesian weighted Mendelian randomization.

to pleiotropy and the corrected IVW result; ultimately, 19 lipid

species were correlated with ACP risk. Cochran’s Q tests showed no

evidence of heterogeneity. The results from IVW are our primary

criterion, and the accompanying BWMR tests are shown together

in the forest plot (Figure 5). The data visualization of the leave-one-

out analysis, MR effect size, scatter plot and funnel plot are shown

in Supplementary Figures S57–S77.

Plasma lipidome and pancreatic cancer
According to the IVW method, eight lipid species were

related to pancreatic cancer risk (P < 0.05), and the lipid classes

included DAG, PC, PI, SM, and TAG (Supplementary Table S8).

Three lipid species increased the risk of pancreatic cancer, while

five lipid species reduced the risk. Diacylglycerol (18:1_18:1)

(P-BWMR = 0.058) did not pass further BWMR verification. The

MR–Egger intercept tests showed no notable pleiotropy for these

eight lipid species, and Cochran’s Q tests detected heterogeneity

only for Sphingomyelin (d40:1) (Supplementary Table S8).

The results from IVW are our primary criterion, and the

accompanying BWMR tests are shown together in the forest

plot (Figure 6). The data visualization of the leave-one-out

analysis, MR effect size, scatter plot and funnel plot are shown in

Supplementary Figures S78–S85.

Frontiers inNutrition 07 frontiersin.org

https://doi.org/10.3389/fnut.2024.1466509
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Lin et al. 10.3389/fnut.2024.1466509

FIGURE 5

Forest plot to visualize the causal e�ect of plasma lipidome on ACP using the inverse variance weighted method. The accompanying BWMR tests are

shown together. ACP, alcohol-induced chronic pancreatitis; SNP, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; BWMR,

Bayesian weighted Mendelian randomization.

FIGURE 6

Forest plot to visualize the causal e�ect of plasma lipidome on pancreatic cancer using the inverse variance weighted method. The accompanying

BWMR tests are shown together. SNP, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; BWMR, Bayesian weighted

Mendelian randomization.

Reverse MR analysis

After filtering the IVs in the same way, 37 AP associated

SNPs, 40 CP associated SNPs, 26 AAP associated SNPs, 35 ACP

associated SNPs and 27 pancreatic cancer associated SNPs were

included in the reverse MR analysis as eligible IVs, all F-statistic

>10 ranged from 19.58 to 158.98 (Supplementary Table S9). After

the harmonization process and Steiger filtering with 179 lipid

species, we performed two-sample MR for pancreatic diseases and

179 lipid species. By the IVW method, we identified there are no

potential causal associations between pancreatic disease and the

plasma lipidome (all P > 0.05). Furthermore, according to the

BWMR, pancreatic disease still had no causal relationship with

the plasma lipidome (all P > 0.05). For sensitivity analysis, the

absence of substantial heterogeneity or pleiotropy was observed in

the entire reverseMR analysis, and all MR–Egger intercept tests and

Cochran’s Q tests yielded a P value > 0.05.

Validation analysis for AP and CP

The IVs for 179 lipid species was same as mentioned above after

the genome-wide significance threshold and linkage disequilibrium

test screening steps (Supplementary Table S2). According to the

IVW method, 14 lipid species were correlated with AP risk

(P < 0.05), and the lipid classes included CE, DAG, PC, PI,

SM, and TAG. Triacylglycerol (48:0) (P-BWMR = 0.054) did
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not pass further BWMR verification. A pleiotropy was observed

for Triacylglycerol (52:5) for AP, but the relationship remained

significant after correction (OR: 0.999, 95% CI: 0.998–0.999; P

= 8.62 × 10−5). Cochran’s Q tests showed no evidence of

heterogeneity for AP. According to the IVW method, 10 lipid

species were correlated with CP risk (P < 0.05), and the lipid

classes included CE, Cer, PC, PCO, PI, SM. Ceramide (d40:2)

(P-BWMR = 0.062) did not pass further BWMR verification. A

pleiotropy and a heterogeneity were observed for Sphingomyelin

(d40:2) for CP, the possible pleiotropy remained significant after

correction (Pintercept = 0.008), but the heterogeneity was removed.

