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Association between the geriatric 
nutritional risk index and 
cognitive functions in older 
adults: a cross-sectional study 
from National Health and 
Nutrition Examination Survey
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Neurology Department, The Affiliate University-Town Hospital, Chongqing Medical University, 
Chongqing, China

Objective: To investigate the associations between the geriatric nutritional risk 
index (GNRI) with cognitive functions among U.S. older adults. (Patients were 
classified into two nutrition risk groups based on the GNRI).

Methods: Our analysis utilized data from the cross-sectional National Health 
and Nutrition Examination Survey (NHANES) conducted between 2011 and 
2014. Cognitive function was measured using CERAD test, AFT and DSST. 
Composite z-scores were obtained by summing test-specific z-scores of 
the above three cognitive tests and were used to assess the global cognitive 
function. We  employed weighted logistic regression models to evaluate the 
associations between GNRI and nutritional status (low and high GNRI) with 
cognitive function among older participants. The non-linear relationship was 
described using fitted smoothed curves and threshold effect analyses. Subgroup 
analysis and interaction tests were also conducted.

Results: This study included 2,592 older participants aged 60  years and older. 
After adjusting for confounding variables, the GNRI was positively associated 
with AFT (β =  0.05, 95% CI 0.005–0.096, p-value  =  0.0285), DSST (β =  0.192, 95% 
CI 0.078–0.305, p-value  =  0.0010) and the composite z-scores (β =  0.027, 95% 
CI 0.010–0.044, p-value  =  0.0024). The results also showed that the high-GNRI 
group was significantly associated with AFT (β =  0.922, 95% CI 0.166–1.677, p-
value  =  0.0169), DSST (β  =  2.791, 95% CI 0.884–4.698, p-value  =  0.0042) and 
composite z-scores (β =  0.405, 95% CI 0.115–0.695, p-value  =  0.0062) likewise 
had significant positive correlations, using the low-GNRI group as a reference. 
In addition, inflection points with CERAD and composite z-scores were found 
at GNRI of 108.016, and 105.371, respectively. Specifically, on the left side of 
the inflection point GNRI levels were positively correlated with CERAD and 
composite z-scores (CERAD β =  0.087, 95% CI 0.024–0.150, p-value  =  0.0070; 
composite z-scores β  =  0.065, 95% CI 0.040–0.091, p-value <0.0001), while 
on the right side of the inflection point were significantly negatively associated 
(CERAD β =  −0.295, 95% CI −0.529 to −0.062, p-value  =  0.0133, composite z-
scores β =  −0.050, 95% CI −0.091 to −0.008, p-value  =  0.0184).

Conclusion: Lower GNRI was associated with poorer performance in several 
cognitive domains. Additionally, there was a non-linear positive association 
between GNRI and cognitive function in normal nutritional states, for excessive 
GNRI may cause cognitive decline.
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1 Introduction

The increasing incidence of cognitive function deterioration is 
becoming a significant concern in the context of global aging (1). 
Cognitive decline refers to the worsening of abilities across various 
cognitive domains, such as memory, language, judgment, executive 
functions, visuospatial skills and computational capabilities (2). 
Without timely prevention and intervention, this decline can evolve 
into mild cognitive impairment (MCI) and ultimately progress 
irreversibly to different forms of dementia, predominantly 
Alzheimer’s disease (3, 4). This progression poses substantial 
challenges to the quality of life of not only the affected individuals 
but also their families and society at large (5). Once dementia is 
established, the outcomes from existing treatments are frequently 
unsatisfactory (6). However, preemptive measures including lifestyle 
modifications like enhanced nutrition and increased physical 
activity can effectively manage and potentially prevent the 
deterioration of cognitive functions (7).

Previous studies have shown that diet and nutrition, as a 
common lifestyle, are significantly associated with CI and dementia 
(8–10). Two studies have relied on specific nutritional markers like 
vitamin and albumin levels (11, 12) or utilized scales such as the 
mini nutritional assessment (MNA) and its short form (MNA-SF) to 
investigate the link between malnutrition and cognitive function 
(13, 14). However, some of the above criteria for assessing nutritional 
status are subjective and do not fully reflect the overall nutritional 
status, so the relationship between nutritional status and cognitive 
function is still controversial. The geriatric nutritional risk index 
(GNRI), which is a more straightforward dietary index that evaluates 
the nutritional status of older adults using objective criteria such as 
height, weight, ideal body weight, and albumin levels (15), has 
recently been acknowledged as equally effective as the MNA in 
determining malnutrition (16).

