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Introduction: Lifestyle influences microbiota composition. We  previously 
reported a healthier microbiota composition in saliva from active schoolchildren 
compared to sedentary. In the present study, we  evaluated the effects of 
6  months of different exercise types on physical fitness and saliva microbiota 
composition in 8-11-years-old sedentary schoolchildren.

Methods: Sixty-four sedentary children from five primary schools in Turin, 
Italy, were divided into three groups: one continued normal curricular activity 
while two underwent different exercise protocols for 6  months. The Structured 
Exercise (Sa) group did 2  h per week of muscle activation, strength and 
coordination exercises supervised by a kinesiologist. The Daily Mile (Dm) group 
did 1  h per week of Sa plus 15  min of walking/running outdoors four times a week, 
supervised by a class teacher; control group (Ct) did 2  h a week of curricular 
exercise supervised by a class teacher. Physical fitness was evaluated before 
and after the intervention. Saliva samples were collected post-intervention 
in all participants and analyzed using PCR amplification of 16S rRNA bacterial 
genes. The Amplicon Sequence Variants were filtered, decontaminated, and 
phylogenetically classified using DADA2 software. Differential abundance 
analysis of microbiome taxa and pathway data was conducted using the LEfSe 
algorithm and PICRUSt.

Results: The Sa group showed better performances in lower limb power and 
sprint performance while both the Sa and Dm groups improved in endurance and 
balance at the end of the intervention; only balance resulted slightly improved in 
the Ct group. Among the genera differently enriched in saliva after the training 
intervention, we  found that the Prevotella, the Dubosiella and the Family XIII 
AD3011 group were the most abundant in the Sa group; differently, the Neisseria 
and the Abiotrophia in Ct group. Four species showed significant the Prevotella 
melaninogenica and the Prevotella nanceiensis were more abundant in the Sa, 
conversely, Gemella sanguinis was enriched in Dm and Abiotrophia defectiva in 
Ct saliva group.
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Conclusion: We demonstrated that Sa and Dm, not curricular exercise, improve 
the physical fitness components in sedentary schoolchildren correlated to 
health and promote an enrichment in saliva microbiota species associated to a 
healthier profile.
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1 Introduction

The human microbiota is an ecosystem of trillions of 
microorganisms comprising bacteria, viruses, fungi and archaea that 
inhabit our body (1, 2). The microbiota genome, called microbiome, 
is considered ‘our second genome’ and ‘our last organ’ due to its 
important role in human health and wellness (2–4). The human 
microbiota was mainly located in the gut, although it was abundant in 
other organs and tissues including oral cavity, lung, vagina and skin; 
the composition differs from site to site. The gut microbiota 
composition is the most studied, to date, in association to human 
health (5, 6). Gut bacteria have several functions, such as food 
fermentation, protection from pathogens, immune response 
stimulation, uptake of nutrients that would otherwise be unavailable 
to the host, production of vitamins, such as vitamin K and the B 
vitamins. Scientific evidence indicate that different environmental 
factors, as pollutants, antibiotics, stress, and an unhealthy lifestyle, as 
unbalanced diet, sedentary lifestyle, negatively impact on the 
composition and function of the gut microbiota leading to disruption 
of microbial homeostasis (i.e., dysbiosis) (7–10). Microbial dysbiosis 
have been associated to the development of different pathologies, 
including obesity (10–13), type 2 diabetes (11, 14) and some type of 
cancer (11, 15). The oral microbiota represents the second largest 
microbial community in humans (6, 16). It has been demonstrated 
that oral microbiota composition affects not only the oral but also the 
systemic health contributing to colonization resistance (17), nutrient 
digestion (18) and immune response (19, 20). Scientific evidence have 
been provided on the association between the oral microbiome 
composition and different diseases including cardiovascular disease 
(21, 22), atherosclerosis, obesity (22–25), colorectal cancer (20, 26–
28), pancreatic cancer (26, 29), squamous cell cancer of the head and 
neck (20, 27). Therefore, there is a growing interest in determining the 
composition of the “healthy” oral microbiome and the factors that 
could influence its composition (2, 30).

Physical activity (PA) is one of the main environmental factors 
modulating the composition of the intestinal microflora (11, 12, 14, 
31, 32), leading to an increase in the diversity of the microbiota (32, 
33). PA, by stimulating bacterial proliferation, has been shown to 
improve intestinal barrier function and modulation of mucosal 
immunity leading to a reduction of the incidence of metabolic diseases 
and obesity (11, 34). Furthermore, it has been demonstrated that there 
is a positive association between PA levels and biodiversity of the 
microbiota. Clauss and colleagues reported that moderate resistance 
exercise reduces inflammation, improves body composition and 
positively influences the enrichment and biodiversity of the gut 
microbiome in association to improved human metabolic health when 
intensity is controlled (35). In a recent meta-analysis by Pérez-Prieto 
and colleagues, a positive association was reported between PA levels 
and the relative abundance of short-chain fatty acid-(SCFA) producing 

bacteria; furthermore, in the same meta-analysis it was evidenced that 
athletes appear to have a richer gut microbiome than non-athletes (2, 
36). Understanding the dynamic interaction between exercise and 
microbiota is important not only to elucidate the complex mechanisms 
that regulate human health, but also to develop targeted interventions 
to promote health and well-being in different age groups. The 
knowledge of how physical activity can influence the microbiota 
composition in childhood and adolescent becomes particularly crucial 
as it could offer the possibility of studying the potential implications 
of exercise/sport practice on adult health. Recent studies have shown 
that gut microbiota composition can be modulated by lifestyle and PA 
in obese children (37–40). We previously reported that active primary 
schoolchildren had an enrichment in saliva composition of bacterial 
species, such as Prevotella nigrescens, Collinsella aerofaciens, 
Simonsiella muelleri and Parabacteroides merdae, associated with a 
healthier profile as compared to sedentary children that presented an 
enrichment of species, such as Gemella parahaemolysans, Prevotella 
aurantiaca, Prevotella pallens and Neisseria mucosa, associated to 
human diseases (41). The aim of this paper was to evaluate the effects 
of 6 months (6-mo) of different exercise type, Structured (Sa) or Daily 
Mile (Dm) compared to curricular (Ct) on physical fitness components 
associated to health and on saliva microbiota composition in the 
8-11-years-old schoolchildren previously classified as sedentary.

