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Impact of serum carotenoids on 
cardiovascular mortality risk in 
middle-aged and elderly adults 
with metabolic syndrome
Jing Han †, Ruiyun Wang †, Lijuan Bai , Yun Liu , Man Liao , 
Liting Zhang , Lihua Liu * and Benling Qi *‡

Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science 
and Technology, Wuhan, Hubei Province, China

Background: Metabolic syndrome (MetS), characterized by abdominal 
adiposity, hypertension, hyperglycemia, and dyslipidemia, is associated with 
dysregulated immune function, elevated oxidative stress, and chronic low-
grade inflammation. Aging exacerbates insulin resistance and the prevalence of 
MetS. Dietary antioxidants, such as carotenoids, may play a role in preventing 
cardiovascular disease (CVD) mortality, but evidence remains mixed, particularly 
among middle-aged and elderly individuals with MetS.

Methods: We analyzed data from 6,601 participants aged 40  years and above 
with MetS from the National Health and Nutrition Examination Survey (NHANES) 
III (1988–1994) and NHANES 2001–2006  cycles. Serum concentrations of 
α-carotene, β-carotene, lycopene, β-cryptoxanthin, and combined lutein/
zeaxanthin were quantified. Participants were followed for a median of 16.8  years. 
Cox proportional-hazards models were used to assess the association between 
serum carotenoid concentrations and CVD mortality risk, with adjustment for 
potential confounders.

Results: During the follow-up period, 1,237 CVD deaths were identified. Analysis 
revealed an inverse dose–response relationship between serum lycopene 
levels and cardiovascular mortality risk. Compared to the lowest quartile, the 
multivariable-adjusted hazard ratios (95% confidence intervals) for ascending 
quartiles of serum lycopene were 0.84 (0.71, 1.00), 0.87 (0.74, 1.03), and 0.77 
(0.61, 0.97), with a significant trend (p  =  0.039). No significant associations were 
observed for other carotenoids.

Conclusion: In this prospective cohort study of 40-year-old and older individuals 
with MetS, we observed an inverse association between serum lycopene levels 
and CVD mortality risk.
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Introduction

Metabolic syndrome (MetS) is a significant public health concern characterized by a 
cluster of interrelated conditions, including abdominal obesity, hypertension, hyperglycemia, 
and dyslipidemia (1). These factors collectively increase the risk of developing cardiovascular 
diseases (CVD) and type 2 diabetes mellitus(T2DM) (2, 3). Notably, the prevalence of MetS 
continues to rise especially among countries with fast-aging populations (4). Epidemiological 
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data indicate that approximately one-third of the adult population 
in the United States is affected by MetS, with prevalence rising to 
nearly half among individuals aged 60 years and above (5). This 
demographic is vulnerable due to the synergistic effects of aging, 
which exacerbate metabolic dysregulation and contribute to chronic 
low-grade inflammation, thereby increasing the risk of 
cardiovascular events (6–11). Epidemiological studies indicate that 
antioxidant nutrients may contribute to the prevention of CVD 
mortality (12).

Carotenoids are common natural antioxidants, among which 
lycopene, β-carotene, β-cryptoxanthin, α-carotene, lutein, and 
zeaxanthin account for over 95% of the total carotenoid concentration 
in human blood (13). Recent observational studies have indicated that 
dietary carotenoid intake and serum carotenoid levels are inversely 
associated with the prevalence and progression of MetS and its 
components (14–16). However, the results across these studies have 
not been entirely consistent (17). The impact of carotenoids, 
particularly β-carotene supplementation, on cardiovascular disease 
(CVD) mortality remains equally ambiguous (13, 18–20). While some 
observational studies and interventional trials have reported mixed 
outcomes across diverse populations, higher serum carotenoid 
concentrations are generally linked to reduced risks of all-cause and 
cardiovascular mortality in the general population, as well as among 
adults with hypertension and metabolic dysfunction-related fatty liver 
disease (18, 20, 21). Conversely, β-carotene has been associated with 
an increased risk of cardiovascular mortality in individuals with 
T2DM and smokers (13, 22). This is particularly concerning given that 
MetS closely relates to hypertension and T2DM. Among middle-aged 
and elderly individuals affected by MetS, evidence elucidating the 
potential cardiovascular effects of carotenoids is still scarce (23, 24). 
Moreover, it remains unclear whether factors such as sex, age, renal 
function and smoking status might modify the associations between 
carotenoid levels and cardiovascular outcomes.

Thus, we conducted a prospective investigation to investigate the 
relationship between serum carotenoid concentrations and CVD 
mortality among middle-aged and older adults with MetS. This study 
utilized data from a nationally representative sample of the 
U.S. population, with a median follow-up duration of 16.8 years.

Methods

Study participants

The NHANES, a comprehensive epidemiological program, has 
been assessing the health and dietary patterns of the U.S. population 
since the early 1960s. Using a multistage, stratified, clustered sampling 
design, NHANES recruits a nationally representative sample, 
examining approximately 5,000 individuals annually. Our study 
focused on participants from NHANES III and Continuous NHANES 
(2001–2006), as these cycles included serum carotenoid 
measurements. We selected individuals aged 40 years and older with 
MetS who had complete data on five serum carotenoids, resulting in 
a final cohort of 8,684 subjects. We excluded 76 individuals with no 
follow-up information, 818 participants with cancer, 1,098 participants 
with CVD, 1 participant self-reported as pregnant, 90 individuals with 
extreme energy intake(defined as <500 kcal/d for both sexes, 
>5,000 kcal/d for women, or > 8,000 kcal/d for men) (25). Finally, 6,601 

participants were analyzed in the present study (Supplementary  
Figure S1).

