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The current global trend in the nutrition, epidemiologic and demographic transitions 
collectively alarms the need to pursue a sustainable protein diet that respects 
ecosystem and biodiversity from alternative sources, such as algae, fungi and edible 
insects. Then, changing the nutrition reality is extremely important to impede the 
global syndemic of obesity, undernutrition and climate change. This review aims 
to synthesize the published literature on the potential roles of alternative proteins 
and their derived bioactive peptides in preventive and clinical nutrition, identify 
research gaps and inform future research areas. Google Scholar and PubMed 
databases from their inception up to 30 June 2024 were searched using keywords 
to access pertinent articles published in English language for the review. Overall, 
proteins derived from algae, fungi, and edible insects are high-quality proteins as 
animal sources and demonstrate significant potential as a sustainable source of 
bioactive peptides, which are metabolically potent and have negligible adverse 
effects. They show promise to prevent and treat diseases associated with oxidative 
stress, obesity, diabetes, cancer, cardiovascular disease (especially hypertension), 
and neurodegenerative diseases. Given the abundance of algae, fungi and insect 
peptides performed in vitro or in vivo animals, further clinical studies are needed to 
fully establish their safety, efficacy and practical application in preventive and clinical 
nutrition. Additionally, social and behavioral change communication strategies 
would be  important to increase health awareness of nutritional benefits and 
promote consumer acceptance of alternative protein sources.
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1 Introduction

Nutrition is a crucial pillar of human life, health and development (1, 2). Good nutrition 
ensures health and wellness at each stage of the human life cycle, such as pregnancy, infancy, 
childhood, adolescence, adulthood, and older age (3). Unfortunately, the double burden of 
malnutrition, i.e., concurrent manifestation of both undernutrition and overnutrition 
(overweight and obesity), may become manifest within the life course (4, 5). Although the 
burden of malnutrition mainly affects low and middle-income countries, countries passing the 
economic transitions also face the problem (6). Alongside, shifting of the overall dietary 
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structure over time, i.e., the trend of the current nutrition transition, is 
associated with unrelenting non-communicable diseases (NCDs). 
Therefore, changing the nutrition reality is extremely important because 
a low-quality diet ignites a double burden of malnutrition (5, 7, 8).

By the year 2050, the world population is projected to be nearly 10 
billion (9), the food demand is expected to increase by 56% (10), and 
animal-derived protein demand will be  twofold (11), requiring a 
sustainable food system (12). Of significant concern, the increased 
consumption of red and processed meat globally contributes to an 
abrupt increase in the attributable burden of diet-related NCDs, 
including colorectal cancer, diabetes, and coronary heart disease, which 
are markedly risen in Northern and Eastern European countries as well 
as island countries in the Caribbean and Oceania (13). The demand 
and consumption of meat is also rapidly increasing in developing 
countries due to urbanization and rapid income growth (14).

Furthermore, raising livestock and animal meat consumption is 
associated with higher greenhouse gas emissions (15, 16), higher 
consumption of water and land use (17), human-induced terrestrial 
biodiversity loss (18, 19), contracting zoonosis and antibiotic 
resistance (20), and raised ethical concerns about animal welfare (21). 
These impacts clearly illustrate the need to pursue a sustainable 
healthy diet from alternative protein sources, such as algae, fungi, and 
edible insects, to achieve global food security without expanding crop 
or pastureland, deprived of increasing greenhouse gas emissions and 
without devaluing health (11, 17, 22–26). Figure 1 summarizes the 
relationship between obesity, undernutrition and climate change.

Shifting towards alternative protein sources is vital to meet most 
of the United Nations’ sustainable development goals and to achieve a 
net-zero greenhouse gas emission target indicated in the Paris 

Agreement (27). In accordance with this, in 2022, the sixth 
international panel on climate change urged governments to prioritize 
sustainable healthy diets to feed the projected population by 2050, 
while mitigating the effects of climate change (28). The environmental 
and nutritional advantage inspired the concept of a sustainable diet, 
i.e., a diet that respects biodiversity and ecosystems, that is nutritionally 
adequate, safe, healthy and at the same time culturally acceptable, and 
affordable, as highlighted by the Food and Agriculture Organization 
of the United Nations (29, 30). The role of a sustainable diet from plant 
origin on metabolic syndrome in humans is extensively explored (31–
34). Emerging evidence also spotlights the potential role of alternative 
proteins (algae, fungi and insects) and their derived bioactive peptides, 
i.e., a group of biological molecules activated by extraction from 
parental proteins, to offer therapeutic advantages by modulating 
metabolic pathways (35). Particularly, bioactive peptides are known 
for their safety, tolerability, and minimal risk of adverse effects (36). 
The quests of these proteins and derived peptides in the context of 
preventive and clinical nutrition present a promising road to uncover 
innovative dietary strategies and therapeutic approaches. Given no 
previous review in the area, this narrative review aims to (1): explore 
the current research on the potential roles of alternative proteins and 
their derived bioactive peptides in preventive and clinical nutrition (2); 
identify gaps in the literature; and (3) inform future research.