2 Materials and methods

2.1 Participants

Sixty-four schoolchildren (8–11 years) belonging from five 
primary schools in the neighborhoods of Turin (northwest Italy) were 
enrolled and classified as Sedentary based on Triaxial Accelerometry 
and Physical Activity Questionnaire for Older Children (PAQ-C-
It) (42).

Parents/guardians and teachers furnished written informed 
consent for participation in the study, adhering to the ethical standards 
outlined in the 1964 Declaration of Helsinki. The ethics committees 
on human research of the University of Turin (9 March 2020: Protocol 
#134691) and Naples (17 January 2020: Protocol #376/19) granted 
approval for the study.

Anthropometric measurements were reported. The procedures 
used to take anthropometric measures were standardized as described 
in Lupo et al. (42): height was measured using a portable stadiometer 
(Model 214; Seca, Hamburg, Germany), weight was measured using 
an electronic scale (Model 876; Seca, Hamburg, Germany), and waist 
circumference was measured while standing, halfway between the 
lowest rib and the iliac crest, using an Ana elastic meter. Body Mass 
Index (BMI) was calculated by dividing weight by height squared (kg/
m2; Table 1). On average, the BMI of all enrolled schoolchildren fall 
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within a range between the 75th and 85th percentile (43). For the daily 
dietary intake assessment all participants completed the questionnaire 
(3-Days food records). Records were processed using Winfood 
software (Medimatica S.u.r.l., Colonnella, TE, Italy). Statistical analysis 
was performed through Jamovi (2.3.26 version).

2.2 Training intervention

All sedentary enrolled schoolchildren were randomly assigned to 
2 different types of exercise: Structured Exercise (Sa), 2 h/w muscle 
activation, strength and coordination exercises (supervised by a 
kinesiologist); Daily Mile (Dm), 1 h/w Sa plus 15 min/4 for week of 
walking/running outdoors (supervised by class teacher) or control 
group (curricular activities, 2 h/w PA supervised by class teacher, Ct) 
for 6-months (October, 2021–March, 2022). All interventions were 
planned within the common weekly volume of physical activity (i.e., 
2 h), despite differently distributed according to the type of 
intervention. All children belonging to a single school class were 
enrolled in one of the three sub-groups, and no information about 
results of previous fitness measures (classification in active and 
no-active children) have been shared with them.

In particular, 22 schoolchildren belonging to the same class were 
involved in the Sa group and performed the following protocol: two 

(1 h in a day, and one in another day) school weekly hours of physical 
activity leaded by an expert (i.e., Sport Sciences Master degreed) 
according to American College of Sports Medicine guidelines (44). In 
particular, a single hour of this school physical activity type was 
distributed in 3 parts, 20 min/each focused on: fundamental 
movement skills, strength activities (strengthening activities) and 
aerobic activity. For the first part of exercises, basic body movements 
such as running, jumping, catching, balance, agility and coordination 
were proposed (45). The strength activities included all those 
movements that are generated by muscle contraction against 
resistance, aiming not only to improve individual strength level, but 
also anaerobic endurance and muscle size, balance, flexibility, 
mobility, posture, bone density, strength, self-esteem, prevention of 
chronic conditions such as diabetes, heart disease and depression, 
reduction in injury risk and pain management (46). Finally, for the 
last 20 min of the session, the proposed exercises were characterized 
by the contraction of large muscle groups, exclusively based on the 
aerobic energy system, by practicing walking, running, playing 
games, dancing, all activities recognized as able to increase 
cardiorespiratory fitness, weight maintenance, strengthens muscles 
and bones, mental health, social skills, and academic performance 
(44, 47). The second semi-structured intervention group (Dm) 
included a class of 22 schoolchildren that performed the following 
protocol: four weekly days characterized by the practice of The Daily 

TABLE 1 Anthropometric characteristics of enrolled schoolchildren in Structured (Sa), Daily Mile (Dm) activities and Control (Ct) group, PRE-e POST-
training intervention.

Ct Dm Sa

Tukey p-valueGender M/F 14 / 5 12 / 8 13 / 9 ANOVA p-value

Age (years) 8–10 8–11 9–11

Height (cm)
PRE 133.0 ± 5.3 134.0 ± 5.1 141.0 ± 6.9

0.934

Ct vs. Dm p = 0.48

Ct vs. Sa p < 0.01

Dm vs. Sa p < 0.01

POST 139.0 ± 5.3 140.0 ± 5.9 147.0 ± 7.2

Ct vs. Dm p = 0.72

Ct vs. Sa p < 0.01

Dm vs. Sa p < 0.01

Weight (kg)

PRE 33.8 ± 8.0 33.4 ± 7.2 36.3 ± 7.6

0.610

Ct vs. Dm p = 0.99

Ct vs. Sa p = 0.44

Dm vs. Sa p = 0.38

Ct vs. Dm p = 0.99

Ct vs. Sa p = 0.33

Dm vs. Sa p = 0.37POST 37.6 ± 9.8 38.0 ± 10.7 42.4 ± 11.3

BMI (kg/m2)

PRE 19.0 ± 3.5 18.5 ± 3.1 18.2 ± 2.8

0.664

Ct vs. Dm p = 0.89

Ct vs. Sa p = 0.84

Dm vs. Sa p = 0.95

Ct vs. Dm p = 0.97

Ct vs. Sa p = 1.00

Dm vs. Sa p = 0.97POST 19.3 ± 4.2 19.0 ± 4.2 19.3 ± 4.4

Waist/Height (cm)

PRE 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.1

0.764

Ct vs. Dm p = 0.71

Ct vs. Sa p = 0.13

Dm vs. Sa p = 0.50

Ct vs. Dm p = 0.68

Ct vs. Sa p = 0.09

Dm vs. Sa p = 0.36POST 0.5 ± 0.1 0.5 ± 0.1 0.4 ± 0.1

p-values of two-way ANOVA and post-hoc Tukey comparisons were reported. BMI, Body Mass Index.
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Mile,1 plus the 1 h of curricular physical activity leaded by the generic 
teacher. In particular, for The Daily Mile, children used to go outside 
within the spaces belonging to the school, to jog and/or run 
independently for 15 min, supervised by the generic teacher. A class 
of 20 schoolchildren continued to carry out the curricular physical 
activities under the supervision of their generic teacher, control 
sub-group (Ct).

