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Accurate recognition of nutritional components in food is crucial for dietary

management and health monitoring. Current methods often rely on traditional

chemical analysis techniques, which are time-consuming, require destructive

sampling, and are not suitable for large-scale or real-time applications.

Therefore, there is a pressing need for e�cient, non-destructive, and accurate

methods to identify and quantify nutrients in food. In this study, we propose

a novel deep learning model that integrates E�cientNet, Swin Transformer,

and Feature Pyramid Network (FPN) to enhance the accuracy and e�ciency of

food nutrient recognition. Our model combines the strengths of E�cientNet

for feature extraction, Swin Transformer for capturing long-range dependencies,

and FPN formulti-scale feature fusion. Experimental results demonstrate that our

model significantly outperforms existing methods. On the Nutrition5k dataset,

it achieves a Top-1 accuracy of 79.50% and a Mean Absolute Percentage Error

(MAPE) for calorie prediction of 14.72%. On the ChinaMartFood109 dataset, the

model achieves a Top-1 accuracy of 80.25% and a calorie MAPE of 15.21%. These

results highlight the model’s robustness and adaptability across diverse food

images, providing a reliable and e�cient tool for rapid, non-destructive nutrient

detection. This advancement supports better dietarymanagement and enhances

the understanding of food nutrition, potentially leading to more e�ective health

monitoring applications.

KEYWORDS

nutrient recognition, E�cientNet, Swin Transformer, Feature Pyramid Network, deep
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1 Introduction

The increasing concern for healthy diets and food quality has made the detection and

analysis of food nutrients a critical research direction (1). Nutrients such as proteins,

fats, carbohydrates, vitamins, and minerals are essential components for maintaining

human health, and their intake and proportions have a direct impact on overall well-

being (2). Therefore, accurate detection of nutrients in food is vital for formulating

scientific dietary plans and ensuring food safety (3). However, traditional methods for

nutrient detection often rely on chemical analysis and destructive sampling, which

are time-consuming and complex, limiting their widespread application (4). In recent

years, to achieve more efficient and convenient nutrient detection, computer vision and

deep learning technologies have been gradually introduced to this field, offering a non-

destructive solution. Currently, deep learning has made significant progress in the field of
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computer vision, especially in image classification, object detection,

and feature extraction, demonstrating powerful capabilities (5).

These technologies provide new solutions for the detection

and analysis of food nutrients. Researchers can utilize deep

learning models to extract and classify features from food images,

enabling rapid, non-destructive nutrient detection. Deep learning

applications in food nutrient detection benefit significantly from its

capabilities in automatic feature extraction, precise classification,

end-to-end learning, and data augmentation (6). Deep learning

models can automatically learn effective features from large

datasets, reducing the need for manual intervention and improving

the accuracy and efficiency of feature extraction. Additionally, these

models excel in image classification tasks, capable of handling

complex image data and capturing subtle feature differences,

thus achieving high classification accuracy. By training in an

end-to-end manner, from raw image input to nutrient output,

the process is greatly simplified with no manual intervention

required. Furthermore, through data augmentation and transfer

learning, deep learning models can be trained on limited datasets

and extended to more food categories, enhancing the models’

generalization capabilities (7). Despite the immense potential of

deep learning in food nutrient detection, challenges remain. Issues

such as model robustness and interpretability, diversity, and quality

of datasets require further research and optimization (8). The

primary aim of this study is to develop an efficient and accurate

method for detecting food nutrients, providing a non-destructive,

rapid solution for food quality assessment and dietary monitoring.

By introducing advanced deep learning technologies, we hope to

overcome the current challenges in nutrient detection and advance

the development of this field.

In recent years, with the rapid development of deep learning

technology, numerous researchers have focused on applying it

to the identification and analysis of food nutrients, achieving

remarkable results. In one related study, researchers used

Convolutional Neural Networks (CNNs) to identify and classify

food images to infer their nutrient content (9). The background

of this study highlighted the high cost and time-consuming

nature of traditional methods that rely on chemical analysis,

whereas image recognition technology can provide a fast and

non-destructive solution. This study utilized a pre-trained ResNet

model to extract features from food images and employed fully

connected layers for classification, achieving high classification

accuracy. However, this method exhibited certain limitations

due to its heavy reliance on data, particularly under varying

lighting conditions and different shooting angles. Another study

employed deep learning models for food image segmentation and

feature extraction to more accurately identify the proportions of

different food components (10). The researchers combined U-

Net for image segmentation and VGG16 for feature extraction,

accurately separating different component regions through the

segmentation network and performing further feature analysis on

these regions. This method excelled in improving the fine-grained

analysis of nutrient detection, significantly enhancing the model’s

detection accuracy. However, the segmentation accuracy decreased

when dealing with multi-component mixed foods, affecting the

overall detection performance. In the third study, researchers

proposed a multi-modal deep learning method for food nutrient

recognition. The background of this study noted that single image

information might not sufficiently describe the nutrient content

of food, hence the incorporation of image, text descriptions, and

nutritional label information (11). The researchers adopted amulti-

modal model that combines CNNs and Long Short-Term Memory

(LSTM) networks, extracting visual features through the image

network, processing food description information through the

text network, and performing feature fusion using an attention

mechanism. Experimental results demonstrated high accuracy

and robustness in multi-modal information fusion. However,

the complexity of acquiring and processing multi-modal data,

along with a cumbersome data preparation process, limited its

application scope. The fourth related work utilized Generative

Adversarial Networks (GANs) to generate high-quality food image

data, enhancing the diversity and robustness of model training.

This study addressed the issue of insufficient food image data,

which limits the performance improvement of deep learning

models (12). Researchers generated realistic food images through

GANs and combined them with actual data for training, improving

the model’s generalization ability and detection accuracy. This

approach yielded excellent detection results onmultiple public food

datasets. However, the generated images differed from real images

in certain details, affecting the accuracy of some feature extractions.

Despite the significant progress made in food nutrient detection

through these studies, several common issues persist. Firstly, the

quality and diversity of data remain critical factors limiting model

performance, particularly in the face of complex food components

where robustness and accuracy need improvement. Secondly, the

complexity of multi-modal information fusion and processing

increases the difficulty of data preparation and model training.

Additionally, the lack of model interpretability and transparency

poses challenges in gaining user trust and acceptance in practical

applications. In summary, existing research has achieved certain

successes in the rapid and non-destructive detection of food

nutrients, but there is still room for improvement in data

processing, model robustness, and interpretability. This study aims

to overcome the limitations of current methods by introducing

more efficient network structures and innovative feature fusion

methods, further advancing the technology for food nutrient

identification and analysis.

Based on the shortcomings of the aforementioned work,

we propose a new model that combines EfficientNet and Swin

Transformer. The aim of this new model is to address the existing

methods’ deficiencies in data dependency, segmentation accuracy,

multi-modal data processing complexity, and the detail accuracy of

generated images. Our model consists of three main components:

the EfficientNet backbone network, the Swin Transformer module,

and the Feature Pyramid Network (FPN) fusion module. The

EfficientNet backbone network is used for efficiently extracting low-

level features from food images, characterized by high parameter

utilization and robust feature extraction capabilities. The Swin

Transformer module captures long-range dependencies within the

images, further enhancing the quality of feature representation. The

FPN performs deep fusion of the extracted features, enhancing

the model’s classification performance by conducting attention

calculations across different feature subspaces. This model has

significant advantages in addressing existing issues. Firstly, by
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combining EfficientNet and Swin Transformer, the model’s

robustness to different lighting conditions and shooting angles

is improved. Secondly, FPN enhances the effectiveness of feature

fusion, improving segmentation and classification accuracy. Lastly,

the innovative network structure and feature fusion methods

simplify the data processing workflow, enhancing the model’s

generalization ability and detection accuracy. Additionally, our

model demonstrates improvements in data processing by efficiently

handling high-dimensional data and providing robust feature

extraction. The integration of Swin Transformer improves model

robustness by effectively capturing long-range dependencies, while

FPN enhances interpretability through multi-scale feature fusion,

making the model’s decision-making process more transparent.