2 Methods

Google Scholar and PubMed databases from their inception up to 
30 June 2024 were searched using keywords to access pertinent articles 

FIGURE 1

The relationship between obesity, undernutrition and climate change.
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published in English-language for the review. The reference lists of 
included studies were additionally screened to locate further relevant 
literature. We used the following keywords for the review: “algae OR 
algal protein OR algae peptide + Y,” “fungi OR fungal protein OR fungi 
peptide + Y,” “Insect OR insect protein OR insect peptide +Y,” where Y 
indicates hypertension, obesity, T2DM, dementia, cancer, and sarcopenia.

2.1 The role of algae-derived protein and 
bioactive peptides in preventive and 
clinical nutrition

Algae are protein-rich marine resources that have a rapid growth 
rate, can adapt to extreme and competitive environments, and contain 
numerous health-promoting compounds (37) and proteins, such as 
lectins, phycobiliproteins, mycosporine-like amino acids, derived 
hydrolysates, and bioactive peptides (38). Commercially available 
microalgae, such as spirulina (Cyanobacterium Arthrospira platensis) 
and Chlorella vulgaris contain up to 68% protein by dry weight (39, 
40), whereas red algae contain up to 47% of protein (41). Proteins 
extracted from spirulina and chlorella have a high degree of in vitro 
digestibility and contain all essential amino acids (42, 43). Further 
studies assessing the in vivo digestibility of these proteins are necessary. 
Additionally, algae-derived bioactive peptides exhibited anti-microbial, 
anti-mutagenic, anti-inflammatory, anti-diabetic, anti-hypertensive, 
anti-oxidant, anti-tumor, neurophysiological and hepatoprotective 
activity (44–47). Figure 2 summarizes the role of algae, fungi and 
insect derived bioactive peptides in preventive and clinical nutrition.

2.1.1 Anti-sarcopenic effect of algae-derived 
protein and bioactive peptides

By the year 2050, the number of individuals aged 60 years and above 
will double (2.1 billion), particularly those over 85 years will triple (426 
million) (48). Sarcopenia, the key hallmark of aging, refers to the 
progressive loss of muscle mass and loss of strength or performance 
(49). Sarcopenia negatively affects the quality of life of the individual (50, 

51), burdens the public health sector (52, 53) and increases mortality 
rates (54, 55). Daily intake of adequate (30 g/meal) high biological value, 
leucine-rich proteins with physical activity is crucial to counteract 
sarcopenia by maximizing muscle protein synthesis (MPS) rate (56).

Food protein and their derived bioactive peptides could be  a 
promising option in this regard (57, 58). For example, Spirulina platensis, 
is a potential protein supplement. A preceding study was conducted to 
examine the anti-sarcopenic effect of Spirulina protein hydrolysate 
(SPH) in dexamethasone-treated C2C12 cells. The results indicated that 
SPH inhibits muscle atrophy mainly by activating the Akt/FoxO3a 
signaling pathway, specifically by increasing MyoD1, Myf5, and 
myogenin and decreasing Atrogin-1, MuRF-1, and FoxO3a (59). 
However, further studies on algae-derived peptides using animal models 
is required to affirm SPH as a solution for the prevention, and treatment 
of sarcopenia. Recently, randomized controlled trials performed among 
young adults (age: 22 ± 3 years) have shown that algae-derived protein 
(spirulina, and chlorella) ingestion stimulates muscle protein synthesis 
similar to mycoprotein (60). However, further research in older adults 
is warranted to translate into the prevention and treatment of sarcopenia.

2.1.2 Anti-obesity effect of algae-derived protein 
and bioactive peptides

Globally, obesity is a major public health problem primarily 
associated with the consumption of high-fat diets and ultra-processed 
foods (7, 61). It is attributable to the global incidence of cardiovascular 
disease, cancer, type 2 diabetes mellitus, osteoarthritis, work disability, 
and sleep apnea (62). As a consequence, algae-derived proteins and 
bioactive peptides could serve as anti-obesity agents (63, 64). In high-fat 
diet-fed mice, the anti-obesity effects of Spirulina-derived protein (SPP) 
or peptide (SPPH) are higher to the whole Spirulina (WSP), SPP is 
slightly lower than SPPH, under the same dose (2 g/kg per day). Overall, 
SPPH showed good anti-obesity effects, such as reduction of body weight 
(39.8% ± 9.7%), lowering serum glucose (23.8% ± 1.6%), decreasing total 
cholesterol (20.8% ± 1.4%), while positive drug Simvastatin (10 mg/kg 
per day) had the corresponding values: 8.3 ± 4.6, 24.8 ± 1.9% 
and − 2.1% ± 0.2%, respectively. SPPH anti-obesity effects modulate the 

FIGURE 2

The possible positive effects of fungi, insects and algae in preventive and clinical nutrition.
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expressions of key genes in the brain (Acadm, Gcg) and liver (Retn, 
Fabp4, Ppard, and Slc27a1), which are linked with lipid metabolism and 
accumulation (65). A peptide, CANPHELPNK, identified from 
enzymatic hydrolysates of Spirulina platensis protein showed the best 
anti-proliferative activity on preadipocytes 3 T3-L1 (60.08%), which was 
close to that of Simvastatin (70.32%), at 2 mg/ml. Furthermore, the two 
peptides NPVWKRK and CANPHELPNK were also demonstrated to 
significantly reduce the accumulation of triglyceride at 600 μg/ml, with 
23.7 and 19.5%, respectively compared with control (66). Moreover, in 
high fat diet-fed rats, supplementation with Chlorella vulgaris effectively 
reduced total serum lipids, liver triglycerides, and cholesterol (67).