2.3 Physical fitness test

Lower-Limb Muscle Power: The standing long-jump test was 
performed to assess lower-limb power. The test was performed as 
previously reported (48). Two trials were performed (with a 1 min 
pause in between), and the best score was considered for statistical 
analysis. Not all enrolled children carried out the POST-intervention 
assessment, therefore the final sample size for this test was: Ct = 19, 
Dm = 21, Sa = 13.

Balance: Balance was tested using the single-leg stance test. The 
dominant leg of the participants was determined by asking them 
which was their favorite leg (49). The test was performed as previously 
reported (48). The time (in seconds) was recorded using a stopwatch 
with an accuracy of 0.01 s. Not all enrolled children carried out the 
POST-intervention assessment, therefore the final sample size for this 
test was: Ct = 19, Dm = 18, Sa = 21.

Cardiorespiratory Fitness: The 20 m shuttle-run test, according to 
the Leger test soundtrack version (CAEP Quebec Faca), was used to 
evaluate the cardiorespiratory fitness. The test was performed as 
previously reported (50). The test score was the last reached stage 
(converted into the corresponding distance expressed in meters) (51). 
Not all enrolled children carried out the POST-intervention 
assessment, therefore the final sample size for this test was: Ct = 19, 
Dm = 21, Sa = 21.

Sprint Ability: Children’s sprint ability was evaluated by the 20 m 
linear sprint test (52). Individually, participants started the test with 
feet behind the startling line (53) and ran the 20 m distance as fast as 
possible, twice with a 1 min rest between the trials. The time elapsed 
from the start to the finish line was measured through infrared reflex 
photoelectric cells (Witty—Wireless Training Timer; Microgate, 
Udine, Italy), measuring to the nearest 0.01 s. Not all children carried 
out the POST-intervention assessment, therefore the final sample size 
for this test was: Ct = 19, Dm = 22, Sa = 21.

2.4 Saliva sample collection and genomic 
DNA extraction

The volunteers were instructed not to consume food and refrain 
from using mouth cleanliness products 1 h prior to saliva retrieval. At 
minimum, 2 milliliters of unstimulated spit were gathered, chilled, and 
preserved at −80°C until analysis. DNA extraction from saliva 
specimens was accomplished utilizing the MagPurix Bacterial DNA 
Extraction Kit (ZP02006; Zinexts Life Science Corp.) following the 
manufacturer’s instructions. DNA concentration was measured 

1 http://thedailymile.co.uk/

utilizing the Qubit dsDNA BR and HS assay kit (Life Technologies, 
CA, United States).

2.5 Preparation of the 16  S rRNA 
sequencing library (FIX)

PCR amplification was conducted to target the variable 
V3-V4 segments of the 16S rRNA bacterial genes. Specific 
primers embedded with barcodes and potent enzymes were 
utilized for PCR execution. The PCR primer sequences were as 
follows: (forward 341F: CCTAYGGGRBGCASCAG; reverse 806R: 
GGACTACNNGGGTATCTAAT). PCR products ranging from 450 to 
500 base pairs were isolated using 2% agarose gel electrophoresis. For 
library construction, equimolar amounts of PCR products from each 
sample were combined, end-repaired, A-tailed, and subsequently 
ligated with Illumina adapters. Library quality control was conducted 
using Qubit and real-time PCR for quantification, and bioanalyzer for 
verifying the insert size distribution. Libraries were sequenced on a 
paired-end Illumina platform, producing 250 bp paired-end raw reads. 
The raw sequencing data are available in Zenodo (Publication date: 
July 1st, 2024).2

2.6 Bioinformatic analysis

We conducted the analyses as reported in Mancini et al. (41). 
In brief, we used the R package DADA2 and its workflow (54) to 
infer the Amplicon Sequence Variants (ASVs) and for the 
taxonomic assignments.

Briefly, we first filtered and trimmed raw sequencing reads to 
remove low quality bases, adapters and identical reads. Then, the reads 
were denoised, merged and filtered to remove artifacts (PCR, and 
PhiX related chimeras). Then, we  obtained the ASVs counts and 
assigned taxonomy level annotations using the SILVA database 
(version: v138, nr99) (55). The data were structured in objects 
including the ASVs quantifications, the taxonomy annotations, the 
sample group information and the phylogenetic tree using the 
phyloseq and the APE packages (56, 57). Finally, based on the initial 
DNA concentration, we removed possible contaminant ASVs by using 
the “prevalence” method of the decontam package (58). For the 
downstream analyses we used the MicrobiomeAnalystR package (59, 
60) and conducted data normalization, measures of diversity and 
differential abundance estimation. As previously described (61), 
we filtered and normalized the raw ASV counts based on their low 
abundance (at least the 20% of a given ASV values should contain at 
least 4 counts) and low variance (based on Inter-quantile range ± 10%) 
in order to discard possible sequencing errors. Moreover, ASVs 
showing constant values in all samples could be excluded from the 
comparative analyses. Finally, we used the total sum scaling in order 
to obtain normalized ASV counts. Based on these counts, 
we  conducted the downstream analyses in order to evaluate the 
alpha-and beta-diversity reporting the species richness and evenness 
and the diversity of species between the groups. Then we evaluated the 

2 https://doi.org/10.5281/zenodo.12607061
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species richness from the results of sampling and whether samples 
were sufficiently sequenced to represent their identities by using the 
rarefaction analysis. Moreover, we  measured the differential 
abundance with the LEfSe (Linear Discriminant Analysis Effect Size) 
algorithm (62) for biomarker discovery. Finally, we used PICRUSt 
(Phylogenetic Investigation of Communities by Reconstruction of 
Unobserved States) to infer the metabolic potential of microbial 
communities (KEGG pathways). In this analysis, we started from the 
ASVs belonging to the significant genera and species obtained by the 
differential abundance analysis (LefSE algorithm).