To date, research examining the link between the GNRI and 
normal nutritional status with cognitive function remains scarce. In 
this investigation, we evaluated the relationship between GNRI and 
cognitive performance using a representative cohort of older 
U.S. adults from the 2011–2014 National Health and Nutrition 
Examination Survey (NHANES). Additionally, we analyzed how 
GNRI levels correlate with cognitive domains, through the 
application of three tests among older adults who are in a normal 
nutritional state.

2 Methods

2.1 Study population

The cohort for our study was sourced from the NHANES, which 
assesses the health and nutritional status of a representative segment 
of the U.S. populace through complex and multistage stratified 
random sampling. NHANES data has been collected continuously 
since 1999, and data are released publicly in 2-year cycles. The study’s 
protocol was sanctioned by the National Center for Health Statistics 
(NCHS), and all participants provided informed consent. We can find 
NHANES database from the link: https://www.cdc.gov/nchs/nhanes/
index.htm.

Our analysis incorporated individuals from the 2011 to 2014 
NHANES cycles, as these were the periods during which the latest 
assessments of cognitive function were available. Initially, we included 
19,931 participants. Exclusions were made for those under the age of 
60, resulting in 16,299 participants being omitted. Additionally, 
participants missing cognitive function test data (n = 698), GNRI-
related data (n = 206), and necessary covariates (n = 136) were also 
excluded. Eventually, 2,592 participants remained eligible for inclusion 
in our research (Figure 1).

2.2 GNRI assessment

GNRI is a newly nutritional assessment tool designed to evaluate 
the nutritional risk and its associated morbidity and mortality in older 
adults. According to previous studies (17, 18), the GNRI is composed 
of the individual’s height (m), weight (m), ideal weight (kg), and 
serum albumin (g/L). The calculation formula as follows (18): 
GNRI = 1.489 × albumin (g/L) + 41.7 × (weight/ideal weight), ideal 
weight = 22 × height (m) × height (m). In cases where the actual weight 
exceeded the ideal weight, the set weight/ideal weight was 1. In our 
study, the total GNRI was treated as a continuous variable and 
participants were divided into two categories based on their GNRI 
levels (18): a low-GNRI group (GNRI <98) and a high-GNRI group 
(GNRI ≥98). The low-GNRI group included individuals identified as 
malnourished, whereas the high-GNRI group comprised those with 
normal nutritional status. The GNRI was designated as the exposure 
variable for the research.

2.3 Cognitive function assessment

To assess the cognitive performance in participants, we employed 
the following three cognitive function tests, with higher scores 
indicative of better cognitive function.

The consortium for the establishment of an Alzheimer’s Disease 
Registry (CERAD) test involves three consecutive learning trials and 
one delayed recall trial, aimed at evaluating the immediate and delayed 

Abbreviations: GNRI, Geriatric nutritional risk index; NHANES, National Health and 

Nutrition Examination Survey; CERAD, Alzheimer’s Disease Registry; AFT, Animal 

fluency test; DSST, Digit symbol substitution test; CI, Cognitive impairment; MNA, 

Mini nutritional assessment; MNA-SF, Mini nutritional assessment-short form; 

NCHS, National Center for Health Statistics; PIR, Poverty-to-income ratio; BMI, 

Body mass index; CVD, Cardiovascular diseases.
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acquisition of new verbal information (19), with scores from 1 to 40. 
The animal fluency test (AFT) assesses categorical language fluency 
(20), with scores ranging from 3 to 40. The digit symbol substitution 
test (DSST), a component of the Wechsler Adult Intelligence Scale, 
measures processing speed, sustained attention, and working memory 
(21), with scores between 0 and 105.

Additionally, we calculated test-specific z-scores for each cognitive 
test by using the sample mean and standard deviation of the scores 
from each of the three listed cognitive tests, based on the prior 
reference [22]. These specific z-scores were then aggregated to create 
a composite z-score. The composite z-score was utilized to assess the 
global cognitive function of the study participants.