• We propose a newmodel that combines EfficientNet and Swin

Transformer. This model integrates EfficientNet’s efficient

feature extraction capabilities and Swin Transformer’s ability

to capture long-range dependencies, using FPN for deep

feature fusion, significantly improving the accuracy of food

nutrient recognition and classification.

• We have developed a rapid, non-destructive method for

detecting food nutrients. By leveraging advanced computer

vision and deep learning technologies, this method enables

quick analysis of food images and precise detection of

nutrients, significantly reducing detection time compared to

traditional chemical analysis methods and avoiding sample

destruction.

• Our model has made significant progress in enhancing

robustness and generalization capabilities. By introducing

the FPN and innovative feature fusion strategies, the model

demonstrates stronger robustness when handling various

lighting conditions, shooting angles, and complex food

components. It also shows excellent generalization across

multiple food datasets, validating its effectiveness in practical

applications.

2 Related work

2.1 Deep learning approaches for food
image recognition and ingredient
segmentation

In the field of food image recognition and ingredient

segmentation, deep learning methods have demonstrated

remarkable potential and broad application prospects. Traditional

image recognition methods rely on manual feature extraction,

which often struggles to handle complex food images, especially

when dealing with diverse ingredients with varying shapes and

colors (13). With the development of deep learning technologies,

models such as Convolutional Neural Networks (CNNs) have

shown significant advantages in processing high-dimensional data,

bringing revolutionary advancements to food image recognition

and ingredient segmentation (14, 15).

Deep learning-based methods for food image recognition have

emerged prominently. As one of the core models in deep learning,

CNNs utilize hierarchical structures to progressively extract low-

level to high-level features of images, achieving remarkable results

in image classification tasks (16). For instance, models such as Deep

Residual Networks (ResNet) and Dense Convolutional Networks

(DenseNet) have demonstrated outstanding performance on

large-scale image classification datasets like ImageNet (17, 18).

These models are capable of not only effectively recognizing

single food categories but also handling complex scenes with

mixed food items, achieving simultaneous recognition of multiple

ingredients through multi-label classification techniques (19). In

ingredient segmentation, deep learning shows strong capabilities.

Semantic segmentation networks (e.g., U-Net and SegNet) and

instance segmentation networks (e.g., Mask R-CNN) achieve

precise segmentation of different ingredients in images through

pixel-level classification (20, 21). These models can distinguish

between food and background and further refine segmentation

down to different types of ingredients. Particularly, Mask R-

CNN, which combines object detection and instance segmentation,

can accurately locate and segment each ingredient in complex

backgrounds, providing reliable data for subsequent nutritional

analysis and recipe recommendations (22).

Deep learning models based on attention mechanisms have

also been applied in food image recognition and ingredient

segmentation. Attention mechanisms, by assigning different

weights to different regions of an image, can highlight important

features and improve the recognition and segmentation accuracy

of models (23). For example, models based on Transformer

architectures, such as Vision Transformer (ViT) and Swin

Transformer, achieve global feature extraction and interaction

through self-attention mechanisms, overcoming the limitations of

traditional CNNs in capturing long-range dependencies and global

information (24). Shao et al. (25) introduced the Swin-Nutrition

model, leveraging the Swin Transformer for nutrient analysis.

This model demonstrated significant improvements in accuracy

compared to traditional methods but faced challenges related

to data dependency and generalization. Our proposed model

integrates EfficientNet for feature extraction, providing a different

approach to capturing image features. While Swin-Nutrition excels

in global feature extraction through the Swin Transformer, our

model focuses on efficient feature extraction and multi-scale

feature fusion using EfficientNet and the FPN. Furthermore, some

studies have proposed multi-task learning (MTL) methods to

meet the specific needs of food image recognition and ingredient

segmentation tasks (26). By jointly learning multiple related tasks,

these methods enhance the generalization ability and recognition

accuracy of models. For instance, modeling food classification,

ingredient segmentation, and calorie estimation simultaneously not

only improves the performance of each task but also reduces the

computational cost of the model.

In summary, the application of deep learning methods in

food image recognition and ingredient segmentation has greatly

promoted the development of intelligent food analysis systems.

In the future, with the further advancement of deep learning

technologies and the integration of emerging artificial intelligence

technologies such as Generative Adversarial Networks (GANs)

and Graph Neural Networks (GNNs), the accuracy and efficiency

of food image recognition and ingredient segmentation will be

further enhanced, bringing more innovative applications to fields

such as food safety, nutritional analysis, and personalized diet

recommendations (27, 28).
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2.2 Advanced applications of computer
vision in the food industry

The application of computer vision technology in the food

industry is rapidly expanding, becoming a significant driving force

in the field. By leveraging deep learning and other advanced

computer vision technologies, the food industry has achieved

substantial improvements in efficiency and accuracy across various

aspects such as production, quality control, and supply chain

management.

Firstly, automation in food production is one of the most

prominent applications of computer vision in the food industry.

Computer vision systems are widely used on food processing lines

for automatic detection and classification of food products (29).

These systems capture food images using high-speed cameras

and perform real-time analysis using deep learning algorithms,

accurately identifying the type, shape, and color of food items

to enable automated sorting and packaging. For instance, the

application of Convolutional Neural Networks (CNNs) on food

production lines has significantly improved production efficiency

and product consistency (30). In quality control, computer vision

technology also plays a crucial role. Traditional manual inspection

is not only inefficient but also prone to human error. Computer

vision systems can achieve real-time monitoring and automatic

detection of food quality. Researchers have developed image

recognition systems based on deep learning that can identify

defects, discoloration, and contaminants on food surfaces, ensuring

high consistency and safety of food quality (31). For example,

using Generative Adversarial Networks (GANs) to generate high-

quality training data can further enhance model robustness and

detection accuracy. Moreover, the application of computer vision

technology in food supply chain management is continually

expanding. Automatic identification and tracking of food images

enable comprehensivemonitoring of the food supply chain, thereby

increasing transparency and efficiency. By integrating with Internet

of Things (IoT) technology, food companies can obtain and analyze

data from production to sales in real-time, optimizing inventory

management and distribution processes. For instance, combining

image recognition with blockchain technology ensures traceability

and anti-counterfeiting of food products, enhancing consumer

confidence in food safety (32). Another notable trend is the rise

of personalized diets and nutrition management. Computer vision

technology can help consumers scan food items using smartphone

cameras to obtain detailed nutritional information and health

advice (33). This application not only assists individuals in better

managing their diets but also supports medical institutions in

formulating personalized nutrition plans for patients. For example,

combining deep learning with big data analysis, personalized food

recommendation systems can suggest suitable foods and recipes

based on users’ dietary preferences and health conditions.

Despite the significant progress made by computer vision

technology in the food industry, several challenges remain. For

instance, acquiring and annotating high-quality food image

datasets is costly, and the robustness of models under different

environments and conditions needs further improvement.

Additionally, the diversity and complexity of food images pose

challenges to algorithm design and optimization (34). Future

research will continue to address these issues, promoting the

broader application and deeper development of computer vision

in the food industry through technological innovation and

interdisciplinary collaboration. In summary, the application of

computer vision technology in the food industry has already shown

immense potential, achieving significant results in production

automation, quality control, supply chain management, and

personalized diets. With continuous technological advancements

and deeper applications, computer vision is poised to play an

increasingly important role in the food industry, driving the

industry’s intelligent and digital transformation.