2.7 Statistics

We calculated the ACE and Chao1 indices (for accounting species 
richness) and the Fisher metrics (to consider both richness 
and evenness).

To evaluate the alpha-diversity, we calculated the ACE and Chao1 
indices and the Fisher metrics and assessed the statistical significance of 
group comparisons between the groups of samples under study by using 
the Mann–Whitney test. We evaluated diversity of species between the 
groups (the beta-diversity) by PCoA (Principal Coordinates Analysis) 
of the UniFrac distances and assessed the statistical significance with the 
PERMANOVA test. The statistical significance of rarefaction profiles 
was assessed by using the Mann–Whitney test. We assessed the statistical 
significance by using the Mann–Whitney test. Finally, we measured the 
differential abundance with the LEfSe algorithm (62) for biomarker 
discovery. It involves the Kruskal-Wallis rank sum test to identify 
features (e.g. Species or Genera) with significant differential abundance 
in the groups, followed by linear discriminant analysis (LDA) to evaluate 
the relevance (the effect size) of the selected features. Differentially 
abundant features were considered if the p-value was less than or equal 
to 0.05 and if the Log LDA was greater than or less than 0.5. We used 
PICRUSt to infer the metabolic potential of microbial communities 
(KEGG pathways). In this analysis, we started from the ASVs belonging 
to the significant genera and species obtained by the differential 
abundance analysis (LefSE algorithm). Statistical analysis of variables 
shown in Tables 1–3 were performed using Jamovi software (version 
2.2.5.0). The normality of the data was verified by applying the Shapiro–
Wilk test and mean ± standard deviation (SD) for each variable reported 
in Tables. Comparisons between groups were determined with Two- or 
One-way ANOVA for all normally distributed variables or with 

Kruskal-Wallis H test for non-parametric variables. Paired Sample t-test 
within intervention groups for physical fitness parameters was 
performed and followed by Effect size (>0.2 and < 0.5 small; >0.5 
and < 0.8 moderate; >0.8 large). The level of significance was set at 
p < 0.05.

3 Results

3.1 Cohort characteristics

Anthropometric measurements of the schoolchildren 
participating in this study, were acquired before and after the training 
intervention (PRE-POST-) and reported in Table 1. No significant 
difference in the gender frequency of individuals was found [Χ2 
(2) = 1.14, p = 0.57]. Basal differences (PRE-) found in height [F (2, 
63) = 19.4; p < 0.001 one-way ANOVA followed by Tukey post-hoc 
test revealed a statistically significant difference (p < 0.01) in Ct vs. Sa 
and Dm vs. Sa] can be attributed to the school class to which the 
children belong. Weight, BMI, Waist/Height parameters did not vary 
among groups in baseline conditions (Krustal-Wallis One-way 
ANOVA; p > 0.05). Furthermore, two-way ANOVA revealed that 
there was not a statistically significant interaction between time 
(PRE-and POST-) and anthropometric measurements (relatives 
p-value and Tukey post-hoc were reported in Table 1).

On the same time, One-way ANOVA revealed no significant 
differences in all diet components analyzed among Sa, Dm and Ct 
groups (Table 2).

3.2 Physical fitness test

The schoolchildren were assessed for physical fitness both before 
and after the 6-mo training intervention (PRE-and POST-). 
Significant PRE-POST improvements were observed for lower limb 
power (standing long-jump) and sprint (linear 20 m) only in Sa 
group. Conversely, balance (single-leg stance) and endurance (20 m 
shuttle-run test) resulted significantly improved in both Sa and Dm 
groups; slight significant improvement only in balance test was found 
in Ct (Table 3). Two-way ANOVA (Type of intervention × Time PRE/
POST with Physical test as dependent variable) resulted not 
significant for 20 m shuttle-run, Single-leg stance and Sprint 

TABLE 2 Eating habits of enrolled schoolchildren in Structured (Sa), Daily Mile (Dm) activities and Control (Ct) group.

Ct Dm Sa p-value

Gender M/F 14 / 5 12 / 8 13 / 9

Calories (kcal) 1559.0 ± 172.0 1413.0 ± 188.0 1502.0 ± 320.0 0.060

Carbohydrates (%) 47.6 ± 3.0 48.0 ± 6.5 46.9 ± 2.8 0.652

Lipids (%) 35.8 ± 2.8 37.0 ± 4.6 36.7 ± 2.2 0.525

Saturated/fatty acids (%) 37.9 ± 6.0 38.0 ± 6.9 36.5 ± 5.9 0.669

Proteins (%) 15.7 ± 1.5 15.1 ± 2.8 16.1 ± 1.6 0.429

Animal proteins/Proteins (%) 75.3 ± 9.4 67.6 ± 18.7 76.6 ± 7.6 0.293

Vegetal proteins/Proteins (%) 24.8 ± 9.4 32.4 ± 18.7 23.4 ± 7.6 0.293

Total fiber/1000 kcal (%) 7.0 ± 1.7 7.0 ± 2.4 6.5 ± 1.6 0.667
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(p > 0.05). Differently, significant interaction between time (PRE-and 
POST-) and type of intervention for Standing long-jump test [F (2, 
50) = 4.91; p = 0.011] was found.