Intriguingly, a systematic review and meta-analysis of randomized 
controlled trials in humans showed that spirulina supplementation 
significantly reduces body weight, body fat percentage, and waist 
circumference (68). It also decreases triglycerides and total cholesterol 
levels in patients with type 2 diabetes, metabolic syndrome, 
overweight, or obesity (69). Spirulina is “generally recognized as safe” 
for human consumption (70). Nevertheless, rare potential adverse 
effects, such as acute rhabdomyolysis (71) and anaphylaxis (72) were 
reported. Therefore, an allergy risk assessment before supplementation 
is strongly suggested.

2.1.3 Anti-hypertensive effect of algae-derived 
proteins and bioactive peptides

Hypertension shares a large quota as a risk factor for CVD (73). It 
is further leads to end-stage renal disease, stroke, disability, dementia 
and mortality (74–76). To lessen hypertension, angiotensin-converting 
enzyme (ACE) inhibition using synthetic drugs is the basic step, 
despite undesirable side effects, including dry cough, angioedema, 
disturbance, and skin rash are associated with the drug (77). Therefore, 
pursuing anti-hypertensive bioactive peptides from natural food 
sources, such as algae has paramount importance (78).

In silico and in vitro assessment showed that bioactive peptides 
(Alcalase, bromelain, papain, pepsin) of A. platensis demonstrated 
ACE inhibitory activity (80% inhibition rate at a level of 1.0 mg/ml) 
(79). Moreover, oral administration of protein hydrolysate from 
Chlorella Vulgaris (5 mg/kg of body weight) to spontaneously 
hypertensive rats (SHR) effectively reduced the systolic blood pressure 
by 50 mmHg, verifying the potent antihypertensive effects of certain 
peptides, equivalent to synthetic drugs (80). Interestingly, a systematic 
review and meta-analysis of randomized controlled trials in humans 
showed that chlorella supplementation (4 g/day) for 8 weeks and more, 
significantly reduced total cholesterol, low-density lipoprotein, systolic 
and diastolic blood pressure in hypertensive patients (81).

2.1.4 Anti-diabetic effect of algae-derived protein 
and bioactive peptides

Type 2 diabetes (T2DM) is a metabolic disorder that accounts for 
more than 90% of patients with diabetes, which leads to microvascular 
(neuropathy, retinopathy and nephropathy) and macrovascular 
(CVD) complications. In addition, T2DM has a significant impact on 
patients’ lives and puts a huge burden on healthcare systems (82, 83). 
The existing anti-diabetic agents are often associated with side effects 
(84); as a result, there is a growing interest in the use of food protein/
peptides as a potential remedy for the prevention and management of 
T2DM (85), especially in its early forms.

Bioactive peptides derived from various algae species, such as 
A. platensis (79, 86, 87), Chlorella sp. (88), and P. palmata (89), have 

demonstrated anti-diabetic bioactivities via inhibiting Dipeptidyl 
peptidase IV (DPP-IV), and carbohydrate-digesting enzyme 
inhibition, i.e., α-amylase and α-glucosidase, thereby reduced the 
postprandial blood glucose absorption. Literature has shown that 
Spirulina platensis-derived anti-hyperglycemic peptide exhibited the 
best inhibition on α-amylase (62%), α-glucosidase (90%) and DPP-IV 
(49%) (87). Thus, the inhibitory activity of α-glucosidase was 
remarkably higher than α-amylase (87). This could be  useful to 
decrease side effects due to the abnormal bacterial fermentation of 
undigested saccharides in the colon, which commonly occurs 
following excessive inhibition by α-amylase (90).

In streptozotocin-induced diabetic mice (SIDM), oral 
administration of P. palmata crude protein hydrolysate influenced the 
incretin system by directly upregulating the secretion of glucagon-like 
peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide 
(GIP) (89).

2.1.5 Anti-dementia role of algal proteins
Among individuals diagnosed with dementia, a neurodegenerative 

disease, such as Alzheimer’s disease (AD) shares a large part (60%), 
which arises when nerve cells in the central nervous system gradually 
lose function due to proinflammatory stimulus that facilitates the 
generation of neurotoxicity substances, and eventually die (91, 92). 
Neurodegenerative disease affects the patient’s quality of life (93), 
increases the burden for caregivers (94) and poses a higher economic 
cost (95). Though the available treatments may relieve symptoms, no 
known curative treatment is found for neurodegenerative diseases. 
As a consequence, food-derived peptides could have the potential 
to mitigate neurological inflammation, thereby improving 
cognitive performance (91, 96). A previous study indicated that 
dietary administration of 1 and 2% Spirulina platensis for 16 weeks 
in high fat diet fed mice significantly improved spatial learning 
and memory performance via inhibiting Aβ accumulation, 
tau-hyperphosphorylation, and neuroinflammation in the 
hippocampus (97). This study provides further evidence for the 
application of Spirulina platensis derived protein as a functional 
supplement for the treatment of AD. In support, the effects of spirulina 
intake (500 mg/day spirulina powder versus placebo twice a day for 
12 weeks) among 60 patients with AD significantly improved their 
cognitive function, as evidenced by the mini-mental state examination 
score (MMSE). Additionally, spirulina intake decreased high-
sensitivity C-reactive protein, fasting glucose, insulin resistance, and 
increased insulin sensitivity compared with the placebo (98).