2.4 Covariates

We included relevant covariates that could potentially influence 
the association between GNRI and cognitive function in three 
categories: sociodemographic variables, lifestyle, and common 
diseases in older adults (23, 24).

Sociodemographic variables included sex (male/female), age 
(years), race (Mexican American, other Hispanic, non-Hispanic White, 
non-Hispanic Black, other), poverty-to-income ratio (PIR), education 
levels (less than high school, high school and above), and body mass 

index (BMI, kg/m2). Lifestyle factors comprised physical activity 
(active/inactive), smoking status (yes/no) and drinking status (yes/
no). Common diseases in older adults that were considered included 
diabetes, hypertension, self-reported cardiovascular diseases (CVD) 
and stroke. Physically active was defined as engaging in at least 10 
consecutive minutes of moderate or vigorous intensity activities not 
related to work or transport. While activities lasting less than 10 min 
were classified as physically inactive (25). Smoking status was assessed 
based on whether an individual had smoked at least 100 cigarettes in 
their lifetime. Drinking status was identified by whether an individual 
had at least 12 drinks per year. Self-reported CVD included congestive 
heart failure, coronary heart disease, angina/angina pectoris, and 
heart attack. Hypertension was determined either through a mean 
systolic blood pressure exceeding 140 mmHg or a mean diastolic 
blood pressure over 90 mmHg from the last three measurements, or 
by self-reported history. Diabetes was diagnosed either through 
physician diagnosis or the glycosylated hemoglobin level 
exceeding 6.5%.

2.5 Statistical analysis

In the weighted baseline table, continuous variables were 
described using the mean ± standard deviation, while categorical 

FIGURE 1

Flow chart of participants selection. NHANES, National Health and Nutrition Examination Survey.
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variables were represented as percentages. To explore differences 
across subgroups defined by varying GNRI levels, we applied t-tests 
for continuous variables and chi-squared tests for categorical variables. 
We  also conducted analyses using weighted multivariate logistic 
regression to compute beta values and 95% confidence intervals, 
aiming to assess the association between GNRI and cognitive function. 
In our analytical models, no covariates were adjusted in model 1. 
Model 2 included adjustments for gender, age, and race. Model 3 
accounted for all covariates. Furthermore, we performed smoothed 
curve fitting and threshold effects analyses to further investigate the 
non-linear relationship between GNRI and cognitive function, 
including identifying potential inflection points, adjusting for all 
covariates. Finally, to assess the stability of the correlation between 
high-GNRI and global cognitive function, we  conducted further 
subgroup analyses and interaction tests, adjusting for all confounding 
factors in the process. Missing values for continuous variables in this 
study were entered from the median or mean of available cases for 
these variables. All study analyses were completed in EmpowerStats 
(versions 2.0; http://www.empowerstats.com) and R software (version 
4.2.2; http://www.r-project.org).

3 Results

3.1 Baseline characteristics of participants

The baseline characteristics of the 2,592 participants in our study, 
stratified by GNRI levels, are summarized in Table 1. The weighted 
average age of the study was 69.08 ± 6.63 years, with a slightly higher 
proportion of females (53.69%) compared to males (46.31%). 
Compared with the low-GNRI group, the high-GNRI group was 
younger and more likely to be male, had a higher proportion of other 
Hispanics and non-Hispanic White people; was more likely to 
be  overweight (BMI ≥25); had higher alcohol consumption and 
physical activity status; and had a lower prevalence of stroke and 
diabetes. In addition, the high-GNRI group scored higher on all three 
cognitive function tests and had higher composite z-scores compared 
to the low-GNRI group.

3.2 Composite z-scores distribution of 
participants in the high-GNRI and 
low-GNRI group

Participants in the high-GNRI group had higher composite 
z-scores compared to the low-GNRI group, suggesting higher global 
cognitive function in the high-GNRI group population. And the 
difference was statistically significant (p-value <0.0001) (Figure 2).