We decided to eliminate the correlation result of Sphingomyelin

(d40:2) for CP due to pleiotropy; ultimately, nine lipid species

were correlated with CP risk. The detail data for AP and

CP of UK Biobank are shown in Supplementary Table S10 and

Supplementary Figures S86, S87. The data visualization of the

leave-one-out analysis, MR effect size, scatter plot and funnel

plot are shown in Supplementary Figures S88–S113. After filtering

the IVs by the genome-wide significance threshold and linkage

disequilibrium test, 38 AP associated SNPs and 80 CP associated

SNPs were included in the reverse MR analysis as eligible

IVs for UK Biobank, all F-statistic >10 ranged from 19.52 to

33.01 (Supplementary Table S11). After the harmonization process

and Steiger filtering with 179 lipid species, we performed two-

sample MR for pancreatitis and 179 lipid species. By the IVW

method, we identified there are no potential causal associations

between pancreatitis and the plasma lipidome (all P > 0.05). No

heterogeneity or pleiotropy was observed in the reverseMR analysis

for AP and CP of UK Biobank.

Discussion

This study is the first extensive and profound analysis of the

relationship between the plasma lipidome and pancreatic diseases

at a genetic prediction scale. Previous investigations of lipids

and pancreatic diseases have focused primarily on conventional

lipids, such as high-density lipoprotein cholesterol (35, 36), low-

density lipoprotein cholesterol (37), triglycerides (38), and total

cholesterol (39). Our study builds upon lipid research by utilizing

lipidomics, providing a more comprehensive understanding of

the variability in circulating lipids. Specifically, our analysis

encompassed four major lipid categories based on Ottensmann

et al.’s (23) lipidomic GWAS data. Notably, we identified significant

associations between sterol ester (27:1/20:2) levels and a reduced

risk of AP, and between phosphatidylcholine (17:0_20:4) and sterol

ester (27:1/20:4) levels and a reduced risk of CP, highlighting

their potential role in mitigating pancreatic diseases. It cannot

be ignored that other lipid species presented in result part

of our research also have a suggestive causal association with

pancreatic diseases.

A potential correlation was identified between the specific

lipid species and the incidence of AP and CP in our study, and

it was proven that lipid metabolism plays a role in pancreatitis.

This research reported that some sterol esters are stable protective

factors for AP and CP. Notably, sterol ester (27:1/20:2) and sterol

ester (27:1/20:4) are critical factors for AP and CP according to the

Bonferroni correction. A study reported the changes in lipids in

acute pancreatitis patients, the result displayed that cholesterol ester

(20:1) and cholesterol ester (18:2) levels were significantly lower

in acute pancreatitis patients than in normal controls (10). Sterol

lipids may alleviate inflammation and tissue damage considering

the critical function of these lipids in maintaining membrane

integrity and modulating immune responses (40). By passing the

Bonferroni correction, phosphatidylcholine (17:0_20:4) was shown

to have a significant protective effect on CP. PC is an important

membrane constituent and accounts for approximately half of all

membrane lipids in eukaryotic cells, it plays an important part

in signaling and immune regulation (41). A study compared the

composition of plasma PCs in CP patients with that in controls, and

found that PC was significantly andmarkedly altered in CP patients

(42). Although the composition of PC in their study differed from

that in our study, the effect of PC on the risk of CPwas prominent in

both studies, and our study revealed a genetically predicted causal

relationship between phosphatidylcholine (17:0_20:4) and the risk

of CP. The results of our study provide a more comprehensive

and abundant lipid species than most previous studies, and we

also found many highly valuable liposomes that were associated

with AP and CP. Some sphingolipids were found to be stable

protective factors for AP and CP, and certain glycerophospholipid

and TAG levels were found to affect pancreatic inflammation.

In a prospective study, serum triglycerides were found to be

linked to an increased risk of AP, with a hazard ratio of 1.21

(43). This finding revealed a role for triglycerides in AP, but

it only reflects the effect of serum total triglyceride levels on

AP; research on triglyceride subtypes is lacking. Other studies

have shown that lipid metabolism potentially plays a role in

modulating the progression of pancreatitis or tissue inflammation

through glycerophospholipid (44), triacylglycerol (20, 45), and

sphingomyelin (46) levels. Some of the findings are similar to ours,

but we present results at the genetic level through MR analysis,

and the subtypes of lipids were further analyzed in order to

better understand their role. The double MR analysis reflected the

effect of liposome on pancreatitis more profoundly, our additional

validation using UK Biobank datasets coordinating with the results

of FinnGen consortium shows that CE, PC, PI, SM, and TAG

are some relatively stable influencing factors for AP, and CE, PC,

PCO, PI, and SM are some relatively stable influencing factors

for CP.