3.3 Sequencing reads processing and 
taxonomic assignments

The Illumina sequencing of the hypervariable V3-V4 regions of 
the 16S rRNA bacterial genes generated 2×250 bp paired-end reads. 
Overall, the percentage of bases with quality scores above 20 and 30 
(Q20 and Q30, respectively) was of 97.47 and of 92.93, respectively 
(Supplementary Figure S1A). The percentage of GC nucleotides was 
of 51.85 (Supplementary Figure S1B).

On average, we obtained 172,066 reads per-sample (min = 150,914; 
max = 189,035). The raw reads were filtered and trimmed 
(median = 171,879; min = 150,769; max = 188,851), denoised on the 
forward (median = 170,557; min = 149,387; max = 187,291) and reverse 
(median = 170,671; min = 149,387; max = 187,291) directions, merged 
(median = 149,274; min = 112,706; max = 170,971) and chimeric reads 
removal (median = 114,432; min = 87,964; max = 136,831). After 
merging, the median length of reads was of 425 bp (min = 421; 
max = 427; Supplementary Figures S1C,D).

We assigned taxa using the SILVA database of non-redundant 
sequences (version: v138, nr99). Overall, we could identify a total of 
4,759 taxa (ASVs) that were taxonomically assigned to the kingdom 
of bacteria. The 97.92% of the ASVs was annotated at the phylum level 
(n = 13 phyla), the 97.75% at the class level (n = 21 classes), the 97.18% 
at the order level (n = 56 orders), the 92.54% at the family level (n = 96 
families), the 82.92% at the genus level (n = 215 genera) and the 6.51% 
was annotated up to the species level (n = 172 species; 
Supplementary Figure S1E). From the initial set of annotated ASVs, 
we discarded a total of 31 taxa as possible contaminants. Moreover, as 
described in Methods we removed low abundant and low variable 
ASVs to obtain the final set of 3,503 ASVs that was normalized and 
used for down-stream analyses.

3.4 Diversity estimates

We estimated the alpha-diversity at the genus level. Overall, 
we observed slight, no significant differences among the groups (Ct, 
n = 19; Dm, n = 20; Sa, n = 22) indeed, ACE (Figure  1A), Chao1 
(Figure 1B) indexes are not significant, p > 0.05 (Mann–Whitney test). 
In particular, the SA group showed higher richness and evenness (Fisher 
metrics; Figure 1C) compared to the Control Group (Ct, p = 0.048).

The beta-diversity analysis, evaluated by weighted UniFrac 
distance metric did not evidentiate significant differences in microbial 
composition among the groups (R2 = 0.0414, p = 0.147, PERMANOVA 
test; Figure  1D). Differently, the microbial composition resulted 
significant different when measured by unweighted UniFrac distances 
(R2 = 0.04229, p = 0.024, PERMANOVA test; Figure 1E). Moreover, the 
rarefaction analysis clearly showed that we were able to capture in 
depth the species richness from the results of sampling and sequencing 
in the groups without any statistically significant difference between 
the groups under study (p > 0.8; Mann–Whitney test) Indeed, we can 
assess that the variation observed between the two groups was due to 
the different taxa abundance and to the types of taxa present in their 
saliva microbiome.

3.5 Abundance estimates

We evaluated and compared the taxa abundance in the final set of 
3,503 filtered and normalized ASVs (see above). Overall, we identified 
n = 13 phyla, n = 21 classes, n = 56 orders, n = 96 families, n = 215 
genera and n = 172 species.

At the phylum level, on average, the most abundant bacteria were 
the Proteobacteria, the Firmicutes, the Bacteroidota accounting for 
the 34.27, 32.27%, and the 19.93%, respectively (Figure 2A). The most 
represented classes were the Gammaproteobacteria (34.27%), the 
Bacilli (21.99%), and the Bacteroidia (19.93%; Figure 2B). The most 
prevalent orders were the Lactobacillales (19.52%), the Bacteroidales 
(19.45%), the Pasteurellales (12.3%) and the Pseudomonadales 
(11.72%; Figure  2C). Among the most abundant families, 
Streptococcaceae (17.37%), the Prevotellaceae (16.35%), the 
Pasteurellaceae (12.3%) and the Pseudomonadaceae (11.55%; 
Figure 2D) were found. At the genera level, the Streptococcus (17.36%), 
Prevotella (13.72%), Pseudomonas (11.55%), Haemophilus (11.13%), 
and Neisseria (9.63%; Figure 2E) are the most aboundant. Finally, the 
top abundant species that we were able to classify were the Prevotella 
melaninogenica (7.28%), Fusobacterium periodonticum (4.69%), 
Haemophilus parainfluenzae (1.73%), Veillonella dispar (1.53%) and 
the Rothia mucilaginosa (1.46%; Figure 2F).

Taken together, the diversity and the overall abundance estimates 
are in line with our recent results (41). Indeed, we can assess that the 
data resulting from the sampling, sequencing and analyses protocols are 
reliable. Moreover, the variation observed among the groups, although 
slight and probably due to the small sample size, is due to the different 
taxa abundances and to the types of taxa in the analyzed microbiomes.

3.6 Differential abundance estimates

As described in Methods we  used the LEfSe algorithm to 
perform the differential abundance analysis and to find the taxa 

TABLE 3 Physical fitness test of enrolled schoolchildren in Structured 
(Sa), Daily Mile (Dm) activities and Control (Ct) group, PRE-e POST-
training intervention.