2.1.6 Anti-cancer role of algae-derived protein 
and bioactive peptides

Cancer is the leading cause of death next to CVD (99). Cancer 
metastasis to vital organs of the body usually results in massive tissue 
destruction, loss of life-sustaining functions, and death (100). The 
investigation of anticancer drugs derived from natural products has 
become a hot topic in the field of cancer research because of their 
lower economic cost and fewer side effects (101, 102).

Dietary algae such as Chlorella vulgaris (103), Chlorella 
pyrenoidosa (104), Spirulina platensis (105), and Enteromorpha 
prolifera (106) have shown significant anticancer bioactivities. 
Literature has shown that enzymatic hydrolysates of A. platensis 
protein at a concentration of 0.5 mg/ml exhibited comparable 
inhibitory effects against breast cancer cells (MCF-7), lung cancer cells 
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(A549), gastric cancer cells (SGC-7901), colon cancer cells (HT-29), 
and liver cancer cells (HepG2) compared to the positive control drug 
5-flurouracil (5-FU) (105, 107, 108). Moreover, the protein-derived 
peptide from Chlorella vulgaris stops human AGS gastric cancer cells 
after G1 phase (103). Papain hydrolysate purified from Chlorella 
pyrenoidosa showed anti-proliferation activity against HepG2 (104). 
Recently, heptapeptide (GPLGAGP) isolated from hydrolysates of 
Enteromorpha prolifera showed the most potent inhibitory activity 
against NCI-H460 lung cancer cells (106).

2.2 The role of fungi-derived protein and 
bioactive peptides in preventive and 
clinical nutrition

Fungi are suitable alternative sources of food for humans which 
have a low environmental footprint, and could be a solution for a 
sustainable future for our planet (109–113). Mycoprotein, which is a 
proteinaceous wholefood produced from the continuous fermentation 
of the filamentous fungus Fusarium venenatum, is the most popular 
example that is commercialized and sold in different countries (UK, 
USA, Belgium, Germany, Denmark, Ireland, France, the Netherlands, 
Switzerland, Sweden etc.) as an ingredient in products marketed 
under the brand name Quorn™ (114). Mycoprotein product contains 
high-quality protein (11.5%), fiber (6%) composed of glucan-chitin 
matrix, sugar (0.8%), fat (2.9%), and minerals, such as selenium 
(20%), zinc (less bioavailable than meat), iron (lower than meat), 
manganese, calcium, and phosphorus, and a source of vitamin B2 
(115). Also, it is devoid of trans-fats and cholesterol. Due to its healthy 
nutritional profile, the consumption of mycoprotein is increasing 
worldwide (112). For example, including mycoprotein in the daily diet 
helps maintaining glycaemic control (116). Furthermore, edible 
mushrooms have tremendous health benefits including anti-
inflammatory, antioxidant, anti-cancer, anti-diabetic and anti-obesity 
properties (117, 118).

2.2.1 The role of fungi-derived protein and 
bioactive peptides in weight management

Owing to its sufficient amount of fiber and high protein content, 
mycoprotein plays a vital role in fighting hunger, decreasing body 
weight, and reducing energy intake. Literature have shown that 
mycoprotein ingestion reduces energy intake and increases satiety 
effects in obese and overweight individuals (119, 120). A study with 
36 overweight and obese adults showed that 132 g energy-matched 
mycoprotein-based preload meal compared to a chicken meal for 
180 min reduced energy intake by 10% (120). This could partly be due 
to the thermogenic and satiety effect of mycoprotein (121). Further 
longer-term studies are needed to investigate the potential of 
mycoprotein in the prevention of obesity and T2DM.

Interestingly, Ganoderma lucidum—a medicinal mushroom—
showed anti-obesity activities by modulating the gut microbiota 
(decreased the ratio of Firmicutes to Bacteroidetes and levels of 
Proteobacteria) in high-fat diet (HFD)-fed mice, suggesting as a prebiotic 
to reduce weight (122). The finding also showed that supplementation 
of water extract of Ganoderma lucidum mycelium to HFD-fed mice daily 
for 2 months by oral gavage results in a dose-dependently decreased 
weight gain and both epididymal and subcutaneous fat accumulation, 
and reduced inflammation and insulin resistance compared with 

untreated controls. Given scarce studies in the area, extensive research 
and clinical studies demonstrating the safety and effectiveness of fungi-
derived bioactive peptides are worthy of further investigation.