Ascertainment of MetS

We identified the MetS according to the 2005 National Cholesterol 
Education Program Adult Treatment Panel III criteria (26). 
Participants were classified as having MetS if they had at least three of 
the following five criteria: 1. Central obesity: waist 
circumference ≥ 88 cm for women or ≥ 102 cm for men, or body mass 
index (BMI) >30 kg/m2; 2. Elevated fasting plasma glucose: ≥100 mg/
dL or use of glucose-lowering agents; 3. Hypertriglyceridemia: 
triglycerides ≥150 mg/dL or receiving treatment; 4. Low high-density 
lipoprotein cholesterol (HDL-C): <50 mg/dL in women or < 40 mg/dL 
in men, or receiving treatment; 5. Hypertension: systolic blood 
pressure ≥ 130 mmHg or diastolic blood pressure ≥ 85 mmHg, or 
antihypertensive medication use.

Ascertainment of carotenoids

Serum concentrations of five carotenoids (α-carotene, β-carotene, 
lutein/zeaxanthin, lycopene, and β-cryptoxanthin) were assayed using 
high-performance liquid chromatography (HPLC) in NHANES III 
and NHANES cycles 2001–2002 and 2005–2006. In NHANES 2003–
2004, a comparable HPLC method was employed, and the data were 
adjusted using regression analysis to obtain equivalent carotenoid 
measurements based on HPLC. Cumulative serum carotenoid 
concentrations were obtained by combining the individual 
measurements of five carotenoids. Detailed measurements for serum 
carotenoids are accessible in the NHANES Laboratory Methods 
documentation.1

Ascertainment of mortality

Participants’ mortality status was determined by linking their 
records to the National Death Index using unique identifiers, up to 
December 31, 2019. Causes of death were categorized based on the 
International Classification of Diseases, 10th Revision (ICD-10). The 
primary endpoint was CVD mortality, defined as deaths attributed to 
codes I00-I09, I11, I13, I20-I51, and I60-I69, which encompass a range 
of cardiovascular and cerebrovascular conditions.

Ascertainment of covariates

Standardized questionnaires were employed to gather detailed 
information on individual demographics, including age, sex, race/
ethnicity, and education level. Socioeconomic factors such as poverty 
status, as well as lifestyle behaviors including smoking status, alcohol 
consumption, physical activity, and dietary intake, were also recorded. 
Additionally, data on dietary supplement use (specifically vitamins 

1 https://wwwn.cdc.gov/Nchs/Nhanes/2003-2004/L45VIT_C.htm
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and minerals), BMI, and the use of medications for diabetes, 
hypertension, and hyperlipidemia were collected. Smoking status was 
categorized as follows: current smokers were those who reported a 
lifetime consumption of at least 100 cigarettes and continued to 
smoke; former smokers had the same lifetime consumption but had 
ceased smoking; and non-smokers had consumed fewer than 100 
cigarettes in their lifetime. Alcohol consumption was classified as 
nondrinker, low-to-moderate (<1 drink/d for women, <2 drinks/d for 
men), or heavy (≥1 drink/d for women, ≥2 drinks/d for men). 
Physical activity levels were determined by self-reported leisure-time 
exercise, with participants categorized as inactive (no reported 
activity), insufficiently active (engaging in moderate-intensity 
activities 1–5 times weekly, or vigorous activities 1–3 times weekly), 
or active (exceeding the insufficiently active criteria) (27). Renal 
function was assessed using the estimated glomerular filtration rate 
(eGFR), calculated with the CKD-EPI formula (28). Further details of 
these variables can be found.2

Statistical analysis

According to analytical guidelines, all analyses incorporated 
primary sampling units, weighting, and strata to provide reliable 
national estimates. Baseline characteristics were summarized 
according to quartiles of serum lycopene, with mean (SEs) for 
normally distributed continuous variables, medians (interquartile 
ranges) for non-normally distributed continuous variables, and 
numbers (percentages) for categorical variables. We used one-way 
ANOVA test, Mann–Whitney U test, and chi-squared test to compare 
groups for normally distributed continuous, non-normally distributed 
continuous, and categorical variables, respectively. To assess the 
association between serum carotenoid levels and cardiovascular 
mortality risk, we employed multivariable Cox proportional hazards 
regression models. Concentrations of the five carotenoids were log2-
transformed and subsequently categorized into quartiles. We fitted 
two statistical models: Model 1 adjusted for age, sex, race/ethnicity, 
education level, alcohol consumption status, smoking status, family 
poverty income ratio, physical activity, supplement use, total energy 
intakes (in quartiles), eGFR, and BMI. Model 2 additionally adjusted 
for systolic blood pressure (continuous), non-high-density lipoprotein 
cholesterol (continuous), fasting glucose (continuous), Mets 
components (3–5), insulin use, diabetic pills use, antihypertensive 
medication use, and antihyperlipidemic drug use. We verified the 
proportional hazards assumption using Schoenfeld residuals. 
Furthermore, Kaplan–Meier (KM) curves were employed to illustrate 
the varying survival probabilities among participants based on 
different serum carotenoid levels. In addition, restricted cubic spline 
(RCS) analysis, with knots positioned at the 10th, 50th, and 90th 
percentiles of serum carotenoid distribution, was conducted to assess 
potential non-linear relationships. The presence of non-linearity was 
evaluated using the ANOVA.