Test Group Pre Post p-value Effect size

Standing 

long-jump 

(cm)

Ct 118 ± 19.8 122 ± 28.3 0.360 - 0.22

Dm 109 ± 16.6 113 ± 23.0 0.091 - 0.39

Sa 115 ± 18.2 139 ± 21.8 < 0.001 - 1.35

20 m 

shuttle-run 

(m)

Ct 512 ± 203 639 ± 397 0.074 - 0.44

Dm 459 ± 313 583 ± 349 0.008 - 0.68

Sa 585 ± 206 779 ± 268 0.004 - 0.71

Single-leg 

stance (s)

Ct 28.3 ± 27.5 46.2 ± 30.9 0.046 - 0.53

Dm 25.3 ± 29.8 69.3 ± 51.9 0.008 - 0.74

Sa 55.0 ± 34.9 93.3 ± 39.9 0.009 - 0.67

Sprint (s)

Ct 4.5 ± 0.4 4.3 ± 0.5 0.095 0.40

Dm 4.4 ± 0.3 4.4 ± 0.4 0.673 0.09

Sa 4.3 ± 0.3 3.9 ± 0.3 0.004 0.71
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that could explain the differences between the groups under study. 
We set the significance threshold at 5% and the Log LDA cutoffs at 
±0.5. With these stringent filters, we observed the first significant 
differences at the Phylum level. Indeed, the Bacteroidota (LDA 
score = 5.61; p = 0.013) and the Desulfobacterota (LDA score = 2.8; 
p = 0.002) were more abundant in the Sa group as compared to the 
others. Conversely, the Phylum of the Proteobacteria was enriched 
in the Ct group (LDA score = 5.54; p = 0.042; Figure 3). At the Class 
level, the Bacteroidia (LDA score = 5.61; p = 0.013) and the 
Desulfovibrionia (LDA score = 2.8; p = 0.003) were more abundant 
in the Sa group whereas the Gammaproteobacteria was enriched 
in the Ct group (LDA score = 5.54; p = 0.042; Figure 3). In details, 

five Orders (four in the Sa and one in the Ct group, respectively) 
and eight Families (six in the Sa and two in the Ct group, 
respectively) were differentially abundant after the LEfSe analysis 
(Figure 3).

Furthermore, we observed that 13 genera were responsible for the 
differences between the groups (Figures  4A,B). In particular, the 
Prevotella (LDA score = 5.56; p = 0.018), the Dubosiella (LDA 
score = 3.68; p = 0.042) and the Family XIII AD3011 group (LDA 
score = 3.28; p = 0.010) were the most abundant genera in the Sa 
group. Conversely, the Neisseria (LDA score = 5.34; p = 0.014) and the 
Abiotrophia (LDA score = 3.98; p = 0.047) were more abundant in the 
Ct group.

FIGURE 1

Genus-level diversity and distances measured between sedentary Controls (Ct), Daily Mile activity (Dm) and Structured activity (Sa). A| Alpha-diversity 
measured by ACE index (Ct vs. Dm: p  =  0.955; Ct vs. Sa: p  =  0.063; Dm vs. Sa: p  =  0.106). B| Alpha-diversity measured by Chao1 index (Ct vs. Dm: 
p  =  0.955; Ct vs. Sa: p  =  0.061; Dm vs. Sa: p  =  0.106). C| Alpha-diversity measured by Fisher index (Ct vs. Dm: p  =  0.923; Ct vs. Sa: p  =  0.048; Dm vs. Sa: 
p  =  0.116). D| Principal Coordinates Analysis plot of beta-diversity index measured by weighted UniFrac distances (p  =  0.147). E|Principal Coordinates 
Analysis plot of beta-diversity index measured by unweighted UniFrac distances (p  =  0.024). A, B, C: Mann–Whitney test. D, E: PERMANOVA test.
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Four species showed significant results in the LEfSe analysis 
(Figures  4C,D). Indeed, the Prevotella melaninogenica (LDA 
score = 5.3; p = 0.041) and the Prevotella nanceiensis (LDA score = 4.4; 
p = 0.012) were more abundant in the Sa group. The Abiotrophia 
defectiva (LDA score = 3.98; p = 0.047) was enriched in the Ct group. 
Of note, the Gemella sanguinis (LDA score = 3.92; p = 0.029) was the 
only enriched species in the Dm group.

3.7 Metabolic pathways reconstruction

We used PICRUSt (Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States) to predict the activity of 
metabolic pathways (KEGG) starting from the significant genera and 
species obtained by LefSE analysis between the Ct and Sa groups. At 
the genus level, PICRUSt analysis highlighted the prevalence of the 

FIGURE 2

Overall taxonomic abundance. The pie charts report the overall abundance of the identified taxa. A| Phylum level. B| Class level. C| Order level. 
D| Family level. E| Genus level. F| Species level.
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superpathway of fucose and rhamnose degradation (LDA score = 3.59; 
p = 0.037), the aerobic respiration I (cytochrome c; LDA score = 3.59; 
p = 0.014), the superpathway of phylloquinol biosynthesis (LDA 
score = 3.57; p = 0.046), the superpathway of menaquinol-7 
biosynthesis (LDA score = 3.55; p = 0.046), the ppGpp biosynthesis 
(LDA score = 3.55; p = 0.012), the biotin biosynthesis II (LDA 
score = 3.54; p = 0.013), the 1,4-dihydroxy-2-naphthoate biosynthesis 
I  (LDA score = 3.53; p = 0.046), the 2-methylcitrate cycle II (LDA 
score = 3.53; p = 0.014), the arginine, ornithine and proline 
interconversion (LDA score = 3.52; p = 0.029), the anaerobic heme 
biosynthesis II (LDA score = 3.52; p = 0.012) for the Sa compared to 
the Ct group. By contrast, the Ct group showed an enrichment of the 
ubiquinol-7 biosynthesis (LDA score = 2.06; p = 0.016), the 
superpathway of L-isoleucine biosynthesis I  (LDA score = 2.4; 
p = 0.014), the NAD salvage pathway II (LDA score = 2.4; p = 0.018), 
the superpathway of menaquinol-8 biosynthesis I (LDA score = 2.41; 
p = 0.046), the pentose phosphate pathway (LDA score = 2.43; 

p = 0.011), the myo-inositol degradation I (LDA score = 2.73; p = 0.02), 
the superpathway of menaquinol-12 biosynthesis (LDA score = 2.96; 
p = 0.046; Figure 5A).