Alcohol exposure is known to contribute to the onset and

progression of pancreatitis, and the risks of AAP and ACP

also need attention. Sterol esters and SMs were still protective

factors for ACP like the results of AP and CP, and certain

glycerophospholipids and TAGs were also associated with AAP

and ACP. Alcohol intake has complex effects on lipid metabolism,

for example, high alcohol intake may elevate plasma triglycerides,

and alcohol-associated hypertriglyceridemia can aggravate the risk

of pancreatitis, but plasma triglycerides may decrease with light

to moderate alcohol consumption (47). A previous study revealed

that patients with ACP had significant changes in plasma PL,

TAG and sterol esters compared with healthy controls (48), and

the effects of different lipid subtypes may help us to better

understand the role of lipids in alcoholic pancreatitis. In our

study, we were able to identify the role of each lipid by further
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classifying them, and the use of lipidomics can reveal subtype

information that traditional lipid studies have not been able

to obtain. By traditional lipid metabolism MR analysis, Mao

et al. (20) found that triglycerides (OR = 1.367, 95% CI: 1.075–

1.737) are a risk factor for ACP; however, they did not find

other associations between lipid metabolism and alcohol-induced

pancreatitis, possibly because they were studying conventional lipid

elements only.

Previous studies exploring the connection between lipid

metabolites and pancreatic cancer have been limited due to the

frequent use of postdiagnosis blood samples and inconsistent

findings (15, 49, 50). We conducted a full-scale lipidomic analysis

to identify lipid species linked to the risk of malignant pancreatic

tumors. Some lipid classes, such as SM, PC, PI, DAG, and

TAG, were associated with pancreatic cancer in our study. The

dysregulation of lipid metabolism in tumor cells suggests that

changes in lipid groups may affect tumor growth, and the

significant differences between pancreatic cancer patients and

healthy controls are the basic research method of traditional

observational research in the past (12). Zhou et al. (49) studied

1,206 plasma lipids of molecules harvested from 20 patients and

identified 88 lipids existing differences that contained PC, PI, TAG

and PE lipid classes. Lipidomic analysis of prediagnostic serum

samples has revealed lipids associated with the risk of ductal

carcinoma of the pancreas (51), and researchers have found that

43 lipid species from eight lipid classes are linked to malignant

tumors. Notably, some LPC, PE, PC, CE, DAG and TAG lipid

classes showed the strong associations with pancreatic cancer. Our

study used a much larger sample of pancreatic cancer patients

(1,992 cases and 345,118 controls), MR was also used to exclude

confounding factors from observational studies, and it is helpful to

refine the results on the relationship between lipids and pancreatic

cancer. However, LPC, CE and PE were not linked to pancreatic

cancer in our study, and this difference may be due to differences in

patient cohorts and study methods.

Our study focuses on the association between the lipidome

and pancreatic diseases, by identifying specific lipid types and

even subtypes, we have a more accurate regulatory target for

controlling the occurrence and development of pancreatic

diseases in clinical practice. It is helpful to early predict and

intervene the pancreatic diseases by monitoring the abnormality

of liposome metabolism. Regulating lipid metabolism through

drugs or diet may be effective in controlling the occurrence of

pancreatic diseases in the future. The use of drug assistance to

appropriately reduce harmful lipids and increase beneficial lipids

is a promising approach for the management of patients with

pancreatic diseases. Otherwise, the lipid species may influence

specific biological pathways associated with pancreatic diseases.

Other studies have revealed that nuclear receptor subfamily 5

group A member 2 (NR5A2) haploinsufficiency has been seen

associated with chronic pancreatitis and pancreatic cancer (52, 53).