To examine potential effect modification, we performed stratified 
analyses using likelihood ratio tests. Stratification variables included 
sex (female or male), age (≤60 or > 60 years), smoking status (current 

2 https://www.cdc.gov/nchs/nhanes/

or never/past), physical activity status (inactive or active/insufficient), 
eGFR (≤60 or > 60 mL/min/1.73m2), and the number of MetS 
components (3, 4, or 5).

To assess the robustness of the findings, we  conducted three 
sensitivity analyses. First, to reduce the likelihood of reverse causality, 
we  excluded individuals who died within the initial 2 years of 
follow-up, consistent with previous studies (13, 18). Subsequently, 
we expanded our models to account for additional dietary factors, 
incorporating quartiles of total protein, fat, cholesterol, fiber, folate, 
and vitamins A, E, B12, and C intake. In our final analysis, we further 
adjusted for serum nutrient biomarkers, including vitamins A, C, D, 
and E (all in quartiles). Missing covariate data were multiply imputed 
using the “mice” package in R. Analyses were performed on both the 
full imputed dataset and a subset excluding imputed values to assess 
imputation quality. The results presented are based on the full imputed 
dataset. Results excluding imputed values are not shown but were 
consistent with the main findings. All data management and statistical 
analyses were conducted using R statistical software (version 4.3.1). 
Statistical significance was defined as a two-tailed p value below 0.05.

Results

From the 8,896 MetS participants in the NHANES III and 
NHANES 2001–2006 cycles, 6,601 individuals met the study’s 
inclusion criteria. Among these, females accounted for 53.38% 
(weighted percentage), with a mean age of 56 years. The median 
(interquartile range) serum concentrations were 0.06 (0.03, 0.10) 
μmol/L for α-carotene, 0.25 (0.15, 0.42) μmol/L for β-carotene, 0.13 
(0.08, 0.20) μmol/L for β-cryptoxanthin, 0.37 (0.24, 0.52) μmol/L for 
lycopene, and 0.29 (0.20, 0.42) μmol/L for lutein/zeaxanthin. Table 1 
presents a comparative analysis of participant characteristics stratified 
by quartiles of serum lycopene. Participants exhibiting higher serum 
lycopene levels were generally younger and more likely to be male, 
non-Hispanic whites, and low-to-moderate alcohol consumers. These 
individuals also exhibited favorable socioeconomic indicators, 
including a higher family income-to-poverty ratio and greater 
educational attainment, alongside increased leisure-time physical 
activity and higher energy intake levels. Furthermore, these 
individuals demonstrated a lower frequency of insulin use and lower 
systolic blood pressure (SBP). In contrast, they exhibited higher 
diastolic blood pressure (DBP), elevated serum triglycerides, 
non-high-density lipoprotein cholesterol (non-HDL-C), and total 
cholesterol levels, as well as increased use of antihyperlipidemic 
medications. Importantly, participants with elevated serum lycopene 
concentrations had fewer components of MetS, lower fasting plasma 
glucose (FPG), and higher eGFR. The baseline distributions and 
concentrations of the five carotenoids are detailed in 
Supplementary Table S1. Among these, lycopene exhibited the highest 
mean concentration at 0.400 μmol/L, followed by β-carotene at 
0.350 μmol/L, lutein/zeaxanthin at 0.337 μmol/L, β-cryptoxanthin at 
0.158 μmol/L, and α-carotene at 0.079 μmol/L.

During a mean follow-up time of 16.8 years, 1,237 subjects with 
CVD deaths among 6,601 MetS middle-aged and older adults were 
identified. Table  2 shows the associations between the risk of CVD 
mortality in MetS middle-aged and older adults and the levels of 5 serum 
carotenoids, as assessed through 3 multiple Cox regression analyses. 
After making adjustments for model 1, the serum lycopene 
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TABLE 1 Baseline characteristics of middle-aged and elderly adults with metabolic syndrome in NHANES III and NHANES 2001–2006.

Serum lycopene (μmol/L)

Characteristic Overall Q1 Q2 Q3 Q4 p value

<0.242 0.242–0.373 0.373–0.522 >0.522

Patients, n 6,601 2,075 1,820 1,438 1,268

Age, years 56 (47.0, 67.0) 62 (51.0, 72.0) 57 (49.0, 67.0) 54 (46.1, 64.0) 53 (45.0, 62.0) <0.001

Female, n (%) 3,647 (53.4%) 1,192 (58.9%) 1,039 (55.8%) 785 (53.8%) 631 (44.6%) <0.001

Non-Hispanic White, n (%) 3,249 (77.8%) 937 (72.6%) 863 (77.9%) 742 (79.6%) 707 (81.1%) <0.001

Smoking status, n (%) 0.429

Current smoker 1,263 (20.0%) 429 (22.0%) 335 (18.9%) 274 (20.6%) 225 (18.4%)