2.2.2 The role of fungi-derived protein and 
bioactive peptides in improving cardio-metabolic 
health

Mycoprotein ingestion also advantageously modifies blood lipid 
profiles, as indicated by studies (123, 124). The greatest benefits have 
been observed in subjects with elevated cholesterol levels at baseline 
(124). A study conducted on 17 healthy participants indicated that 
ingestion of mycoprotein-containing products (191 g) per day for 
3 weeks reduced total cholesterol, lowered low-density lipoprotein and 
improved high-density lipoprotein by 13, 9, and 12%, respectively 
(125). A randomized trial was conducted in a home setting among 72 
overweight, hypercholesterolaemic adults showed that mycoprotein 
ingestion for 4 weeks reduces serum cholesterol, low-density lipoprotein 
level, blood glucose, and C-peptide concentrations by 6, 10, 13 and 
27%, respectively (123). This implies that mycoprotein may improve 
peripheral insulin sensitivity, suggesting a role in preventive and clinical 
nutrition in reducing the risk of obesity and diabetes mellitus in adults. 
However, further investigation is warranted to consolidate this 
evidence. Consumption of edible mushrooms decreases plasma 
triglyceride, total cholesterol, and low-density lipoprotein (126). 
Moreover, bioactive peptides obtained from different edible mushroom 
species, such as Pholiota adiposa, pleurotus cornucopiae, Hypsizygus 
marmoreus, Agaricus bisporus, Tricholoma giganteum, Ganoderma 
Lucidum, and shiitake mushroom (Lentinula edodes) exhibited ACE 
inhibitory activities (127–133). A detailed summary of the beneficial 
effects of bioactive peptides has been provided in Table 1.

2.2.3 The role of fungi-derived protein and 
bioactive peptides in muscle anabolism

Furthermore, mycoprotein ingestion (121, 123, 134–137) 
increases muscle protein synthesis rate when taken as a whole food, 
an isolated source or in a blended form, particularly in young 
individuals. Mycoprotein (at a dose of 60–80 g) ingestion led  
to slower but more sustained hyperaminoacidemia and 
hyperinsulinemia when compared with 20 g protein-match milk 
(121). Similarly, mycoprotein ingestion (70 g) resulted in a less rapid 
but more sustained increase in serum insulin levels, peaking at 
30 min after consumption when compared with milk protein (136). 
However, a large amount of mycoprotein ingestion coupled with its 
satiating properties (138, 139) may not be a pragmatic approach in 
compromised individuals (anorexic older adults, patients with 
sarcopenia and cachexia). In such situations, protein concentrate 
from mycoprotein, and BCAA-enriched mycoprotein may be  a 
feasible option, but further investigation is warranted.

2.3 The role of insect-derived protein and 
bioactive peptides in preventive and 
clinical nutrition

Given that more than 2,100 edible insects are found worldwide, 
their nutritional composition is difficult to generalize (140). 
However, many edible insects contain high-quality protein (141), 
unsaturated fatty acids (linolenic and linoleic acid), micronutrients 
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TABLE 1 A summary of the purported beneficial effects of algae, fungi and insect-derived peptides.

Source Species Title of the article with 
references

Year of 
publication

Name of bioactive 
peptide/amino acid 
sequence

In vivo/In 
vitro

Beneficial effects of the 
peptide

Future research areas

Algae Spirulina platensis/

Arthrospira 

platensis

Anti-obesity effects of Spirulina platensis 

protein hydrolysate by modulating brain-

liver axis in high-fat diet fed mice (65)

2019 Spirulina platensis protein 

peptide hyrdolyste (SPPH)

In vivo animal 

(C57BL/6J mice)

Reduce body weight, serum glucose and 

total cholesterol

The molecular mechanism 

between Acadm and Acaca or 

Acsl1 warrants further study

Purification and identification of anti-obesity 

peptides derived from Spirulina platensis (66)

2018 CANPHELPNK, NPVWKRK In vitro using 

mouse 3T3-L1 

preadipocytes and 

normal liver cells 

(L-O2)

Exhibit inhibitory effects on 3T3-

L1preadipocyte proliferation, and reduce 

the accumulation of triglyceride

The detailed mechanism of action 

for the identified peptides needs 

to be explained

Protein hydrolysate from Spirulina platensis 

prevents dexamethasone-induced muscle 

atrophy via Akt/Foxo3 signaling in C2C12 

myotubes (59)

2022 Spirulina protein hydrolysate 

(SPH)

C2C12 cell line 

(CRL-1772)

Inhibits muscle atrophy mainly by 

activating the Akt/FoxO3a signaling 

pathway, increased myotube length and 

diameter in C2C12 cells,

To translate the effect of SPH as a 

healthy functional food material 

for the prevention, treatment, and 

improvement of muscle atrophy, 

in vivo study using animal models 

is required

Identification of anti-diabetes peptides from 

Spirulina platensis (87)

2019 GVPMPN, 

RNPFVFAPTLLTVAAR and 

LRSELAAWSR

In vitro Inhibition of α-amylase, α-glucosidase and 

DPP-IV

In vivo studies are important

Characterization and antitumor activity of 

protein hydrolysates from Arthrospira 

platensis (Spirulina platensis) using two-step 

hydrolysis (107)

2016 AGGASLLLLR, 

KFLVLCLR(KR),LCLR (LR), 

LAGHVGVR

In vitro and in vivo 

(using nude mice)

Dose dependent inhibitory effect against 

breast cancer cells (MCF-7), lung cancer 

cells (A549), gastric cancer 

cells(SGC-7901), colon cancer cells (HT-

29), liver cancer cells(HepG2)