Nuclear receptors can act as regulatory molecules, interact with

specific DNA sequences, and mediate cell signaling. And specific

phospholipids such as dilauroyl phosphatidylcholine (DLPC)

and diundecanoyl phosphatidylcholine (DUPC) identified

as NR5A2 direct ligands, NR5A2-specific promoters are

activated by DLPC and DUPC to regulate receptor activity

(54). For our future research, focusing on the underlying

mechanisms of lipids can help to explore drug targets for

therapeutic applications.

Lipid biology is important both in normal digestive processes

and in diseases that affect the pancreas, such as pancreatitis

and pancreatic cancer. Previous studies have investigated the

role and risk of lipids in pancreatic diseases (10, 51), but

the effect of pancreatic disease on lipid metabolites is still

unclear. The causal relationship between two subjects is sometimes

difficult to determine in traditional research, and the MR analysis

employed in our study helps mitigate potential confounders

and reverse causality, thereby enhancing the robustness of our

findings and allowing for more confident inferences regarding

causality in the observed associations. On the basis of reverse

MR analysis, pancreatic diseases had no causal relationship with

liposomes. Some researchers have investigated lipid dysregulation

characteristics in AP in rat models (55). By employing a time-

course lipidomic method, they observed an overall decrease

in glycerophospholipids within the pancreas and a significant

reduction in serum TAGs at 24 h. The differences may be due

to distinctions in animal testing and tissue sample selection, and

most importantly, the MR Steiger filtering algorithm, which is

used in the MR studies, greatly avoids the occurrence of false

causality with the IVs. Our additional validation using UK Biobank

datasets further proofed that pancreatitis has no causal relationship

with liposomes.

The current study offers several advantages from its data

sources and MR research design. First, MR design circumvents

biases commonly found in traditional observational studies, and

we conducted multiple sensitivity analyses to ensure reliability.

Second, the GWAS data used in the present study were sourced

from a sizable cohort of 7,174 individuals, encompassing 179 lipid

species. Genetic associations and large-sample data may provide

new insights into lipid metabolism and new lipid-associated risk

factors for pancreatic diseases. Third, we applied the BWMR

method to verify our results, which improved the accuracy of

our findings. Some results did not pass the BWMR verification,

so it is necessary to treat these results with caution, and further

research can be carried out in the future. Fourth, our study

included different types of pancreatitis, and examining different

subgroups allowed us to more accurately apply our conclusions to

the population.

Research limitations are also unavoidable. First, the GWAS

database is publicly available, and the details of the participants

are lacking; therefore, further subgroup analysis is not possible.

Second, European ancestry limits the generalisability of results

to the wider population, since the liposome data used in this

study came from European populations, and there is a lack of

corresponding liposome big data in other populations (such as

Asian populations), the future research in this area needs to

be carried out and further studies of Asian ancestry may be

conducted to complement these conclusions in the future. Third,

lipidomics involves a variety of lipids, and the analysis of the

plasma lipidome belonging to 13 lipid classes was confined to

four lipid types in this study. Due to the selection of different

lipids and the differences in the study population, the results of

our study are not exactly same as those of former observational
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studies. We used double MR analysis to reflect the impact of

different datasets on MR analysis, and the results of FinnGen

consortium and UK Biobank datasets have some similarities but

there are also many differences. Through the double analysis, we

found that certain lipid classes had relatively stable effects for

AP and CP. FinnGen consortium R11 has more comprehensive

and updated data with a larger number of cases, so our study

is mainly based on R11 results. Fourth, some of the results of

the five MR methods had different beta values, but most of the

horizontal pleiotropy was not abnormal, and our results were

mainly based on the IVW method. Fifth, despite using deleting

outlier SNPsmethod for dealing with horizontal pleiotropy, caution

should be exercised in interpreting causal associations derived from

MR analysis due to the presence of horizontal pleiotropy in some

positive results.

Conclusion

Overall, this MR study have systematically elucidated causal

associations between 179 lipid species and pancreatic diseases, such

as four types of pancreatitis and pancreatic cancer. Sterol esters

and phosphatidylcholine have effectively protective effects on acute

and chronic pancreatitis. Many other lipids also play a potential

role in pancreatic diseases. This work enhances our comprehension

of lipid risk factors for the onset and progression of pancreatic

diseases, potentially guiding the identification of new targets for

therapeutic interventions. Future studies on the regulation of lipid

metabolism may help to control the occurrence and development

of pancreatic diseases.
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