3.3 The association between GNRI levels 
and cognitive function

The outcomes of the multivariate logistic regression analyses 
are detailed in Table  2. After adjusting for all covariates, the 
significant positive correlation was observed between total GNRI 
and scores from the AFT, DSST, and composite z-scores. 
Specifically, for each unit increase in total GNRI, there was an 
increase of 0.050 points in AFT scores (β  = 0.050, 95% CI 

0.005–0.096, p-value = 0.0258), 0.192 points in DSST scores 
(β = 0.192, 95% CI 0.078–0.305, p-value = 0.0010), and 0.027 points 
in composite z-scores (β  = 0.027, 95% CI 0.010–0.044, 
p-value = 0.0024). Additionally, when analyzed by GNRI levels, the 
GNRI levels in the high-GNRI group were significantly associated 
with better outcomes in cognitive functioning. Compared to the 
low-GNRI group, the high-GNRI group exhibited significantly 
higher AFT scores (β = 0.922, 95% CI 0.166–1.677, p-value = 0.0169) 
and DSST scores (β = 2.791, 95% CI 0.884–4.698, p-value = 0.0042). 
Furthermore, the higher GNRI levels were also significantly and 
positively correlated with higher composite z-scores, reflecting 
overall cognitive functioning (β  = 0.405, 95% CI 0.115–0.695, 
p-value = 0.0062).

3.4 Non-linear relationship between the 
GNRI and cognitive performance

The non-linear positive association between the GNRI and the 
three cognitive test scores, as well as the composite z-scores, were 
confirmed through smoothed curve fitting analyses, as shown in 
Figure 3. Furthermore, the non-linear U-shaped relationship between 
GNRI and global cognitive function was identified using a 
two-segment linear regression model, with calculated threshold effects 
presented in Table 3.

The smoothed curve depicting the relationship between GNRI 
and the global cognitive function revealed an inflection point at a 
GNRI value of 105.37. On the left side of this inflection point, there 
was a positive association with an increase in GNRI associated with 
improved cognitive scores (CERAD β = 0.087; 95% CI: 0.024, 0.150; 
p-value = 0.0070; composite z-scores β = 0.065; 95% CI: 0.040, 0.091; 
p-value <0.0001). Conversely, on the right side of the inflection point, 
the association turned negative, indicating that higher GNRI values 
beyond this point were associated with cognitive decline (CERAD 
β  = −0.295; 95% CI: −0.529, −0.062; p-value = 0.0133, composite 
z-scores β = −0.050; 95% CI: −0.091, −0.008; p-value = 0.0184).

3.5 Subgroup analysis

Finally, we  implemented adaptive subgroup analyses and 
interaction tests stratified by all confounders to evaluate the 
consistency of the correlation between high GNRI and overall 
cognitive functioning, and to identify potential differences among 
specific populations, as depicted in Figure 4. The results indicated that 
participants with diabetes exhibited a significant positive correlation 
between overall cognitive function and GNRI. This positive 
correlation was notably absent in non-diabetic patients, with the 
interaction effect reaching statistical significance (p for 
interaction = 0.0423). Furthermore, participants with a history of 
cardiovascular disease (CVD) demonstrated a tendency to have 
higher cognitive functioning with increased GNRI, which was 
marginally significant (p-value = 0.0498).

Among the other covariates examined, the association between 
GNRI and global cognitive function remained consistent across the 
remaining subgroups, with no significant interactions observed (p for 
interaction >0.05). The analysis suggested that GNRI’s impact on 
cognitive function may vary depending on the presence of specific 
health conditions like diabetes and CVD.
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TABLE 1 Weighted characteristics of study population based on different GNRI levels.