Former smoker 2,132 (32.9%) 673 (32.1%) 580 (34.2%) 446 (31.3%) 433 (34.0%)

Never smoker 3,206 (47.1%) 973 (45.9%) 905 (47.0%) 718 (48.0%) 610 (47.6%)

Drinking status, n (%) <0.001

Heavy drinker 181 (2.8%) 61 (3.4%) 54 (3.3%) 33 (2.2%) 33 (2.3%)

Low-to-moderate drinkers 2,905 (50.2%) 777 (41.6%) 793 (49.4%) 666 (53.6%) 669 (56.9%)

Nondrinker 3,515 (47.0%) 1,237 (55.0%) 973 (47.3%) 739 (44.3%) 566 (40.8%)

Family income-to-poverty ratio, n (%) <0.001

≤1 1,633 (15.1%) 613 (20.9%) 472 (14.3%) 310 (12.9%) 238 (12.0%)

1.1–3.0 2,769 (37.0%) 959 (43.3%) 738 (36.5%) 600 (36.9%) 472 (31.2%)

>3 2,199 (47.9%) 503 (35.8%) 610 (49.2%) 528 (50.2%) 558 (56.8%)

Educational attainment, n (%) <0.001

College or above 1,940 (41.5%) 425 (30.1%) 505 (39.4%) 503 (47.9%) 507 (49.4%)

High School or equivalent 1,783 (31.2%) 492 (30.1%) 496 (32.5%) 410 (30.7%) 385 (31.7%)

Less than high school 2,878 (27.3%) 1,158 (39.8%) 819 (28.1%) 525 (21.5%) 376 (18.9%)

Physical activity, n (%) <0.001

Active 1,612 (26.7%) 430 (22.5%) 450 (27.6%) 375 (27.9%) 357 (29.1%)

Insufficiently active 3,608 (48.9%) 1,274 (56.3%) 1,005 (49.3%) 740 (47.5%) 589 (42.0%)

Inactive 1,381 (24.4%) 371 (21.2%) 365 (23.2%) 323 (24.6%) 322 (28.9%)

Energy intake, kcal/d 1,845.0 (1,377.0, 

2,439.5)

1,645.9 (1,246.5, 

2,208.5)

1,786.0 (1,373.0, 

2,431.8)

1,902.1 (1,409.8, 

2,454.2)

2,091.5 (1,547.0, 

2,730.6)

<0.001

Body mass index, kg/m2 30.2 (27.1, 33.9) 29.6 (26.4, 33.5) 30.6 (27.2, 34.4) 30.4 (27.2, 34.0) 30.1 (27.4, 33.7) 0.011

eGFR, mL/min per 1.73 m2 72.6 (60.0, 87.2) 68 (55.5, 83.6) 72.1 (59.7, 86.2) 76.2 (62.1, 88.7) 76.3 (63.8, 90.5) <0.001

Serum triglycerides, mg/dL 181 (136.0, 242.1) 172 (129.0, 235.0) 177 (133.0, 234.0) 186 (143.7, 243.0) 191.6 (144.0, 258.7) <0.001

Serum total cholesterol, mg/

dL

216 (188.5, 246.0) 205 (176.0, 234.0) 209 (185.0, 238.9) 220 (194.0, 245.0) 233 (205.0, 264.0) <0.001

Fasting Glucose, mg/dL 108.3 (97.3, 130.1) 112.2 (99.0, 137.9) 109.5 (97.7, 132.9) 107 (96.4, 126.2) 105.9 (96.2, 125.7) <0.001

HDL-C, mg/dL 43 (37.0, 51.0) 42 (36.0, 51.0) 42 (37.0, 50.0) 43 (37.0, 52.0) 43 (37.0, 52.0) 0.241

non-HDL-C, mg/dL 171.0 (143.0, 201.0) 159.0 (131.0, 189.0) 163.0 (139.0, 194.0) 173.0 (147.0, 198.6) 188.0 (160.0, 218.0) <0.001

Systolic blood pressure, 

mmHg

132 (120.0, 144.7) 134 (121.0, 147.3) 132.7 (121.3, 145.3) 132 (120.7, 143.0) 130.5 (118.0, 142.0) <0.001

Diastolic blood pressure, 

mmHg

76 (68.7, 84.0) 74 (67.3, 82.4) 75.3 (68.0, 83.3) 77.3 (68.7, 84.1) 77.3 (70.7, 84.7) <0.001

Supplement use, n (%) 3,045 (51.6%) 933 (50.5%) 838 (52.4%) 656 (51.4%) 618 (52.3%) 0.890

Diabetic pills use, n (%) 871 (10.9%) 300 (11.9%) 250 (11.3%) 168 (9.7%) 153 (10.6%) 0.414

Insulin use, n (%) 263 (2.1%) 118 (3.6%) 59 (1.4%) 42 (2.0%) 44 (1.5%) 0.001

Antihypertensive medication 

use, n (%)