2.3 Overview of research and applications
in food nutritional assessment

Food nutritional assessment has evolved significantly with

the advancement of technology and methodologies. Early

approaches primarily relied on manual documentation and

chemical analysis, which, while accurate, were time-consuming

and labor-intensive (35). The integration of machine learning and

artificial intelligence has brought transformative changes to this

field. Machine learning algorithms, such as regression models and

clustering algorithms, analyze extensive datasets of food items

and their nutrient profiles to predict nutritional content with high

accuracy (36). This method has proven essential for rapid and

accurate dietary planning and health management.

Moreover, the development of portable, non-invasive devices

for real-time nutrient analysis has marked a significant leap

forward. Devices employing spectroscopy and sensor technology

can measure macronutrients and some micronutrients directly

from food samples, providing immediate feedback (37). These

advancements are particularly beneficial in clinical settings and

for individuals managing chronic conditions like diabetes, where

timely and precise nutritional information is crucial. Blockchain

technology has also emerged as a critical innovation, ensuring the

accuracy and transparency of nutritional information. By securely

recording and verifying the provenance and nutritional content

of food products, blockchain enhances trust and accountability

within the food supply chain (38). This is especially useful

for validating claims related to organic or fortified foods,

ensuring consumers have access to reliable nutritional data.

Advancements in bioinformatics and computational biology have

expanded the understanding of nutritional genomics. Researchers

can now identify gene-diet interactions and their impact on

health by analyzing genetic data, leading to the development

of nutrigenetic profiles (39). These profiles provide personalized

dietary recommendations aimed at preventing ormanaging specific

health conditions, offering valuable insights into the role of

diet in metabolic disorders and other chronic illnesses. The

integration of big data analytics with nutritional epidemiology

has provided deeper insights into population-level dietary patterns

and their health implications (40). Large-scale studies using

data from national health surveys, electronic health records,

and wearable devices allow researchers to identify trends and

associations between diet and health outcomes. This informs

public health strategies and dietary guidelines, contributing

to interventions aimed at improving nutritional status and

reducing diet-related diseases. In summary, the convergence

Frontiers inNutrition 04 frontiersin.org

https://doi.org/10.3389/fnut.2024.1454466
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al. 10.3389/fnut.2024.1454466

of machine learning, portable sensing technologies, blockchain,

bioinformatics, and big data analytics has significantly advanced

food nutritional assessment. These innovations have led to more

precise, efficient, and personalized approaches, transforming how

nutritional health is monitored and managed, both at individual

and population levels.

3 Method

3.1 Overview of our network

To address the shortcomings of existing food nutrient

recognition methods, we propose a new model based on deep

learning. This model combines the strengths of EfficientNet and

Swin Transformer, utilizing a Feature Pyramid Network (FPN)

for deep feature fusion to enhance classification performance and

accuracy. EfficientNet serves as the feature extractor, responsible

for extracting low-level features from the input food images.

With its efficient parameter utilization and excellent feature

extraction capabilities, EfficientNet ensures high accuracy with

fewer parameters. The Swin Transformer module captures long-

range dependencies within the images. Through its sliding window

and hierarchical structure, the Swin Transformer effectively

handles high-resolution images, improving the quality of feature

representation. The Feature Pyramid Network (FPN) performs

deep fusion of the extracted features, calculating attention across

different feature subspaces to capture more information and

further enhance classification performance. In constructing the

network, we first standardize the public food image dataset,

adjusting image size and normalization to meet the model’s

input requirements. Next, we use the EfficientNet model as the

backbone network to extract features from the input images,

obtaining low-level information. These features are then input

into the Swin Transformer module, which extracts high-level

features layer by layer, capturing long-range dependencies within

the images. The features extracted by the Swin Transformer

are subsequently input into the FPN, which fuses information

from various feature subspaces to obtain more expressive feature

representations. Finally, the fused features are classified through

fully connected layers, enabling the model to classify food types and

nutrients based on feature representations.

During model training, a multi-task loss function is used to

balance the losses of five sub-tasks, including calories, mass, fat,

carbohydrates, and protein. The proposed model demonstrates

several advantages and innovations. Firstly, the efficient feature

extraction capability of EfficientNet ensures high accuracy with

fewer parameters. Secondly, the Swin Transformer, through its

sliding window and hierarchical structure, effectively captures

long-range dependencies within images, enhancing the quality of

feature representation. The FPN, through attention calculations in

different feature subspaces, fuses more information and improves

classification performance. Additionally, the model can handle

various types of food images, demonstrating strong adaptability

and generalization ability. In summary, this study significantly

enhances the accuracy and efficiency of food nutrient recognition

by innovatively combining EfficientNet and Swin Transformer

and introducing the FPN. The model not only achieves rapid,

non-destructive detection of food components but also provides

reliable technical support for food quality assessment and healthy

diet monitoring, offering broad application potential and societal

value. The overall architecture of the proposed model is shown in

Figure 1.

3.2 E�cientNet feature extraction

EfficientNet is a new convolutional neural network architecture

proposed by the Google research team, aimed at achieving

efficient parameter utilization and excellent feature extraction

capabilities by comprehensively considering network depth, width,

and resolution. The core idea is to use Compound Scaling

to simultaneously scale the network’s depth, width, and input

image resolution to maximize model performance given fixed

computational resources (41). Specifically, EfficientNet finds an

optimal balance by adjusting the number of convolutional layers,

the number of channels per layer, and the input image size, allowing

the model to achieve higher accuracy with fewer parameters.

Figure 2 shows the structure and working principles of the

EfficientNet model. The following are some key mathematical

formulas in EfficientNet and their explanations.

The compound scaling method can be described by the

following equation:

D = αd, W = βd, R = γ d (1)

where α, β , and γ are constants; d is the compound coefficient.

The constraint for the compound scaling method is given by:

α · β2 · γ 2 ≈ 2 (2)

where α, β , and γ are constants ensuring balanced scaling; The

selection of the value 2 helps maintain a balanced scaling of the

network’s depth, width, and resolution. This balance ensures that

the model scales efficiently across different dimensions without

disproportionately increasing the computational burden. The value

was empirically validated to provide an optimal trade-off between

model performance and computational efficiency.

In EfficientNet, the Mobile Inverted Bottleneck Convolution

(MBConv) module first applies depthwise separable convolution:

Y = DepthwiseConv(X,Wd) (3)

where X is the input feature map;Wd is the weight of the depthwise

convolution; Y is the output feature map.

This is followed by pointwise convolution:

Z = PointwiseConv(Y ,Wp) (4)

where Y is the output of the depthwise convolution; Wp is the

weight of the pointwise convolution; Z is the resulting feature map.

In the Squeeze-and-Excitation (SE) block, the channel-wise

recalibration of feature maps is computed as follows:

S = σ (FC2(ReLU(FC1(Z)))) (5)
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FIGURE 1

Overall structure of the proposed model.The model includes the following components: Patch Partition, E�cientNet, Swin Transformer Block,

Feature Pyramid Network, Upsampling and Convolution layers, and Fully Connected layers (FC1, FC2, FC3). The model outputs predictions for

protein, fat, carbohydrate, and calorie content.

where Z is the input feature map; FC1 and FC2 are fully connected

layers; ReLU is the Rectified Linear Unit activation function; σ is

the sigmoid function; S is the scale vector.

The recalibrated feature map is then scaled:

Z′ = S · Z (6)

where S is the scale vector; Z is the input feature map; Z′ is the

scaled feature map.

Through these formulas, EfficientNet effectively extracts and

processes features from the input images, providing high-quality

feature representations for subsequent network modules.