Variables Low-GNRI (N =  225) High-GNRI (N =  2,367) p-value

Age (years) 70.86 ± 7.09 68.94 ± 6.57 0.0001

Gender (%) <0.0001

  Male 32.18 47.40

  Female 67.82 52.60

Race (%) 0.0073

  Mexican American 3.99 3.21

  Other Hispanic 2.88 3.63

  Non-Hispanic White 73.32 81.10

  Non-Hispanic Black 14.59 7.24

  Other race 5.22 4.82

Education level (%) 0.2198

  <High school 18.76 15.37

  High school, or >high school 81.24 84.63

PIR (%) 0.1137

  ≤1 11.29 7.98

  >1 88.71 92.02

BMI (%) 0.0024

  <25 36.29 25.44

  ≥25, <30 27.69 37.15

  ≥30 36.02 37.41

Smoking status (%) 0.6125

  Yes 48.31 50.24

  No 51.69 49.76

Drinking status (%) 0.0033

  Yes 64.15 74.05

  No 35.85 25.95

Physical activity (%) <0.0001

  Active 31.24 46.86

  Inactive 68.76 53.14

CVD (%) 0.2942

  Yes 20.15 17.13

  No 79.85 82.87

Stroke (%) 0.0002

  Yes 12.37 5.53

  No 87.63 94.47

Hypertension (%) 0.5630

  Yes 64.58 66.66

  No 35.42 33.34

Diabetes (%) 0.0326

  Yes 31.87 24.80

  No 68.13 75.20

Composite z-score −0.10 ± 2.35 0.84 ± 2.41 <0.0001

CERAD test score 25.04 ± 6.84 26.13 ± 6.30 0.0243

AFT score 16.20 ± 4.83 18.30 ± 5.64 <0.0001

DSST score 46.36 ± 17.43 53.11 ± 16.37 <0.0001

Mean ± SD for continuous variables: p-value was calculated by weighted linear regression model. % for categorical variables: p-value was calculated by weighted chi-square test.
PIR, poverty-income ratio; BMI, body mass index; CVD, cardiovascular disease; CERAD, the consortium to establish a registry for Alzheimer’s disease; AFT, animal fluency test; DSST, digit 
symbol substitution test.
The composite z-score was calculated by summing the z-scores [(test score − mean score)/SD] of the three individual tests.
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4 Discussion

Our results demonstrated that the GNRI is significantly and 
positively correlated with the AFT, DSST and composite z-scores, even 
after adjusting for potential confounding variables. These findings 

indicated that a lower GNRI is linked to declines across multiple 
cognitive domains and global cognitive deterioration.

Upon categorizing participants based on their nutritional status 
(GNRI <98; GNRI ≥98), our analysis revealed a positive correlation 
between GNRI and cognitive functioning in older adults who 

TABLE 2 Logistic regression analysis for associations between GNRI and cognitive function scores.

Cognitive 
function

Model 1 [β 
(95% CI)]

p-value Model 2 [β 
(95% CI)]

p-value Model 3 [β 
(95% CI)]

p-value

CERAD

Total GNRI 0.089 (0.033, 0.144) 0.0018 0.061 (0.009, 0.112) 0.0222 0.041 (−0.011, 0.093) 0.1185

Low-GNRI Reference Reference Reference

High-GNRI 1.089 (0.142, 2.035) 0.0243 0.654 (−0.223, 1.532) 0.1441 0.474 (−0.396, 1.343) 0.2860

AFT

Total GNRI 0.014 (0.091, 0.189) <0.0001 0.083 (0.037, 0.129) 0.0004 0.050 (0.005, 0.096) 0.0285

Low-GNRI Reference Reference Reference

High-GNRI 2.097 (1.262, 2.931) <0.0001 1.252 (0.473, 2.032) 0.0017 0.922 (0.166, 1.677) 0.0169

DSST

Total GNRI 0.495 (0.351, 0.638) <0.0001 0.339 (0.217, 0.461) <0.0001 0.192 (0.078, 0.305) 0.0010

Low-GNRI Reference Reference Reference

High-GNRI 6.749 (4.292, 9.205) <0.0001 4.343 (2.270, 6.416) <0.0001 2.791 (0.884, 4.698) 0.0042

Composite z-score

Total GNRI 0.068 (0.047, 0.089) <0.0001 0.044 (0.026, 0.062) <0.0001 0.027 (0.010, 0.044) 0.0024

Low-GNRI Reference Reference Reference

High-GNRI 0.946 (0.588, 1.305) <0.0001 0.584 (0.275, 0.893) <0.0001 0.405 (0.115, 0.695) 0.0062

Model 1: no adjustment for covariates.
Model 2: age, gender, and race adjusted.
Model 3: age, race, gender, BMI, education level, PIR, physical activity, smoking and drinking status, CVD, stroke, diabetes, hypertension. CERAD, the consortium to establish a registry for 
Alzheimer’s disease; AFT, animal fluency test; DSST, digit symbol substitution test.
The composite z-score was calculated by summing the z-scores [(test score − mean score)/SD] of the three individual tests.