At the species level, we found that only the Sa showed enriched 
pathways, compared to Ct group. Indeed, we found enrichment of the 
superpathway of N-acetylglucosamine, N-acetylmannosamine and 
N-acetylneuraminate degradation (LDA score = 2.54; p = 0.011), the 
L-methionine biosynthesis I  (LDA score = 2.5; p = 0.017), the 
L-methionine biosynthesis III (LDA score = 2.37; p = 0.014), the 
superpathway of S-adenosyl-L-methionine biosynthesis (LDA 
score = 2.31; p = 0.023), the L-lysine biosynthesis I (LDA score = 2.3; 
p = 0.014), the homolactic fermentation (LDA score = 2.25; p = 0.048), 
the glycogen biosynthesis I (from ADP-D-Glucose; LDA score = 2.18; 
p = 0.011; Figure 5B).

4 Discussion

In this study, we assessed the effects of 6-mo of Sa or Dm exercise 
on physical fitness and saliva microbiota composition in sedentary 
schoolchildren aged 8 to 11.

The following highlights the most relevant results discussed:

 • After the intervention, the Sa group showed enhancements in 
lower limb power and sprint ability, while both the Sa and Dm 
groups showed improvements in endurance and balance. Instead, 
the Ct group showed a slight improvement only in the 
balance test;

 • Among the genera differentially enriched in saliva after the 
training intervention, Prevotella, Dubosiella, and the Family XIII 
AD3011 group were the most abundant in the Sa group. 
Conversely, Neisseria and Abiotrophia were prevalent in the 
Ct group;

 • Four species showed significant differences: Prevotella 
melaninogenica and Prevotella nanceiensis most abundant in the 
Sa group, Gemella sanguinis, enriched in the Dm group and 
Abiotrophia defectiva in the Ct group’s saliva, respectively.

It has been demonstrated that the Gut microbiota (GM) 
composition affects different physiological functions of the host. Many 
factors influence the GM composition, including diet and exercise, 
and alterations in GM composition have been associated with health 
or different chronic diseases such as diabetes and obesity in humans 
(3, 64–66). Recent evidence indicates that exercise affects gut 
microbiota composition by increasing the Bacteroidetes/Firmicutes 
ratio in GM (67, 68). Training duration, type (aerobic vs. resistance) 
and intensity also affects GM composition. A reduction in the 
Firmicutes/Bacterioides ratio with an increase in the Bacteroides was 
observed in high-intensity and moderate-intensity PA (69, 70), with 
beneficial bacteria enrichment in aerobic exercise (71, 72). In athletes 
practicing intense and prolonged exercise, the effects on GM 
composition seem controversial, showing higher richness in beta-
diversity in athletes compared to controls, with specific enrichments 
in Firmicutes and Firmicutes prausnitzii, which produce butyrate 
associated to intestinal health (1, 73, 74). On the other hand, there is 
an increase in bacteria involved in inflammatory processes, as 
evidenced by Roberts and colleagues (75). Conversely, moderate 
exercise seems to improve gut microbiota composition and intestinal 

FIGURE 3

Differentially abundant taxa. The results of LEfSe analysis, are 
reported. The dots sizes are proportional to the score of the LDA 
algorithm whereas the dot graduation color is proportional to the 
significance level (Kruskal-Wallis rank sum test). From top to bottom: 
Dot plots showing the differentially abundant Phyla, Classes, Orders, 
and Families.
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FIGURE 4

Differentially abundant taxa. The results of LEfSe analysis, are reported. The dots sizes are proportional to the score of the LDA algorithm whereas the 
dot graduation color is proportional to the significance level (Kruskal-Wallis rank sum test). A| Dot plot showing the differentially abundant genera. 
B| Box plots showing the normalized abundance levels of genera reported in panel A. C| Dot plot reporting the differentially abundant species. D| Box 
plots showing the normalized abundance levels of genera reported in panel C. Ct, sedentary controls; Dm, Daily Mile activity; Sa, Structured activity.
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barrier (76). Greater microbial diversity was also associated with 
cardiorespiratory fitness in healthier subjects (77). Furthermore, the 
host’s age plays an important role in GM composition mediated 
by exercise.

Exercise undertaken during early life increase the presence of 
Bacteroidetes associated with a lean phenotype and reduce Firmicutes 
associated with obesity (78, 79). It seems that the lower species 
richness found in the GM of young rats (80) and in humans (81) can 
be more easily modified by environmental factors, including exercise, 
compared to adults.

Saliva microbiota composition was closely associated with 
GM. We previously identified eight species more abundant in the 
saliva of Active compared to Sedentary schoolchildren, including 
Prevotella nigrescens, Colinsella aerofaciens, Simonsella muelleri, and 
Parabacterioides merdae. The prevalence of Parabacteriodes in the 

Active group also resulted in the activation of superpathway involved 
in carbohydrates metabolism and metabolites secretion, including 
SCFAs which are associated to healthier profile and reduced risk for 
dysmetabolic diseases (41).

Recently, multicentre EU projects (IDEFICS ‘Identification and 
prevention of Dietary and lifestyle-induced health EFfects in Children 
and infantS’ and HELENA ‘HEalthy Lifestyle in Europe by Nutrition 
in Adolescence’) (51, 82) have provided a large database for fitness 
reference values for children and adolescents from different European 
countries. Very recently, building on these studies, the FitBack 
European network highlighted the main health-related fitness 
components: cardiorespiratory fitness (20 m shuttle run test), 
muscular strength (handgrip strength and standing long jump tests), 
anthropometric measures (such as BMI, waist circumference, etc.) for 
children and adolescents aged 6–18 years (83).

FIGURE 5

Metabolic pathways reconstruction. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was used to predict 
the activity of metabolic pathways (KEGG) starting from the significant taxa obtained by LefSE analysis. A| Dot plot showing the differentially 
represented pathways at the genus level. B| Dot plot showing the differentially represented pathways at the species level. Ct, sedentary controls; Sa, 
Structured activity. (°) superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation. In this figure the dots 
sizes are proportional to the score of the LDA algorithm whereas the dot graduation color is proportional to the significance level (Mann–Whitney test).
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Here we focused on the effects mediated by 6-mo of different 
exercise type (Structured vs. semi-structured) versus curricular on 
saliva microbiota composition in the Sedentary schoolchildren.