EfficientNet is used for feature extraction due to its efficient

parameter utilization and superior feature extraction capabilities.

This helps in reducing the complexity of data processing

and enhances the quality of extracted features, ensuring more

reliable inputs for subsequent stages. In our proposed food

nutrient recognition model, we integrate the corresponding blocks

of EfficientNet into each stage. This approach allows us to

leverage EfficientNet’s advanced feature extraction capabilities

while maintaining computational efficiency. Each stage utilizes

specific blocks from EfficientNet that are most suitable for the

task at hand, ensuring that our model benefits from EfficientNet’s

strengths without the overhead of processing the entire network.

These high-quality features provide the necessary input for the

subsequent Swin Transformer module and the FPN, enabling

the entire model to more accurately identify food types and

nutrients. Compared to other traditional convolutional neural

networks (such as ResNet and VGG), EfficientNet significantly

reduces computational resource consumption while maintaining

high feature extraction capabilities, allowing our model to improve

training and inference efficiency while ensuring high accuracy.

With the high-quality features extracted by EfficientNet, our

model can more accurately identify different food components

and calculate their corresponding nutritional values. This is

crucial for achieving non-destructive nutrient detection, enhancing

the efficiency and accuracy of food detection. Additionally, the

application of EfficientNet effectively improves the generalization

ability of our model across different datasets, enhancing the model’s

robustness when handling various types of food images. This is of

great significance for practical applications in food classification

and nutrient recognition.

3.3 Swin Transformer module

Swin Transformer is a novel vision transformer designed to

efficiently handle high-resolution images through a hierarchical

structure and sliding window mechanism. Unlike traditional

convolutional neural networks (CNNs), Swin Transformer

captures long-range dependencies in images via self-attention

mechanisms, thereby enhancing the model’s feature representation

capabilities while maintaining computational efficiency (42).

The basic unit of Swin Transformer is the Window-based Multi-

Head Self-Attention (W-MSA). In W-MSA, images are divided

into non-overlapping windows, and self-attention is computed

independently within each window. This approach reduces
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FIGURE 2

The architecture of E�cientNet.

computational complexity while preserving local features. Then,

the Shifted Window Mechanism alternates window positions

between different layers, enabling the model to capture long-range

dependencies across windows. Figure 3 illustrates the structure and

working principles of the Swin Transformer model.

In our model, the Swin Transformer is used to further process

the low-level features extracted by EfficientNet, capturing higher-

level features and global information to enhance the model’s feature

representation capabilities and classification performance. The

hierarchical structure and sliding window mechanism of the Swin

Transformer allow the model to extract features at different scales,

improving the ability to capture both image details and global

information. Compared to the global self-attention mechanism,

the window-based multi-head self-attention significantly reduces

computational complexity, making the model more efficient when

handling high-resolution images. The integration of the Swin

Transformer in our model enhances robustness by capturing long-

range dependencies within food images. This allows the model to

effectively handle diverse and complex food images, improving its

generalization capabilities.

The multi-head self-attention mechanism in Swin Transformer

can be represented as:

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (7)

where Q (queries), K (keys), and V (values) are the input feature

maps; dk is the dimension of the keys.

The shifted window mechanism allows the model to capture

long-range dependencies across windows, represented as:

ShiftedWindow(X) = Roll(X, shift) (8)

where X is the input feature map; shift is the amount of window

shifting.

The computation of window-based self-attention within a

window is given by:

WindowAttention(Q,K,V) = softmax

(

QWT

√

dk

)

V (9)

whereQ, K, andV are the queries, keys, and values within a specific

window;W is the weight matrix.

To aggregate information across windows, a merging operation

is performed, represented as:

Merging(X) = Concat(ShiftedWindow(X1), ShiftedWindow(X2),

. . . , ShiftedWindow(Xn)) (10)

where X1,X2, . . . ,Xn are the feature maps from different windows;

Concat represents the concatenation operation.

Finally, a feed-forward neural network (FFN) is applied to the

aggregated features, represented as:

FFN(X) = GELU(Linear(XW1))W2 (11)
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FIGURE 3

Comprehensive structure of the Swin Transformer Module (43). Adapted from (43).

where X is the aggregated feature map;W1 andW2 are the weights

of the linear layers; GELU is the Gaussian Error Linear Unit

activation function.

Additionally, the shifted window mechanism improves

the model’s robustness to varying lighting conditions and

complex backgrounds by facilitating cross-window information

exchange, thereby enhancing the stability of feature representation.

Combining EfficientNet’s efficient feature extraction capabilities,

Swin Transformer further improves the quality of feature

representation, enabling our model to classify and detect food

nutrients more accurately. This approach not only enhances

the accuracy of nutrient detection but also significantly reduces

detection time, providing reliable technical support for food

quality assessment and healthy diet monitoring. It demonstrates

the immense potential and broad prospects of deep learning

technology in practical applications. With the introduction of

Swin Transformer, our model can more efficiently and accurately

perform feature extraction and classification when processing

high-resolution food images, achieving rapid and non-destructive

food nutrient detection. This provides a solid technical foundation

and innovative aspects for the theme of this research.

3.4 Feature Pyramid Network

In our model, we choose to use FPN to effectively fuse

the multi-scale features extracted by the EfficientNet and Swin

Transformer modules. FPN aims to enhance feature representation

by combining high-resolution, low-level features with low-

resolution, high-level features, thereby providing rich and detailed

feature maps for subsequent tasks (44). FPN constructs a top-down

architecture with lateral connections to fuse features at different

scales. The core idea is to utilize the inherent multi-scale pyramid

hierarchy of deep convolutional networks to generate feature

maps at multiple levels and provide strong semantic information

at all scales. This allows the model to retain high-resolution

spatial information while incorporating deeper contextual and

semantic information. Specifically, FPN enhances the model’s

ability to detect and recognize objects at various scales by

combining both high-level semantic information and low-level

detailed features. This multi-scale feature representation improves

classification accuracy and robustness, making the model more

effective in handling diverse and complex patterns in food images.

The key components of FPN include the bottom-up pathway,

the top-down pathway, and lateral connections. The bottom-

up pathway consists of a convolutional network that extracts

features at different scales. The top-down pathway is used to

upsample high-level features, which are then combined with

corresponding low-level features from the bottom-up pathway

through lateral connections. This multi-scale feature fusion forms a

feature pyramid with enhanced representational capacity. Figure 4

illustrates the structure and working principles of the FPN

model.

In our model, the FPN is used to fuse the features

extracted by EfficientNet and Swin Transformer, capturing

fine-grained details and high-level semantic information. The

FPN structure is better equipped to handle different scales

and complex patterns in food images, which is crucial for

accurate nutrient detection. The bottom-up pathway starts with

the features extracted by EfficientNet, which contain low-

level details. These features then acquire high-level semantic

information through the Swin Transformer layers. In the top-

down pathway, high-level features are upsampled and fused

with the corresponding low-level features from EfficientNet

through lateral connections. This multi-scale fusion process, which

retains spatial details and incorporates semantic information,

significantly enhances feature representation. By leveraging FPN,

our model can generate more accurate and detailed feature

maps, contributing to improved classification and detection

performance. The FPN’s ability to perform multi-scale feature

fusion also enhances interpretability by providing better feature

representations at different scales, making the model’s decision-

making process more transparent. The improved feature maps

contribute to more accurate classification and detection of food

nutrients, thereby improving the overall performance of the

model.

The specific process of FPN in our model is as follows: first,

initial features are extracted by EfficientNet and Swin Transformer.