2,769 (41.2%) 894 (43.8%) 755 (41.3%) 604 (39.8%) 516 (39.9%) 0.349

(Continued)
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concentrations were observed to have substantial correlations with CVD 
mortality. With further adjustments for model 2, the findings remained 
stable and statistically significant. The multivariable-adjusted hazard 
ratios (95% CIs) across quartiles of serum lycopene were 1.00 (reference), 
0.84 (0.71, 1.00), 0.87 (0.74, 1.03), and 0.77 (0.61, 0.97; P trend = 0.039). 
Notably, compared to the reference quartile, the third and fourth 
quartiles of β-carotene exhibited an increased risk of CVD mortality in 
crude models; however, after additional adjustments, no significant 
associations were found between CVD mortality risk and serum levels 
of β-cryptoxanthin or β-carotene. Additionally, a significant association 
was observed between the second quartile of α-carotene (HR, 0.76 [95% 
CI, 0.61–0.94]) and lutein/zeaxanthin (HR, 0.79 [95% CI, 0.62–0.99]) 
with CVD mortality when compared to the first quartile after 
multivariate adjustment; whereas no significant associations were found 
for the third and fourth quartiles of α-carotene or lutein/zeaxanthin. 
Similar associations were observed between total serum carotenoid levels 
and CVD mortality, as detailed in Supplementary Table S2.

Additionally, KM survival analysis showed that higher 
concentrations of lycopene were significantly associated with 
improved survival (Log-rank p < 0.0001). A similar trend was observed 
for lutein/zeaxanthin (Log-rank p = 0.011). In contrast, lower 
concentrations of β-carotene were linked to significantly higher 
survival rates (Log-rank p < 0.0001). No significant differences in 
survival were noted for α-carotene and β-cryptoxanthin (Log-rank 
p > 0.05; Supplementary Figure S2).

RCS plots were performed to assess the potential non-linearity of 
the association between CVD mortality in MetS subjects and the log2-
transformed carotenoids (Figure 1). Of note, a U-shaped relationship 
between the log2-transformed serum lutein/zeaxanthin levels and 
CVD mortality could be observed (P for nonlinearity = 0.047). For the 
other major carotenoids examined, including α-carotene, β-carotene, 
β-cryptoxanthin, and lycopene, the associations with CVD mortality 
exhibited a linear decreasing trend.

The inverse association between serum lycopene levels and CVD 
mortality risk persisted across stratified analyses by age (≤60 
or > 60 years), sex (female or male), smoking status (current or never/
past), physical activity status (inactive or active/insufficient), eGFR 

(≤60 or > 60 mL/min/1.73m2), and number of metabolic syndrome 
components (3, 4, or 5), as delineated in Table  3. No significant 
interactions were detected after adjusting for multiple comparisons. 
Additionally, subgroup analyses examining the relationships between 
serum levels of α-carotene, β-carotene, β-cryptoxanthin, lutein/
zeaxanthin, and total carotenoid levels with CVD mortality were 
conducted, as detailed in Supplementary Tables S4–S8.

In sensitivity analyses, the negative association between serum 
lycopene levels and CVD mortality was not materially changed when 
subjects who died within the initial 24 months of follow-up were 
excluded (Supplementary Table S3). After additional adjustments for 
individual dietary elements, including intakes of total fat, total protein, 
cholesterol, folate, fiber, and vitamins A, E, C, and B12 levels (all in 
quartiles), the results remained largely consistent. Consistent results 
persisted after additional adjustment for quartiles of serum nutrient 
biomarker concentrations, including vitamins A, C, D, and E 
(Supplementary Table S9).

Discussion

In this prospective study, we examined the relationship between 
serum concentrations of five major carotenoids and the risk of CVD 
mortality among 6,601 metabolic syndrome-afflicted middle-aged and 
older subjects over a median follow-up duration of 16.8 years. Our 
analyses revealed an inverse dose–response relationship between serum 
lycopene concentrations and the risk of CVD mortality. This inverse 
relationship was independent of traditional risk elements, including 
dietary intake, lifestyle behaviors, MetS components, and kidney 
function as estimated by the glomerular filtration rate. In contrast, high 
circulating levels of α-carotene, β-cryptoxanthin, β-carotene, and 
combined lutein/zeaxanthin were not notably connected to CVD 
mortality risk among metabolic syndrome-afflicted 40-year-old and 
older adults in the present study. Multiple sensitivity analyses and 
stratified analyses confirmed the robustness of our findings.

Oxidative stress (OS) is characterized by excess ROS, leading to 
redox signaling disruptions and molecular damage (29). Increased OS 

TABLE 1 (Continued)

Serum lycopene (μmol/L)

Characteristic Overall Q1 Q2 Q3 Q4 p value

Antihyperlipidemic 

medication use, n (%)

1,598 (27.5%) 450 (25.9%) 422 (25.8%) 359 (26.8%) 367 (31.7%) 0.019

MetS components, n (%) 0.016

3 3,288 (49.7%) 1,001 (46.4%) 876 (48.2%) 731 (49.7%) 680 (54.5%)

4 2,349 (36.4%) 752 (37.7%) 653 (36.4%) 514 (37.5%) 430 (34.0%)

5 964 (13.9%) 322 (15.9%) 291 (15.4%) 193 (12.8%) 158 (11.4%)

α-carotene, μmol/L 0.06 (0.03, 0.10) 0.04 (0.02, 0.07) 0.06 (0.03, 0.09) 0.07 (0.04, 0.11) 0.07 (0.04, 0.12) <0.001