Further study is warranted to 

divulge why the identified 

peptides did not inhibit cancer 

growth in a time dependent 

manner

In silico and in vitro assessment of bioactive 

peptides from Arthrospira platensis 

phycobiliproteins for DPP-IV inhibitory 

activity, ACE inhibitory activity, and 

antioxidant activity (79)

2022 Phycobiliprotein hydrolysates 

(PBPHs)

In silico and in vitro ACE inhibitory activity, DPP-IV inhibitory 

activity, antioxidant activity

In vivo study is required

Chlorella vulgaris Antihypertensive effects, molecular docking 

study, and isothermal titration calorimetry 

assay of angiotensin I-converting enzyme 

inhibitory peptides from Chlorella vulgaris 

(80)

2018 Val-His-Trp (VHW), Thr-

Thr-Trp (TTW)

In silico and in vivo 

(SHR). Molecular 

docking and 

Isothermal titration 

calorimetry (ITC) 

assay

VHW reduces SBP from 234 to 184 mmHg 

happened at 2 h. TTW reduces DBP from 

180 to 140 mmHg at 2 h.

Thus, VHW and TTW could be used to 

treat different hypertensive phenotypes or 

cooperate together.

Enrichment of the tryptophan 

content of the identified peptides 

is important

(Continued)
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Source Species Title of the article with 
references

Year of 
publication

Name of bioactive 
peptide/amino acid 
sequence

In vivo/In 
vitro

Beneficial effects of the 
peptide

Future research areas

Anticancer and antioxidant activities of the 

peptide fraction from algae protein waste 

(103)

2010 VECYGPNRPQF In vitro The identified peptides effectively induced 

cell death and inhibited the growth of AGS 

cells after G1 phase. The antioxidant 

activity of the peptide fraction was about 

26-fold stronger than that of Trolox.

In vivo study is warranted

Chlorella 

pyrenodosa

Separation, antitumor activities, and 

encapsulation of polypeptide from Chlorella 

pyrenoidosa (104)

2013 C. pyrenoidosa antitumor 

polypeptide (CPAP)

In vitro Anti-proliferative activity against human 

liver cancer HepG2 cells.

Detailed encapsulation 

mechanisms, and in vivo study is 

required.

Amino acid sequence of the 

peptide was not determined

Enteromorphia 

Prolifera

Preparation and Characterization of an 

Anticancer Peptide from Oriental Tonic 

Food Enteromorpha prolifera (106)

2022 HTDT-6-2-3-2 In silico, in vitro and 

molecular docking

Inhibitory activity against NCI-H460 

human cancer cell lines

HTDT-6-2-3-2 may also be novel 

inhibitors for ACE and DPP4. 

Future experiments will 

be conducted to verify this 

assumption

Fungi Pholiota adipose 

kumm (Yellow-cap 

fungus)

Production and characterization of 

antihypertensive angiotensin I-converting 

enzyme inhibitor from Pholiota adipose (127)

2006 GEGGP In vivo (SHR) ACE inhibitory activity (decrease SBP by 

22 mmHg)

ACE inhibitory activity is weaker 

than captopril. Research may 

require to enhance the ACE 

inhibitory activity of the identified 

peptide

Hypsizygus 

marmoreus

Characterization of an antihypertensive 

angiotensin I-converting enzyme inhibitory 

peptide from the edible mushroom 

Hypsizygus marmoreus (129)

2013 LSMGSASLSP In vivo (SHR) ACE inhibitory activity (decrease SBP by 

26 mmHg)

Human study is required for 

translating in to the actual health 

benefits.

Pleurotus 

cornucopiae

Characterisation of a new antihypertensive 

angiotensin I-converting enzyme inhibitory 

peptide from Pleurotus cornucopiae (128)

2011 RLPSEFDLSAFLRA, 

RLSGQTIEVTSEYLFRH

In vivo (SHR) ACE inhibitory activity (decrease SBP by 

50 mmHg)

Further studies are necessary to 

reduce the molecular weight of the 

identified peptide for application 

into the medicinal industry.

(Continued)

TABLE 1 (Continued)

https://doi.org/10.3389/fnut.2024.1461621
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Y
im

am
 et al. 

10
.3

3
8

9
/fn

u
t.2

0
24

.14
6

16
2

1

Fro
n

tie
rs in

 N
u

tritio
n

0
8

fro
n

tie
rsin

.o
rg

Source Species Title of the article with 
references

Year of 
publication

Name of bioactive 
peptide/amino acid 
sequence

In vivo/In 
vitro

Beneficial effects of the 
peptide

Future research areas

Tricholoma 

giganteum (Giant 

mushroom)

Isolation and characterization of a novel 

angiotensin I-converting enzyme inhibitory 

peptide derived from the edible mushroom 

Tricholoma giganteum (131)

2004 GEP In vivo (SHR) ACE inhibitory activity (decrease SBP by 

36 mmHg)

Human study is required for 

translating in to the actual health 

benefits.