This process can be represented as:

Fl = EfficientNet(I), Fh = SwinTransformer(Fl) (12)

where I is the input image; Fl are the low-level features from

EfficientNet; Fh are the high-level features from Swin Transformer.
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FIGURE 4

The structure of the FPN model.

Next, the top-down pathway upsamples the high-level features:

F
↑
h
= Upsample(Fh) (13)

where F
↑
h
denotes the upsampled high-level features.

Then, the lateral connections combine the upsampled high-

level features with the low-level features:

Ffusion = Fl + F
↑
h

(14)

where Ffusion is the fused feature map; + denotes element-wise

addition.

The final fused feature maps at different levels are given by:

Pi = Conv(Ffusioni ) (15)

where Pi represents the final feature maps at different levels.

By employing these operations, FPN efficiently fuses

multi-scale features, providing the model with rich feature

representations, thereby enhancing the accuracy and efficiency

of food nutrient classification and detection. This method

not only improves the accuracy of nutrient detection but also

significantly reduces the detection time, offering a reliable technical

support for food quality assessment and healthy diet monitoring.

The integration of FPN demonstrates the significant potential

and broad prospects of deep learning technology in practical

applications.

3.5 Multi-task loss function

In our model, we adopt a multi-task loss function to balance

the performance of four sub-tasks: calories, fat, carbohydrates,

and protein. This multi-task loss function ensures that the

model optimizes all these tasks simultaneously during training,

thereby enhancing overall detection accuracy and robustness. The

principle of the multi-task loss function is to combine the loss

functions of each sub-task into a comprehensive loss function,

allowing the model to learn multiple tasks simultaneously. By

assigning appropriate weights to the losses of each task, the

multi-task loss function ensures that the model does not overly

favor any single task. This balance is crucial for achieving

consistent performance across all tasks. In our model, the multi-

task loss function plays a critical role, significantly improving

the accuracy and efficiency of nutrient detection. By jointly

optimizing multiple nutrient detection tasks, the model can

leverage shared representations and the interdependencies between

tasks to enhance performance. The multi-task loss function enables

the model to effectively handle the complexity and diversity of

food images, resulting in more accurate nutrient classification

and detection.

The formula for the multi-task loss function in our model is as

follows:

Ltotal =
∑

t∈{cal,protein,carb,fat}

(

1

2c2t
Lt + ln(1+ c2t )

)

(16)

where ct is the weight assigned to the loss of task t; Lt is the

individual loss for task t.

The individual loss for each sub-task Lt is calculated using

Mean Absolute Error (MAE) as follows:

Lt =

∑N
i=1 |yt,i − ŷt,i|
∑N

i=1 yt,i
(17)

where yt,i is the ground truth value for the i-th sample in task t; ŷt,i
is the predicted value for the i-th sample in task t; N is the number

of samples.

By combining these individual loss functions into a

comprehensive multi-task loss function, our model can optimize

all tasks simultaneously, thereby improving the accuracy and

efficiency of food nutrient classification and detection. This
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approach not only enhances the prediction accuracy of the model

but also improves its robustness and reliability.

4 Experiment

4.1 Experimental environment

The experiments were conducted on a high-performance

workstation with the following hardware configuration: an

NVIDIA Tesla V100 GPU for accelerating the training and

inference processes of deep learning models; an Intel Xeon CPU

providing robust computational power; and 128 GB of RAM

ensuring efficient operation when handling large datasets. In terms

of software environment, the experiments ran on the Ubuntu

18.04 operating system, using Python 3.8 as the programming

language and PyTorch 1.8.1 as the deep learning framework to fully

leverage GPU acceleration and flexible model building and training

capabilities.

4.2 Datasets

This study utilizes publicly available food image datasets,

including Nutrition5k (45) and ChinaMartFood109 (46). Both

datasets contain various types of food images, each annotated with

corresponding nutritional information. The specific details of the

datasets are as follows:

4.2.1 Nutrition5k dataset
This dataset originates from a publicly available food

image dataset, containing 5,000 images annotated with detailed

nutritional information. The dataset comprises 5,000 static images

in JPEG or PNG format, with the resolution uniformly scaled to 224

× 224 pixels. The Nutrition5k dataset is highly diverse, covering a

wide range of food types, including vegetables, fruits, meats, and

grains. The images were taken under different lighting conditions

and backgrounds, adding to the dataset’s diversity. The Nutrition5k

dataset includes both 360-degree images and top-view images of

food items. For the purposes of our research, we specifically utilized

the top-view images from the Nutrition5k dataset. These images

provide a consistent perspective that simplifies the recognition

and segmentation tasks, allowing for more accurate and reliable

model performance. The visualizations provided in this article

correspond to the top-view images from the Nutrition5k dataset.

Each visualization represents the model’s output on the same image

used during training and testing.

4.2.2 ChinaMartFood109 dataset
This dataset includes images of 109 categories of Chinese foods,

sourced from multiple public data sources, and provides detailed

nutritional annotations. The dataset comprises over 100,000 static

images in JPEG or PNG format, with the resolution uniformly

scaled to 224 × 224 pixels. The ChinaMartFood109 dataset covers

a rich variety of Chinese food categories, including staples, dishes,

snacks, and soups. The images were taken in various settings

and conditions, such as restaurants, home kitchens, and outdoors,

contributing to its high diversity.

By providing detailed descriptions of the datasets used,

including specific parts of the Nutrition5k dataset and the

conditions under which the ChinaMartFood109 images were taken,

we aim to ensure the transparency and reproducibility of our

research results.

4.3 Experimental details

Step1: Data preprocessing

In data preprocessing, we performed the following four key

steps:

• Data cleaning: in this process, we inspected and removed

images with missing values or incorrect annotations to ensure

the correctness of data labels. We then used image quality

detection algorithms to automatically identify and remove

low-quality or blurry images. These algorithms effectively

detect issues such as blurriness, noise, and resolution problems

in images. A total of 350 images were identified as low-

quality or blurry using these algorithms andwere subsequently

removed. Finally, we standardized the format and naming

conventions of the images, ensuring that all images were in

JPEG or PNG format for subsequent processing and analysis.

• Data standardization: we adjusted the resolution of all images

to 224 × 224 pixels to meet the input requirements of the

model. This step ensured that all images had consistent input

sizes, which improved the training efficiency and effectiveness

of the model. Additionally, we normalized the images by

scaling the pixel values to a range between 0 and 1. This

normalization enhanced the training effect and convergence

speed of the model, preventing large numerical differences

from affecting the model training.

• Data augmentation: by using techniques such as random

cropping, rotation, and flipping, we augmented the images

to increase data diversity and simulate different shooting

angles and conditions. Furthermore, we randomly adjusted

brightness, contrast, and hue to simulate various lighting

conditions, thereby enhancing the model’s robustness in

different real-world scenarios.

• Data splitting: we divided the dataset into training, validation,

and test sets in an 8:1:1 ratio. This split ratio ensures that the

model has sufficient data for learning and evaluation during

the training, validation, and testing phases. We also ensured

consistent data distribution within each split to maintain class

balance, avoiding data bias that could affect model training.

These preprocessing steps ensured the quality and diversity of

the data, providing a reliable foundation for subsequent model

training and evaluation.

Step2:Model training

• Network parameter settings: we used EfficientNet and Swin

Transformer as feature extractors and built our model on

this basis. To optimize the model’s performance, we chose
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the Adam optimizer with an initial learning rate set to 0.001

and a batch size of 32. During training, the learning rate

was dynamically adjusted based on the performance of the

validation set, halving every 10 epochs. The model was trained

for a total of 100 epochs, and after each epoch, it was evaluated

on the validation set to determine themodel’s convergence and

stability.