β-carotene, μmol/L 0.25 (0.15, 0.42) 0.19 (0.11, 0.35) 0.24 (0.15, 0.39) 0.26 (0.17, 0.42) 0.33 (0.20, 0.51) <0.001

β-cryptoxanthin, μmol/L 0.13 (0.08, 0.20) 0.09 (0.06, 0.16) 0.11 (0.08, 0.18) 0.13 (0.09, 0.20) 0.16 (0.11, 0.24) <0.001

Lutein/zeaxanthin, μmol/L 0.29 (0.20, 0.42) 0.25 (0.17, 0.37) 0.28 (0.19, 0.38) 0.30 (0.21, 0.41) 0.34 (0.25, 0.48) <0.001

Total carotenoids, μmol/L 1.19 (0.87, 1.62) 0.80 (0.60, 1.12) 1.05 (0.84, 1.37) 1.27 (1.02, 1.59) 1.65 (1.36, 2.07) <0.001

Normally distributed continuous variables are described as mean ± SE, and continuous variables without a normal distribution are presented as median (interquartile range). Categorical 
variables are presented as numbers (percentages). N reflects the study sample while percentages reflect the survey-weighted. eGFR, estimated glomerular filtration rate; HDL-C, high-density 
lipoprotein cholesterol; non-HDL-C, non-high-density lipoprotein cholesterol.
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in adipose tissue has been identified as a significant early contributor to 
MetS (30, 31). Research involving obese murine models has 
demonstrated that the administration of oxidase inhibitors leads to 
increased adiponectin expression and decreased TNF-α expression, 
thereby mitigating complications such as diabetes, hyperlipidemia, and 
hepatic steatosis (32). Carotenoids, acting as potent scavengers of ROS, 
possess inherent antioxidant properties, which constitute their primary 
beneficial effects (33). Lycopene is primarily stored in adipose tissue and 
exhibits superior efficacy in neutralizing singlet oxygen and free radicals 
compared to other carotenoids, including β-cryptoxanthin, β-carotene, 
lutein, and zeaxanthin (30, 34, 35). Specifically, lycopene demonstrates 

tenfold greater potency than α-tocopherol and twice the potency of 
β-carotene in counteracting OS (34). Recent preclinical studies indicate 
that lycopene regulates key signaling pathways, including AGE/RAGE, 
JNK/MAPK, PI3K/Akt, and SIRT1/FoxO1/PPARγ, resulting in a 
reduction in the production of pro-inflammatory markers (30, 36).

Observational studies suggested an inverse association between 
elevated plasma lycopene concentrations and the risk of cardiovascular 
disease, as well as a favorable impact on dysregulated metabolic 
phenotypes (14, 18, 37–40). According to Müller et  al., lycopene 
supplementation is particularly advantageous for individuals with 
antioxidant deficiencies, such as the elderly, as well as those experiencing 

TABLE 2 Hazard ratios (95% CIs) of CVD according to quartiles of serum carotenoids concentrations among middle-aged and elderly adults with MetS 
in NHANES III and NHANES 2001–2006.

Serum carotenoids (μmol/L)