Interestingly, 6-mo structured (Sa) and semi-structured (Dm) 
exercise improved physical fitness markers (muscular power, 
cardiovascular fitness and balance) associated to the health 
together with an enrichment in saliva species abundance compared 
to Curricular exercise (Ct). The most abundant species found in 
saliva were Prevotella melaninogenica and Prevotella nanceiensis in 
Sa, Gemella sanguinis in Dm, and Abiotrophia defective in the 
Ct group.

Raju et al. recently analyzed the composition of saliva microbiota 
in a large cohort of Danish children, highlighting genera such as 
Prevotella, Veillonella, Streptococcus, Selenomonas, Neisseria, and 
Gemella as most abundant in saliva. Furthermore, the authors 
pointed-out the association between the abundance of Prevotella 
genera and body weight in children, suggesting that an enrichment of 
Prevotella in saliva could potentially serve as new marker to identify 
overweight risk in children (84). Previously, we  also reported an 
increase in genera such as Gemella, Prevotella, Streptococcus, 
Heamophilus, Neisseria and Veillonella in the saliva of Italian 
schoolchildren. We  observed an enrichment in species such as 
Prevotella pallens and Neisseria mucosa in Sedentary children, with a 
slight increasing trend in BMI index compared to Active group in line 
with the findings of Raju et al. (41, 84).

Prevotella is one of the most abundant genera in different human 
sites such as skin, oral cavity, gastrointestinal tract and is dominant in 
the oral cavity (85). Lifestyle factors, including exercise, diet, age and 
gender affect the expression of different species of Prevotella in body 
sites. Prevotella prevalence in saliva accounts for approximately 13% 
of the entire oral microbiota (85) in healthy subjects and around 10% 
in school-aged population in non-Westernized regions (86). Prevotella 
melaninogenica and Prevotella nanceiensis represent the most 
abundant species in the oral cavity of not-Westernized population, 
including Italian (86). The role of Prevotella in health and disease is 
not yet fully understood, positive association have been found with 
lower BMI (87, 88), although Prevotella is also involved in biofilm 
formation associated with poor oral hygiene and oral diseases (89). 
Diet composition also influences the expression of gut Prevotella, with 
enrichment in gut microbiota potentially promoting healthier lipid 
and glucose metabolism and aiding weight-loss (87, 88, 90–93).

Our results demonstrated that the structured physical activity 
intervention causes a shift in sedentary children from species 
associated with disease, such as Neisseria mucosa, to species associated 
with a healthier profile, such as Prevotella melaninogenica. This is in 
line with literature and suggests the effectiveness of the structured 
exercise program, supervised by Kinesiologist in improving the saliva 
microbiota related to a healthier profile. Interestingly, this effect was 
independent from the food habits of schoolchildren.

In addition, the PICRUSt analysis revealed a significant prevalence 
of several metabolic pathways in the Sa group compared to the Ct 
group. Remarkable pathways included the superpathway of fucose and 
rhamnose degradation and ppGpp biosynthesis. Both the degradation 
of oligosaccharides such as fucose and rhamnose and the biosynthesis 
of ppGpp promote the establishment of a healthy microbiota and 
protect against infection (94, 95). Furthermore, the superpathway of 
phylloquinol biosynthesis and menaquinol-7 biosynthesis were 
significantly highlighted. Phylloquinone, or vitamin K1 and 

menaquinone-7, or vitamin K2, are the main forms of vitamin 
K. Vitamin K has recently been attributed with antioxidant and anti-
inflammatory properties and is involved in crucial events associated 
with aging (96). A recent meta-analysis combining data from three 
large cohorts reported that low circulating phylloquinone 
concentrations are associated with an increased risk of all-cause 
mortality (97). Meanwhile, other studies suggest that high vitamin K2 
intake may help prevent cardiovascular disease (CVD) (98).

Finally, the interconversion of arginine, ornithine, and proline, as 
well as L-methionine biosynthesis I  and III, were significantly 
prevalent in the Sa compared to the Ct group. Arginine, ornithine, and 
methionine are responsible for the synthesis of polyamines, small 
aliphatic polycations that play crucial roles in different cellular 
mechanisms. Additionally, polyamines help protect against oxidative 
stress by regulating proteins involved in the oxidative stress response 
and acting as ROS scavengers at physiological pH (99). These findings 
suggest that structured exercise induces significant metabolic 
adaptations that could be beneficial for health.

4.1 Strengths and limitations

Our study presents several strengths: the design and 
implementation of a structured and controlled training model in 
primary schoolchildren allowed us to obtain information, for the first 
time, on the effect of this type of exercise on the salivary microbiota 
in children. The homogeneity of age-matched schoolchildren 
belonging from the same geographical area, with similar eating habits, 
do not assuming drugs in days prior the analysis and with a good oral 
hygiene, enabled us to highlight the effect of physical exercise on the 
composition of the salivary microbiota, minimizing the influence of 
confounding variables (63, 81, 100).

However, this study presents some limitations: first, the limited 
number of children tested. Due to the small sample size, we were 
unable to perform a gender-specific analysis of saliva microbiota 
composition, which may introduce bias, as the extent to which gender 
influences the diversity and abundance of the salivary microbiota 
remains unclear (84, 101). We aim in future studies, to increase the 
sample size and provide a gender-based analysis of saliva 
microbiota composition.

5 Conclusion

In conclusion, our study highlights the significant impact of a 
structured exercise regimen on improvements in health-associated 
physical fitness markers and the abundance of beneficial species in the 
saliva microbiota in sedentary schoolchildren, contributing to the 
growing body of evidence supporting integrating structured exercise 
programs into school curricula to promote health in children.
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