• Model architecture design: our model combines the strengths

of EfficientNet and Swin Transformer with specific designs

based on these foundations. The EfficientNet part consists of

16 convolutional layers, with gradually increasing numbers

of channels and convolution kernel sizes to better extract

multi-scale features from the images. The Swin Transformer

part consists of four Transformer layers, each containing

12 attention heads to capture long-range dependencies

in the images. Additionally, we introduced FPN between

EfficientNet and Swin Transformer, consisting of four levels

of feature fusion modules. Each module includes upsampling

and lateral connection operations to enhance multi-scale

feature fusion. The final classification head comprises two fully

connected layers with 1,024 and 512 neurons, respectively,

followed by a Softmax layer for outputting classification

results.

• Model training and validation process: in this study, we

employed a detailed training and validation process to ensure

the accuracy of the UCL model. The dataset was divided into

three parts: 70% was used as the training set for training the

model, 15% as the validation set for parameter tuning and

early stopping control, and another 15% as the test set for

evaluating the model’s final performance. Additionally, we

implemented five-fold cross-validation to assess the model’s

generalizability and robustness. Through this approach,

each data subset takes turns serving as the validation set,

ensuring that the model exhibits stable performance under

various data conditions, thus enhancing the overall prediction

accuracy and reliability. This process helps in meticulously

optimizing the model to ensure its effectiveness in

practical applications.

Step3:Model evaluation

In the model evaluation process, we adopted a series

of evaluation metrics and cross-validation methods to

comprehensively measure the model’s performance in food

classification and nutrient estimation tasks.

• Model performance metrics: we used multiple evaluation

metrics to measure the model’s performance. For the food

classification task, we employed top-1 and top-5 classification

accuracy. Top-1 accuracy measures the proportion of samples

where the predicted class with the highest probability matches

the true class, while top-5 accuracy measures the proportion

of samples where the true class is among the top five

predicted classes with the highest probabilities. Therefore,

top-5 accuracy is typically higher than top-1 accuracy.

For the nutrient estimation task, we used four evaluation

metrics: Mean Absolute Error (MAE), and Mean Absolute

Percentage Error (MAPE). Additionally, we calculated the

95% confidence intervals for the reported accuracies and

MAPE values to ensure the statistical significance and

reliability of our results.

Mean Absolute Error (MAE) measures the average

absolute difference between the predicted and ground truth

values. The formula for MAE is:

MAE =
1

N

N
∑

i=1

|ni − n̂i| (18)

Mean Absolute Percentage Error (MAPE) measures the

average absolute percentage difference between the predicted

and ground truth values. The formula for MAPE is:

MAPE =
1

N

N
∑

i=1

∣

∣

∣

∣

ni − n̂i

ni

∣

∣

∣

∣

× 100% (19)

whereN is the number of samples, ni is the ground truth value

of the i-th sample, n̂i is the predicted value of the i-th sample,

and n̄ is the mean of the ground truth values.

• Cross-validation: to ensure the robustness and generalization

ability of the model, we adopted cross-validation methods.

Specifically, we used k-fold cross-validation (k = 5) to evaluate

the model’s performance. The dataset was divided into k

subsets, with each iteration using k-1 subsets for training and

the remaining subset for validation. This process was repeated

k times, ensuring each subset was used as the validation

set once. By calculating the mean and standard deviation

of each validation, we obtained the model’s performance

across different data splits. This method effectively prevents

overfitting and provides a comprehensive assessment of the

model’s generalization ability on different datasets. The cross-

validation results indicated that our model exhibited good

robustness and consistency in both food classification and

nutrient estimation tasks.

Through these evaluation methods, we can

comprehensively measure the model’s performance, ensuring

its reliability and accuracy in practical applications. These

evaluation results not only help us understand the strengths

and weaknesses of the model but also provide important

reference points for further optimization and improvement.

4.4 Experimental setup

To evaluate the performance of our proposed method,

we conducted experiments using a diverse set of established

and widely-recognized deep learning models. The selection of

these seven models (VGG16, WISeR-50, Inception-V3, ResNet-

152, CNN, Faster R-CNN, and Ours) was made to provide

a comprehensive comparison of our method against different

approaches in the field of image recognition and classification.

VGG16, Inception-V3, and ResNet-152 are well-known for their

performance on image classification tasks and serve as benchmarks

in the field. WISeR-50 and Faster R-CNN represent more recent

advancements in network architecture and object detection,

respectively. Including these models allows us to evaluate our
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method’s effectiveness across different types of architectures and

highlight its advantages.

Additionally, we conducted ablation experiments to assess the

contribution of different components of our proposed model.

The ablation experiments involved selectively removing or altering

components such as EfficientNet, Swin Transformer, and the FPN

to understand their individual impact on the model’s performance.

This detailed analysis helps in highlighting the significance of each

component in achieving the overall performance improvements.

5 Results and discussion

5.1 Comparison with existing methods

Table 1 presents the performance of our proposed method

on the Nutrition5k and ChinaMartFood109 datasets, compared

with several state-of-the-art models, including VGG16, WISeR50,

InceptionV3, ResNet152, CNN, Faster R-CNN, DeepFood, the

method by VijayaKumari et al., the method by Desai et al.,

and Swin-Nutrition. The results demonstrate that our method

outperforms all other compared models on both datasets. On the

Nutrition5k dataset, our method achieved a Top-1 accuracy of

79.50% and a Top-5 accuracy of 95.66%, while the best-performing

existing model, InceptionV3, achieved a Top-1 accuracy of 72.13%

and a Top-5 accuracy of 93.42%. Additionally, the DeepFood

model achieved a Top-1 accuracy of 74.10% and a Top-5 accuracy

of 92.20%, and the Swin-Nutrition model achieved a Top-1

accuracy of 70.45% and a Top-5 accuracy of 89.55%. These results

indicate that our method offers significant advantages in food

image classification tasks. On the ChinaMartFood109 dataset, our

method achieved a Top-1 accuracy of 80.25% and a Top-5 accuracy

of 96.98%. In comparison, the best-performing existing model,

InceptionV3, achieved a Top-1 accuracy of 78.26% and a Top-5

accuracy of 96.62%. Additionally, the DeepFood model achieved

a Top-1 accuracy of 73.70% and a Top-5 accuracy of 91.80%, and

the Swin-Nutrition model achieved a Top-1 accuracy of 69.30%

and a Top-5 accuracy of 89.10%. Although the improvements are

relatively modest, these results still highlight the advantages of

our method in handling large-scale, multi-category food datasets.

By integrating EfficientNet and Swin Transformer, our method

can better handle the diversity and complexity of food images.

Additionally, the FPN enhances feature representation through

multi-scale feature fusion, further improving classification accuracy

and robustness. The experimental results demonstrate that our

method significantly outperforms existing methods in the field of

food nutrient recognition.

It is worth noting that although the Swin-Nutrition model is

somewhat similar to our model, it does not perform as well in terms

of accuracy and robustness. Swin-Nutrition primarily relies on

Swin Transformer as the backbone network for feature extraction

and uses a Feature Fusion Module (FFM) and a nutrient prediction

module for evaluation.While this method shows some effectiveness

on the Nutrition5k dataset, its results do not surpass those of

our proposed method. Compared to Swin-Nutrition, our method

improves and optimizes feature extraction and fusion by adopting

EfficientNet as the base feature extraction network and combining

it with Swin Transformer to further enhance feature representation.

TABLE 1 Comparison of state-of-the-art methods on Nutrition5k and

ChinaMartFood109 datasets.