Quartile 1 Quartile 2 Quartile 3 Quartile 4 P trend

α-Carotene

Range <0.032 0.032–0.058 0.058–0.097 >0.097

No. deaths/total 263/1551 274/1650 348/1736 352/1664

Crude 1 0.91 (0.72, 1.14) 1.05 (0.85, 1.29) 1.12 (0.91, 1.37) 0.164

Model 1 1 0.78 (0.63, 0.98) 0.88 (0.69, 1.10) 0.82 (0.65, 1.03) 0.214

Model 2 1 0.76 (0.61, 0.94) 0.84 (0.67, 1.06) 0.81 (0.64, 1.04) 0.217

β-Carotene

Range <0.149 0.149–0.252 0.252–0.421 >0.421

No. deaths/total 235/1551 254/1551 331/1685 417/1814

Crude 1 1.08 (0.81, 1.43) 1.29 (1.01, 1.65) 1.52 (1.22, 1.88) <0.001

Model 1 1 0.92 (0.67, 1.25) 0.98 (0.75, 1.30) 0.86 (0.65, 1.14) 0.399

Model 2 1 0.89 (0.65, 1.23) 1.02 (0.79, 1.33) 0.90 (0.69, 1.17) 0.652

β-Cryptoxanthin

Range <0.081 0.081–0.127 0.127–0.199 >0.199

No. deaths/total 248/1338 334/1685 275/1530 380/2048

Crude 1 0.99 (0.79, 1.24) 0.85 (0.68, 1.08) 0.99 (0.81, 1.20) 0.542

Model 1 1 1.05 (0.83, 1.31) 0.90 (0.70, 1.14) 0.87 (0.70, 1.09) 0.118

Model 2 1 1.02 (0.81, 1.29) 0.87 (0.69, 1.11) 0.85 (0.68, 1.07) 0.070

Lycopene

Range <0.242 0.242–0.373 0.373–0.522 >0.522

No. deaths/total 472/2075 330/1820 251/1438 184/1268

Crude 1 0.63 (0.52, 0.75) 0.50 (0.41, 0.60) 0.40 (0.32, 0.49) <0.001

Model 1 1 0.84 (0.72, 1.00) 0.85 (0.72, 1.00) 0.77 (0.62, 0.96) 0.026

Model 2 1 0.84 (0.71, 1.00) 0.87 (0.74, 1.03) 0.77 (0.61, 0.97) 0.039

Lutein/zeaxanthin

Range <0.204 0.204–0.290 0.290–0.418 >0.418

No. deaths/total 190/1269 258/1570 311/1758 478/2004

Crude 1 1.02 (0.77, 1.35) 0.98 (0.77, 1.24) 1.30 (1.00, 1.70) 0.089

Model 1 1 0.82 (0.64, 1.04) 0.79 (0.62, 1.01) 0.92 (0.72, 1.16) 0.475

Model 2 1 0.79 (0.62, 0.99) 0.77 (0.60, 1.00) 0.85 (0.65, 1.12) 0.299

Model 1 was adjusted for age (continuous), sex (male or female), race (non-Hispanic white or other), education level (less than high school, high school or equivalent, or college or above), 
smoking status (never smoker, former smoker, or current smoker), alcohol consumption status (nondrinker, low-to-moderate drinker, or heavy drinker), family poverty income ratio (<1.0, 
1.0–3.0, or > 3.0), physical activity (inactive group, insufficiently active group, or active group), supplement use (yes or no), total energy intakes (in quartiles), eGFR (continuous), 
BMI(continuous). Model 2 was adjusted for as model 1 plus SBP (continuous), serum non-HDL-C (continuous), fasting glucose (continuous), Mets components (3–5), insulin use (yes or no), 
diabetic pills use (yes or no), antihypertensive medication use (yes or no), antihyperlipidemic drug use (yes or no).

https://doi.org/10.3389/fnut.2024.1465972
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Han et al. 10.3389/fnut.2024.1465972

Frontiers in Nutrition 07 frontiersin.org

heightened oxidative stress, including smokers, diabetics, and post-
myocardial infarction patients (41). Furthermore, a cross-sectional study 
of middle-aged and elderly men found an inverse association between 
lycopene levels and the prevalence of MetS, waist circumference, and 
triglycerides (14). Lycopene has been shown to reduce LDL oxidation, 
although this effect does not necessarily correlate with decreased LDL 
cholesterol levels (35, 36, 42). Among carotenoids, only lycopene has 
been found to modulate the expression of adhesion molecules in 
cultured human aortic endothelial cells (43). Furthermore, lycopene may 
decrease Rho-associated kinase expression and regulate the NO/cGMP 
signaling pathway, thereby mitigating atherosclerosis (44). In our study, 
the average lycopene concentration was 0.4 μmol/L, which is within the 
median range of previously reported plasma lycopene concentrations 
(13, 18, 35, 45–48). Research indicates that a lycopene concentration of 
0.4 μmol/L is associated with the lowest all-cause mortality rate, 
potentially elucidating one reason for the robust correlation observed 
between lycopene levels in our results and CVD mortality (48). 
Moreover, our research demonstrates that low total carotenoid levels, 
along with low α-carotene and lutein/zeaxanthin concentrations, are 
significantly associated with decreased CVD mortality, consistent with 
previous reports (13, 48). These results extend earlier findings regarding 
the cardiovascular effects of carotenoids in populations with 
MetS. Further prospective research involving larger sample sizes is 
essential to explore the identified associations more comprehensively.

Additionally, subgroup analyses of serum carotenoids revealed 
significant interactions between lutein/zeaxanthin and β-cryptoxanthin 
with the eGFR stage. Specifically, these carotenoids exhibited protective 
effects in individuals with an eGFR greater than 60 mL/min/1.73m2, 
while promoting CVD mortality in those with an eGFR less than 
60 mL/min/1.73m2. This phenomenon may be  attributed to the 
oxidative-reductive status of patients, as substantial evidence indicates 

that OS is heightened in chronic kidney disease patients (33, 49). 
Under conditions of elevated intracellular OS, increased oxygen 
tension, and low levels of endogenous antioxidants, carotenoids can 
act as pro-oxidants (33, 50). As previously mentioned, among the 
diabetic population, elevated circulating β-carotene levels have shown 
a significant positive association with increased cardiovascular disease 
risk (13). Moreover, high-dose β-carotene supplementation has been 
linked to a higher incidence of lung cancer among male smokers (22). 
The interaction of carotenoids with varying oxidative-reductive states, 
along with their effects on specific organelles or tissues, suggests that 
the overall impact of carotenoids may differ markedly (51).

Our study has several notable strengths. Firstly, utilizing a large, 
multiethnic cohort with an extended follow-up period, we identified an 
inverse dose–response relationship between serum lycopene levels and 
CVD mortality among middle-aged and elderly men with 
MetS. Secondly, we  adjusted for multiple potential confounders, 
including lifestyle factors, medication use, and components of MetS, 
thereby ensuring robust control of confounding effects on our findings. 
Importantly, our results remained consistent after accounting for dietary 
factors and other serum nutrient levels, suggesting that the observed 
association is not merely a reflection of overall nutritional status or 
supplement use. Furthermore, our sensitivity analyses provide on the 
results of serum lycopene as an independent biomarker for long-term 
CVD mortality risk in this population. These findings highlight the need 
for optimizing dietary structures and addressing nutritional 
insufficiencies, particularly in populations with decreased 
lycopene levels.