Agaricus bisporus 

(button 

mushroom)

Novel angiotensin I-converting enzyme 

inhibitory peptides derived from edible 

mushroom Agaricus bisporus (J.E. Lange) 

Imbach identified by LC–MS/MS (130)

2014 AHEPVK, RIGLF, PSSNK In vitro ACE inhibitory activity In vivo study is required

Ganoderma 

Lucidum

Isolation and characterization of three 

antihypertension peptides from the mycelia 

of Ganoderma lucidum (Agaricomycetes) 

(132)

2019 QDVL, QDVL, QLDL In vitro ACE inhibitory activity Future studies on the cellular 

mechanism by which the 

identified peptides inhibit 

hypertension should be conducted 

to confirm this finding

Insects Tenbrio Molitor 

(Yellow 

mealworm)

Identification and in silico analysis of 

antithrombotic peptides from the enzymatic 

hydrolysates of Tenebrio molitor larvae (165)

2019 SLVDAIGMGP, 

AGFAGDDAPR

In silico and 

molecular docking

Antithrombotic effect Before applying it to the clinic, it 

still needs to prove the 

antithrombotic effect in vivo 

through a large number of 

experiments.

Tenbrio Molitor 

(Yellow 

mealworm), 

Cricket (Gryllodes 

sigillatus), Locust 

(Schistocerca 

gregaria)

Evaluation of ACE, α-glucosidase, and lipase 

inhibitory activities of peptides obtained by 

in vitro digestion of selected species of edible 

insects (162)

2020 KVEGDLK, YETGNGIK, 

AIGVGAIR, IIAPPER, 

FDPFPK

In vitro Inhibition of ACE, pancreatic lipase and 

α-glucosidase

Mechanism of lipase inhibition by 

peptides is still poorly understood, 

requiring further study

Silkworm(Bombyx 

mori)

Novel tripeptides with α-glucosidase 

inhibitory activity isolated from silk cocoon 

hydrolysate (163)

2011 E5K6 In vitro α-glucosidase inhibitory activity Further studies are needed on the 

side effect of the identified peptide 

using animals

A novel angiotensin-І converting enzyme 

(ACE) inhibitory peptide from 

gastrointestinal protease hydrolysate of 

silkworm pupa (Bombyx mori) protein: 

biochemical characterization and molecular 

docking study (148)

2015 Silkworm pupa protein 

hydrolysate (SPPH)/Ala-Ser-

Leu (ASL)

In vitro, molecular 

docking

Competitive ACE inhibitor In vivo study is required

TABLE 1 (Continued)
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(iron, zinc, calcium, potassium, magnesium, manganese, copper, 
vitamin E, vitamin K, vitamin B2, and vitamin B12) and fiber (142–
145). Interestingly, iron and zinc found in crickets, grasshoppers and 
mealworms have been shown highly bioavailable compared to 
sirloin beef (143). Currently, common edible insect species are house 
cricket (Acheta domesticus), African palm weevil (Rhynchophorus 
phoenicis), yellow mealworm (Tenebrio molitor), mopane worm 
(Gonimbrasia belina), domesticated silkworm (Bombyx mori),and 
honeybee (Apis mellifera) (146). Edible insects are a sustainable 
source of protein for food and feed given their lower water and land 
consumption, high feed conversion efficiency, low greenhouse gas 
emissions compared to livestock, short life cycle, and rapid intrinsic 
growth rate (147, 148).

2.3.1 The role of insect-derived protein in muscle 
protein synthesis: insight for sarcopenia 
prevention

Studies showed that ingestion of lesser mealworm-derived 
protein (149), and cricket protein powder (150) were capable of 
stimulating MPS at rest and after exercise in young men. In particular, 
similar postprandial amino acid availability and MPS rates occurred 
after ingestion of 30 g lesser mealworm-derived protein to an 
equivalent amount of milk protein concentrate (149). In addition, no 
significant difference was observed in the mammalian target of 
rapamycin (mTORC1) signaling between cricket, pea, and whey 
protein despite a higher concentration of EAA and leucine occurring 
after ingestion of whey (150). Similarly, the EAA, BCAA, and leucine 
plasma levels peaked earlier in soy, whey and beef-derived protein 
than for cricket and lesser-mealworm (151, 152). The observed 
differences may be attributed to the slowly digested properties of 
lesser mealworm and cricket-derived compared to animal-
derived proteins.

The high muscle protein anabolic potential of insect-derived 
proteins provides a strong initiative for integrating insects into the 
diet, especially in Western countries where acceptance of insect 
consumption is low. The high quality of insect-derived proteins 
coupled with their high amounts of micronutrients and 
antioxidants (153–155), will be  of particular relevance in 
populations that consume less protein and suffer from anabolic 
resistance (156), such as the older and more clinically 
compromised populations.

2.3.2 The role of insect-derived bioactive 
peptides in preventing obesity, diabetes and 
hypertension

Although human studies are still lacking, peptides and bioactive 
compounds derived from edible insects could provide health 
benefits, such as anti-oxidant (157), anti-obesity (158), anti-diabetic 
(159) and anti-hypertensive properties (160). A study showed that 
yellow mealworm larvae powder administration in obese mice 
reduced body weight gain by decreasing lipid accumulation and 
triglyceride content in adipocytes (158), thus demonstrating the 
potential to induce weight loss. Moreover, an ethanol extract of the 
Korean horn beetle Allomyrina dichotoma injection into the brain 
tissue of obese mice reduced both endoplasmic reticulum (ER) 
stress and hormone-induced change in feeding behaviour (159). 
Thus, it could imply in preventing and treating obesity and T2DM 

since reduction of ER stress enhances insulin-producing beta 
cells (161).