Dataset Model Top-1% Top-5%

Nutrition5k

VGG16 54.21 77.61

WISeR50 68.32 89.75

InceptionV3 72.13 93.42

ResNet152 75.64 94.55

CNN 58.27 81.92

Faster R-CNN 65.78 90.23

DeepFood (47) 74.10 92.20

VijayaKumari et al. (48) 68.50 88.30

Desai et al. (49) 71.20 90.00

Swin-Nutrition (25) 70.45 89.55

Ours 79.50 95.66

ChinaMartFood109

VGG16 52.17 79.65

WISeR50 77.16 95.21

InceptionV3 78.26 96.62

ResNet152 76.53 92.09

CNN 55.21 82.17

Faster R-CNN 69.58 91.13

DeepFood (47) 73.70 91.80

VijayaKumari et al. (48) 67.20 87.50

Desai et al. (49) 70.90 89.70

Swin-Nutrition (25) 69.30 89.10

Ours 80.25 96.98

Our model also incorporates FPN to improve robustness and

accuracy through multi-scale feature fusion. The experimental

results indicate that our method performs exceptionally well

across different datasets, demonstrating better generalizability and

adaptability. In conclusion, our method shows higher accuracy

and robustness in food image classification and nutrient content

estimation tasks, significantly outperforming the existing Swin-

Nutrition model and other compared methods.

Figure 5 shows the top-1 and top-5 accuracy for each

food class and category group. In Figure 5A, the variation

in image recognition accuracy among different food classes is

evident. While some classes achieve high accuracy, others show

significant variability, indicating that certain food items are more

challenging for themodel to predict accurately. Figure 5B illustrates

the differences in recognition performance across various food

category groups. Categories such as “Braised Beef with Brown

Sauce" and “Tomato and Egg Soup" consistently show high

accuracy, suggesting the model’s strong performance in these

groups. Conversely, categories like “Minced Sauteed Celery" and

“Braised Pork Leg" exhibit lower accuracy, reflecting the model’s

difficulty in recognizing these food types accurately. The results

suggest that the model performs better in more common and well-

represented food categories. However, the variability in accuracy

indicates the need for furthermodel refinement and the inclusion of
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FIGURE 5

Top-1 (orange) and top-5 (dodger blue) accuracy for each class and category group. (A) Accuracy across di�erent class indices, showing variation in

image recognition accuracy. (B) Accuracy for each food category, highlighting di�erences in recognition performance across various food groups.

more diverse training data. This analysis provides a clear direction

for refining the model and improving its overall performance in

food classification and nutrient recognition tasks.

From the data in Table 2, it is evident that our method

outperforms existing approaches across different datasets and

evaluation metrics. On the Nutrition5k dataset, our method

achieves the lowest Mean Absolute Error (MAE) and Mean

Absolute Percentage Error (MAPE) for calorie prediction, with

values of 37.90 and 14.72%, respectively. In comparison, VGG16

records a calorie MAE and MAPE of 54.21 and 18.82%, and

WISeR50 records 50.32 and 16.52%, indicating a significant

performance improvement in calorie prediction by our method.

Similarly, our method shows excellent performance for fat,

carbohydrate, and protein predictions, with MAE and MAPE

Frontiers inNutrition 13 frontiersin.org

https://doi.org/10.3389/fnut.2024.1454466
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al. 10.3389/fnut.2024.1454466

TABLE 2 Comparison of the performance of di�erent methods.

Dataset Methods
Calorie

MAE/MAPE
Fat

MAE/MAPE
Carb

MAE/MAPE
Protein

MAE/MAPE
Mean
MAPE

Nutrition5k

VGG16 54.21/18.82% 2.27/18.12% 4.60/23.84% 3.70/20.91% 20.17%

WISeR50 50.32/16.52% 2.50/21.03% 4.20/22.01% 3.40/19.54% 19.77%

InceptionV3 47.13/15.32% 2.90/20.64% 4.10/21.49% 3.20/18.87% 18.58%

ResNet152 49.64/16.23% 3.10/22.47% 4.32/22.21% 3.80/20.49% 20.35%

CNN 58.27/26.11% 5.00/34.20% 6.10/31.92% 5.50/29.49% 29.10%

Faster R-CNN 55.78/19.23% 3.00/20.12% 4.50/23.03% 3.60/21.04% 20.85%

DeepFood (47) 44.10/15.12% 2.70/18.44% 4.00/20.64% 3.30/18.31% 18.63%

VijayaKumari et al. (48) 50.50/16.82% 2.80/19.34% 4.40/21.04% 3.50/19.42% 19.65%

Desai et al. (49) 46.90/15.72% 2.75/18.74% 3.95/20.54% 3.25/18.25% 18.81%

Swin-Nutrition (25) 45.40/15.3% 2.60/22.1% 4.05/20.8% 3.20/15.4% 18.4%

Ours 37.90/14.72% 2.60/18.04% 3.90/19.84% 3.10/18.02% 17.80%

ChinaMartFood109

VGG16 62.17/20.52% 3.10/22.44% 5.20/24.49% 4.00/23.12% 22.57%

WISeR50 58.16/19.03% 3.00/21.23% 5.00/23.01% 3.80/21.54% 21.20%

InceptionV3 60.26/19.79% 3.20/22.04% 5.10/23.41% 3.90/22.02% 21.82%

ResNet152 59.53/19.62% 3.30/22.76% 5.20/24.19% 4.10/23.32% 22.47%

CNN 66.21/27.11% 5.50/34.78% 6.50/31.98% 5.90/30.51% 31.10%

Faster R-CNN 63.58/20.23% 3.20/22.01% 5.00/23.50% 4.00/22.12% 22.00%

DeepFood (47) 51.70/18.92% 2.90/19.54% 4.60/21.84% 3.70/20.01% 20.08%

VijayaKumari et al. (48) 59.10/19.33% 3.20/21.74% 5.10/23.24% 3.90/21.92% 21.56%

Desai et al. (49) 53.90/19.02% 3.00/20.84% 4.75/22.14% 3.80/20.72% 20.68%

Swin-Nutrition (25) 52.30/18.12% 2.90/20.14% 4.60/22.04% 3.80/19.22% 19.88%

Ours 41.90/15.21% 2.80/18.54% 4.30/20.04% 3.50/18.91% 18.18%

metrics outperforming other models. In the ChinaMartFood109

dataset, our method also demonstrates superior performance in

predicting calories, fat, carbohydrates, and protein, as reflected by

the MAE and MAPE metrics. For instance, in calorie prediction,

our method achieves an MAE and MAPE of 41.90 and 15.21%,

respectively, significantly lower than VGG16’s 62.17 and 20.52%,

and ResNet152’s 59.53 and 19.62%. This outstanding performance

underscores the stability and robustness of our method across

different datasets. Furthermore, the data reveal that our method

achieves the lowest average MAPE (Mean MAPE) across all

evaluation metrics on both datasets, with values of 17.80 and 18.18

for the Nutrition5k and ChinaMartFood109 datasets, respectively.

In contrast, traditional CNNmodels exhibit higher average MAPEs

of 29.10 and 31.10 on the Nutrition5k and ChinaMartFood109

datasets, respectively. This further validates the advantage of our

method in multi-task nutritional content detection. Notably, in

the Nutrition5k dataset, while our method performs excellently

overall, Swin-Nutrition shows outstanding performance in certain

metrics, such as a MAPE of 15.4% for protein. This phenomenon

may be due to Swin-Nutrition using the Swin Transformer for

feature extraction, which excels in global feature extraction when

processing certain types of food images. However, considering

all metrics, our method still outperforms Swin-Nutrition overall,

especially in predicting fat and carbohydrates, where our method

demonstrates superior performance. These results indicate that by

leveraging the efficient feature extraction and deep feature fusion

capabilities of EfficientNet and Swin Transformer, our method

can more accurately predict the nutritional content of food items.