However, several limitations should be acknowledged. First, the 
observational study design limits our ability to establish causal or 
temporal relationships between serum lycopene levels and CVD 
mortality. Second, similar to previous studies (18), while serum 

FIGURE 1

Restricted cubic spline analyses of the association of serum carotenoids (A: α-carotene, B: β-carotene, C: β-cryptoxanthin, D: lycopene, and E: lutein/
zeaxanthin) with CVD mortality. Adjusted for age (continuous), sex (male or female), race (non-Hispanic white or other), education level (less than high 
school, high school or equivalent, or college or above), smoking status (never smoker, former smoker, or current smoker), alcohol consumption status 
(nondrinker, low-to-moderate drinker, or heavy drinker), family poverty income ratio (<1.0, 1.0–3.0, or  >  3.0), physical activity (inactive group, 
insufficiently active group, or active group), supplement use (yes or no), total energy intakes (in quartiles), eGFR (continuous), BMI(continuous), SBP 
(continuous), serum non-HDL-C (continuous), fasting glucose (continuous), Mets components (3–5), insulin use (yes or no), diabetic pills use (yes or 
no), antihypertensive medication use (yes or no), antihyperlipidemic drug use (yes or no).
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carotenoid concentrations may reflect average daily intake, our analysis 
relies on a single baseline measurement, which does not capture potential 
fluctuations in these levels over the follow-up period. Finally, despite 
adjusting for multiple potential confounders in our analyses, we cannot 
entirely exclude the possibility of residual or unmeasured confounding.

Conclusion

In this nationally representative sample of US middle-aged and 
elderly men with MetS, higher serum lycopene concentrations were 
associated with lower cardiovascular mortality risk. This relationship 
was not observed for other carotenoids. While these findings suggest 
a potential role for lycopene in cardiovascular risk assessment, further 
research is needed to confirm and elucidate this association.
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TABLE 3 Stratified analyses of the associations between serum lycopene concentrations and CVD mortality among middle-aged and elderly adults with 
MetS in NHANES III and NHANES 2001–2006.

Serum lycopene (μmol/L)

Quartile 1 Quartile 2 Quartile 3 Quartile 4 P trend P interaction

Characteristics <0.242 0.242–0.373 0.373–0.522 >0.522

Age, years 0.578

≤60 (n = 3,165) 1 0.86 (0.52, 1.42) 0.76 (0.45, 1.26) 0.81 (0.49, 1.34) 0.360

>60 (n = 3,436) 1 0.83 (0.69, 0.99) 0.84 (0.65, 1.10) 0.63 (0.47, 0.84) 0.005

Sex 0.595

Male (n = 2,954) 1 0.72 (0.54, 0.96) 0.80 (0.57, 1.12) 0.78 (0.54, 1.12) 0.293

Female (n = 3,647) 1 0.88 (0.71, 1.11) 0.79 (0.59, 1.04) 0.58 (0.41, 0.83) 0.003

Smoking status 0.065

Current (n = 1,263) 1 0.83 (0.50, 1.37) 0.42 (0.24, 0.74) 0.73 (0.34, 1.54) 0.188

Never/past (n = 5,338) 1 0.81 (0.67, 0.98) 0.91 (0.74, 1.12) 0.64 (0.50, 0.81) 0.002

Physical activity 0.083

Inactive (n = 3,608) 1 0.90 (0.71, 1.14) 0.65 (0.52, 0.80) 0.59 (0.42, 0.84) 0.001

Active/ insufficient 

(n = 2,993)
1

0.70 (0.53, 0.92) 0.91 (0.66, 1.24) 0.72 (0.51, 1.02) 0.209

eGFR, mL/min per 1.73 m2 0.428

≤60 (n = 2,017) 1 0.80 (0.62, 1.02) 0.83 (0.62, 1.11) 0.79 (0.57, 1.12) 0.235

>60 (n = 4,584) 1 0.80 (0.63, 1.03) 0.76 (0.58, 0.98) 0.60 (0.44, 0.82) 0.002

MetS components 0.924

3 (n = 3,288) 1 0.69 (0.49, 0.96) 0.82 (0.61, 1.11) 0.66 (0.45, 0.98) 0.108

4 (n = 2,349) 1 1.03 (0.74, 1.44) 0.83 (0.60, 1.15) 0.77 (0.51, 1.17) 0.124

5 (n = 964) 1 0.67 (0.48, 0.94) 0.70 (0.45, 1.07) 0.55 (0.33, 0.92) 0.034

Data are presented as HR (95% CI). Adjusted for age (continuous), sex (male or female), race (non-Hispanic white or other), education level (less than high school, high school or equivalent, 
or college or above), smoking status (never smoker, former smoker, or current smoker), alcohol consumption status (nondrinker, low-to-moderate drinker, or heavy drinker), family poverty 
income ratio (<1.0, 1.0–3.0, or > 3.0), physical activity (inactive group, insufficiently active group, or active group), supplement use (yes or no), total energy intakes (in quartiles), eGFR 
(continuous), BMI(continuous), SBP (continuous), serum non-HDL-C (continuous), fasting glucose (continuous), Mets components (3–5), insulin use (yes or no), diabetic pills use (yes or 
no), antihypertensive medication use (yes or no), antihyperlipidemic drug use (yes or no).
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