FIGURE 2

Violin plot of composite z-scores distribution in high-GNRI and low-GNRI group participants.
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maintain a normal nutritional status (GNRI ≥98), as opposed to those 
considered malnourished (GNRI <98).

Previous investigations into the association between the GNRI and 
cognitive function in older adults have been limited, with most 
research focusing on malnutrition as assessed by GNRI and yielding 
mixed results. For instance, a longitudinal analysis from the Chinese 

Longitudinal Healthy Longevity Survey (CLHLS) found a linear 
relationship between malnutrition risk (GNRI ≤98) and declining 
cognitive function, indicating that worsening malnutrition correlates 
with deteriorating cognitive abilities (26). Additionally, a study of an 
elderly Chinese stroke population identified a low GNRI (<98) as a 
predictive marker for post-stroke cognitive impairment (27). However, 

FIGURE 3

The solid red line indicates a smooth curve fit between the GNRI and cognitive performance. Blue bars indicate 95% of the fitted confidence intervals. 
(A) GNRI and composite z-score. (B) GNRI and CERAD. (C) GNRI and AFT. (D) GNRI and DSST.

TABLE 3 Threshold effect analysis of GNRI on cognitive function using a two-segment linear regression model.

Outcomes CERAD β (95% CI) 
p-value

AFT β (95% CI) p-
value

DSST β (95% CI) 
p-value

Composite z-score β (95% CI) 
p-value

Linear effect model

0.041 (−0.011, 0.093) 0.1185 0.050 (0.005, 0.095) 0.0285 0.192 (0.078, 0.305) 0.0010 0.027 (0.010, 0.044) 0.0024

Non-linear model

Inflection point (K) 108.016 104.219 96.793 105.371

GNRI <K 0.087 (0.024, 0.150) 0.0070 0.156 (0.082, 0.230) <0.0001 1.119 (0.643, 1.595) <0.0001 0.065 (0.040, 0.091) <0.0001

GNRI >K −0.295 (−0.529, −0.062) 0.0133 −0.089 (−0.178, 0.001) 0.0514 0.062 (−0.069, 0.192) 0.3549 −0.050 (−0.091, −0.008) 0.0184

Log likelihood ratio 0.013 <0.001 <0.001 <0.001

Age, race, gender, BMI, education level, PIR, physical activity, smoking and drinking status, CVD, stroke, diabetes, and hypertension were adjusted. CERAD, the consortium to establish a 
registry for Alzheimer’s disease; AFT, animal fluency test; DSST, digit symbol substitution test.
The composite z-score was calculated by summing the z-scores [(test score − mean score)/SD] of the three individual tests.
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other studies have reported differing outcomes; for example, Lee et al. 
(28) found no significant association between GNRI and cognitive 
impairment risk among hemodialysis patients. And Xu et  al. (29) 
observed no significant link between GNRI and cognitive function 
indicators in elderly patients with coronary artery disease. These 
divergent findings may be attributable to the specific diseases affecting 
the study populations or the varying methodologies employed in 
assessing cognitive function. Consistent with some prior studies, our 
research also observed lower cognitive function among malnourished 
participants, highlighting the ongoing need for extensive research to 
further elucidate the relationship between GNRI and cognitive function.

Additionally, previous evidence suggested that cognitive decline and 
the progression of dementia can potentially be  mitigated through 
nutritional supplementation and maintaining a healthy diet (30). 

Notably, the combined intake of multiple B vitamins such as folic acid, 
vitamin B6, and vitamin B12 has been shown to prevent cognitive 
decline by inhibiting the accumulation of homocysteine (31–33). 
Furthermore, there is an expanding body of evidence supporting the 
role of n − 3 fatty acids, vitamins D and E, and plant-derived vitamins in 
preventing cognitive deterioration and potentially dementia (33–36). 
On the other hand, an increasing number of studies have identified a 
negative correlation between the consumption of trans fats and added 
sugars and cognitive function (37, 38), suggesting that higher nutritional 
status may paradoxically lead to diminished cognitive performance. This 
aligns with our findings where smoothed curve fitting and threshold 
effect analyses revealed that higher GNRI levels were negatively 
associated with both CERAD scores and composite z-scores as GNRI 
increased. Consequently, a higher nutritional status does not necessarily 

FIGURE 4

Subgroup logistic regression analysis for the association between high-GNRI and global cognitive function. The global cognitive function was 
represented by composite z-scores. Low-GNRI was the control group.
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eliminate the risk of cognitive decline. Effective prevention might 
be achievable through maintaining an optimal GNRI by adopting a 
balanced nutritional intake and following a healthy dietary pattern (39).