Antioxidant activity in edible insect species was reported, 
including free radical-scavenging activity, and iron-chelating ability 
(157). Moreover, inhibition of ACE, pancreatic lipase and 
α-glucosidase have been observed in peptides derived from yellow 
mealworm(Tenbrio Molitor), silkworm (Bombyx mori), cricket 
(Gryllodes sigillatus) and locust (Schistocerca gregaria) (160, 162–164). 
Besides the ACE inhibitory activity, peptides derived from Tenebrio 
molitor larvae showed strong antithrombotic properties (165). 
However, the evidence mentioned above (157–160, 162–165) requires 
further human studies to translate into actual health benefits.

2.4 Food safety of edible insects

Apart from the nutritional, environmental and health benefits of 
edible insects, food safety issues need to be considered. This includes 
anti-nutrient content, allergenic potential, microbial safety and 
chemical contamination. Anti-nutrients, such as phytic acid, tannin, 
saponins, oxalate and cyanogenic glycosides have been determined 
in edible insects (145, 166, 167). More research on the anti-
nutritional properties is necessary. Allergic reactions that could 
be  triggered by insect consumption include nausea, vomiting, 
diarrhea, asthma, and skin reactions (168, 169). Commonly, 
tropomyosin and arginine kinase pan-allergens have been identified 
(168–170). Cross-reactivity and co-sensitisation between (insects 
and house dust mites) and (insects and crustaceans) occur because 
of these pan-allergens (168, 169). Therefore, clear labelling and 
communication of the allergenic potential of insects to the consumer 
is required since insect protein allergenicity is not removed by 
thermal treatments (168).

Concerning microbial safety, different microbiota have been 
found on raw edible insects, including lactic acid bacteria, 
Enterobacteriaceae, fungi, mesophilic aerobes, spore-forming 
bacteria, and foodborne pathogens (171), albeit no outbreaks 
associated with pathogens have been reported in the scientific 
literature. Thus, effective decontamination, and good hygiene practices 
during rearing, processing and storage are essential to minimize the 
microbial hazards of insect-containing food products (172).

Regarding chemical contamination of edible insects, low levels 
of contaminants (the level below the legal maximum amount), such 
as dioxin compounds, pesticide residue, arsenic, cadmium, copper, 
nickel, mercury, lead, and tin have been identified (173, 174). Insect 
species, rearing conditions, feed substrate including the packaging 
material of the substrate, and post-harvest processing were factors 
for the chemical contamination of edible insects (172, 175). Regular 
monitoring of the rearing environment, strong supplier auditing and 
certification process could reduce the risk of heavy metal 
contamination (176). Additionally, using naturally derived 
biopesticides from plants, micro-organisms or beneficial insects, 
such as neem oil, bacillus thuringiensis, and insect pheromones could 
decrease the deposition of residual pesticides (177). Future research 
should focus on determining the best processing conditions to create 
insect protein isolates with good functional characteristics, cost-
effectiveness, and environmental sustainability that can be used in 
food formulation.
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2.5 Challenges and strategies to consume 
edible insects

Despite a surfeit of health benefits, and the potential of edible 
insects to represent an environmentally sustainable nutrient source, 
willingness to consume insects as a food is low in Western countries 
(178, 179); albeit they aren’t against advances and food innovations. 
Food disgust (the product goes beyond the internalized norm of what 
food is), lack of familiarity with insect consumption, neophobia 
(hesitance to consume unfamiliar food), lack of product information, 
curiosity or sensation seeking and food technology neophobia were 
the identified drivers for low acceptance of insect consumption (178–
180). As a result, different strategies have been suggested to convince 
consumers, such as underscoring that insects are nutritious, harvesting 
properly on controlled farms, making insect products delicious 
(enhancing the culinary experience), familiarizing insect-based 
products, integrating them in unrecognizable forms in familiar 
products, marketing insect-based products by taste, using celebrities 
to promote the product, targeting specific groups (sensation seekers, 
adventurous consumers or children), information provision from a 
nutritional and environmental standpoint, devising market 
approaches (stylistic images, choosing supermarkets for retailing, and 
using promotional tools such as buy-one-get-one-free, and discounts) 
(176, 181).

3 Conclusion

In conclusion, proteins derived from algae, fungi, and edible 
insects are high-quality proteins as animal sources and demonstrate 
significant potential as a sustainable source of bioactive peptides, 
which are metabolically potent and have negligible adverse effects. 
They show promise to prevent and treat diseases associated with 
oxidative stress, obesity, diabetes, cancer, cardiovascular disease 
(especially hypertension), and neurodegenerative diseases. Given the 
abundance of algae, fungi and insect peptides performed in vitro or in 
vivo animals, further research, validation and clinical studies are 
needed to fully establish their safety, efficacy and practical application 
in preventive and clinical nutrition. Additionally, social and behavioral 
change communication strategies would be  important to increase 
health awareness of nutritional benefits and promote consumer 
acceptance of alternative protein sources.
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