The mechanism by which the GNRI appears to be associated with 
cognitive function is unclear. The main reason may be that GNRI is a 
valid indicator for assessing nutritional status, which has been shown to 
be strongly associated with cognitive function (16–18), although the 
exact mechanism is still unclear. GNRI is calculated on the basis of height 
(cm), body weight (kg), ideal body weight (kg), and serum albumin (18). 
Therefore, the relationship between GNRI and cognitive function may 
be related to albumin and BMI. Recent studies have shown that higher 
albumin levels are associated with a lower risk of cognitive impairment, 
suggesting that maintaining high levels of albumin may benefit cognitive 
function in older adults (12, 40, 41). This may be because albumin itself 
is closely related to nutritional status (42). Reduced albumin levels may 
interfere with the blood supply to the central nervous system and may 
disrupt the oxidant/antioxidant balance, contributing to the development 
of cognitive impairment (43–46). Similarly, BMI, an assessment index 
for obesity, has been consistently shown to be strongly associated with 
cognitive function, but the findings were controversial. Some studies 
have suggested that overweight older adults have a lower risk of 
developing CI or dementia (47, 48). However, recent studies have shown 
that higher BMI is associated with poorer cognitive functioning in older 
adults (49, 50), which may also account for the cognitive decline seen in 
participants with excessive GNRI. And some studies have found 
significant correlations between GNRI and the prevalence of diabetes, 
stroke, and depression (18, 51, 52). Therefore, it is possible that GNRI 
indirectly affects cognitive function through the above factors (53–55).

The study addressed the underexplored relationship between the 
geriatric nutritional risk index (GNRI) and cognitive function among a 
representative cohort of U.S. older adults. We found a significant positive 
correlation between GNRI and cognitive function. However, excessively 
high GNRI values were also associated with declines in cognitive 
performance. This suggested that GNRI could potentially serve as a 
reliable predictor of cognitive decline in clinical settings, further 
emphasizing the link between malnutrition and cognitive function.

Our research, a cross-sectional analysis based on data from the 
NHANES, benefited from the representativeness of the NHANES 
sample, providing a more accurate reflection of the older American 
population compared to other studies. We utilized various cognitive 
tests to evaluate different cognitive abilities among older adults, 
alongside composite z-scores for an overall assessment of cognitive 
function. The substantial sample size facilitated subgroup analyses, 
enhancing our understanding of the GNRI-cognitive function 
relationship across different demographics. Nonetheless, our study 
is not without limitations. The cross-sectional nature of NHANES 
restricts our ability to track changes in nutritional status and 
cognitive function over time or to establish a causal relationship 
between these variables. Additionally, some variables in NHANES 
come from questionnaires and self-reports, which are prone to 
biases. And the evidence from the U.S. may not be generalizable to 
other populations due to differences in genetic origin and 
socioeconomics conditions. Furthermore, of a total 3,632 elderly 
people, 1,040 (28%) were excluded due to missing data on covariates, 
which may have affected the results. Consequently, future 
multicenter longitudinal clinical trials with extended follow-ups are 
essential to more definitively determine the relationship between 
GNRI and cognitive function in the aging population.

5 Conclusion

In a representative cohort of older Americans, our study 
reinforced the link between malnutrition and cognitive decline. 
Additionally, our findings indicated that higher geriatric 
nutritional risk index (GNRI) levels correlate with improved 
cognitive function. However, there may be  instances where 
increased GNRI levels within a normal nutritional status could 
lead to cognitive deterioration. This implies that GNRI could serve 
as a valuable tool for predicting changes in cognitive function in 
clinical environments in the future.
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