This not only enhances detection accuracy and efficiency but also

demonstrates the significant potential and broad applicability of

our method in real-world applications.

Our model’s ability to address issues related to data processing,

model robustness, and interpretability is clearly demonstrated

in these results. The combination of EfficientNet and Swin

Transformer allows for effective handling of varying lighting

conditions and complex food compositions, enhancing model

robustness. Additionally, the FPN enhances multi-scale feature

fusion, improving the interpretability of the model by providing

better feature representations at different scales. These innovations

simplify the data processing workflow and enhance the model’s

generalization ability, making it a more robust and accurate

solution for food nutrient detection compared to existing methods.

Figure 6 illustrate the relationship between predicted and

actual values for seven models (VGG16, WISeR-50, Inception-

V3, ResNet-152, CNN, Faster R-CNN, and Ours) across four

nutritional components (calories, fat, carbohydrates, and protein).

Each plot includes scatter points, a diagonal line, and confidence

ellipses. Each scatter point represents the relationship between a
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FIGURE 6

Scatter plots comparing the predicted and actual values of four nutritional components (calories, fat, carbohydrates, and protein) for seven models

(VGG16, WISeR-50, Inception-V3, ResNet-152, CNN, Faster R-CNN, and Ours).

model’s predicted value and the actual value for a food sample.

The diagonal line indicates the ideal scenario where the predicted

values perfectly match the actual values. Most scatter points

are clustered around the diagonal line, indicating overall good

predictive performance of the models. However, some points

deviate from the diagonal, suggesting that certain models exhibit

prediction errors in specific cases. The confidence ellipses show

the distribution range of the data points, with the size and

shape reflecting the variance and covariance of the predicted

values. Smaller ellipses indicate lower variance and more stable

predictions. These ellipses allow for a visual comparison of the

prediction distributions among different models. From the plots,

it is evident that VGG16 has relatively larger confidence ellipses

for all nutritional components, indicating higher variance and
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FIGURE 7

Multimodal loss curves over 100 epochs for the prediction of four nutritional components (calories, protein, carbohydrates, and fat) and the total loss.

less stable predictions. In contrast, WISeR-50 and Inception-V3

show smaller ellipses, indicating more concentrated and stable

predictions. ResNet-152 and Faster R-CNN also display relatively

small ellipses, demonstrating good predictive performance. CNN,

however, has larger ellipses, indicating higher variance and poorer

performance compared to other models. Overall, the Ours model

exhibits the smallest confidence ellipses across all nutritional

components, indicating the least variance and highest stability

and accuracy in predictions. This demonstrates the significant

advantage of the Ours model in predicting food nutritional

components. In summary, the plots reveal the performance

differences among the models in predicting various nutritional

components. VGG16 and CNN exhibit more dispersed predictions

with higher variance, whereas WISeR-50, Inception-V3, ResNet-

152, Faster R-CNN, and Ours show more concentrated predictions

with better performance. Notably, the Ours model outperforms all

other models, demonstrating superior predictive performance and

stability.

5.2 Multimodal loss analysis

Figure 7 illustrates the changes in the multimodal loss over

100 training epochs for four nutritional components (calories,

protein, carbohydrates, and fat) and the total loss. As the

training epochs progress, both the total loss (represented by

the solid black line) and the individual losses (represented by

dashed lines) exhibit a significant downward trend, indicating an

improvement in the model’s predictive accuracy for each sub-

task. The loss for fat decreases the fastest, demonstrating the

model’s superior learning efficiency for this particular task, while

the losses for calories, protein, and carbohydrates also decrease

steadily, reflecting effective optimization in these areas as well.

The overall decline in total loss highlights the enhancement of

the model’s performance across all tasks. The multimodal loss

function effectively balances the losses of each sub-task, ensuring

that the model optimizes all tasks simultaneously during the

training process. This balanced approach prevents the model

from overfitting to any single task, thus achieving consistent

performance across all tasks. Furthermore, all loss curves show a

clear convergence trend, especially within the first 50 epochs where

the losses decrease most rapidly before leveling off, indicating that

themodel is approaching a stable state. This suggests that themodel

quickly learns effective features in the initial training phase, with

further fine-tuning occurring as training progresses. In summary,

these loss curves validate the effectiveness of the multimodal

loss function in enhancing predictive accuracy and robustness.

By jointly optimizing multiple nutritional component prediction

tasks, the model leverages shared representations and inter-

task dependencies to improve overall performance. The results

demonstrate that the model, utilizing a multimodal loss function,

achieves high predictive accuracy and stability when handling the

complex task of food nutritional component prediction.

5.3 Ablation experiment

Table 3 presents the results of ablation experiments on

the Nutrition5k and ChinaMartFood109 datasets, specifically

examining the Mean Absolute Error (MAE) and Mean Absolute

Percentage Error (MAPE) for calorie, fat, carbohydrate, and protein

predictions. The results indicate that differentmodel configurations

have a significant impact on performance. For the Nutrition5k

dataset, the configuration using only EfficientNet shows relatively

high errors, with a calorie MAPE of 21.15%. When using only

the Swin Transformer, the calorie MAPE decreases to 19.82%,

Frontiers inNutrition 16 frontiersin.org

https://doi.org/10.3389/fnut.2024.1454466
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al. 10.3389/fnut.2024.1454466

TABLE 3 Ablation study results on Nutrition5k and ChinaMartFood109 datasets.

Dataset E�cientNet Swin
transformer

FPN Calorie
MAE/MAPE

Fat
MAE/MAPE

Carb
MAE/MAPE

Protein
MAE/MAPE

Mean
MAPE

Nutrition5k

X × × 45.32/21.15% 4.11/23.45% 6.32/27.34% 5.23/24.21% 24.53%

× X × 42.50/19.82% 3.80/22.34% 5.80/25.45% 4.80/22.11% 22.93%

X X × 38.44/17.89% 3.22/19.56% 5.11/23.12% 4.01/21.13% 20.93%

X X X 37.90/14.72% 2.60/18.04% 3.90/19.84% 3.10/18.02% 17.80%

ChinaMartFood109

X × × 58.12/24.32% 5.22/28.43% 7.45/30.54% 6.21/27.22% 27.63%

× X × 54.30/22.45% 4.90/26.12% 7.10/29.22% 5.90/26.11% 26.48%

X X × 46.23/20.34% 4.01/24.21% 6.12/25.78% 5.02/23.45% 23.45%

X X X 41.90/15.21% 2.80/18.54% 4.30/20.04% 3.50/18.91% 18.18%

FIGURE 8

Application of the model in real-world scenarios: Comparison of predicted and true nutritional values and ingredients for various food items. The

figure illustrates the accuracy and reliability of the model in predicting the nutritional content of (A) Spaghetti Bolognese, (B) Grilled Chicken, (C)

Caesar Salad, and (D) Blueberry Mu�n.

demonstrating Swin Transformer’s advantage in capturing long-

range dependencies in images. When combining EfficientNet

and Swin Transformer, the calorie MAPE further reduces to

17.89%, indicating a synergistic effect in feature extraction and

representation. Finally, when integrating the FPN with EfficientNet

and Swin Transformer, the model achieves the best performance,

with a calorie MAPE of only 14.72%, highlighting FPN’s crucial role

in multi-scale feature fusion. Similarly, on the ChinaMartFood109

dataset, the configuration using only EfficientNet has a calorie

MAPE of 24.32%. Adding the Swin Transformer reduces the

calorie MAPE to 22.45%. When combining EfficientNet and Swin

Transformer, the calorie MAPE further decreases to 20.34%. The

best performance is achieved when all three components are

combined, resulting in a calorie MAPE of 15.21%. The consistent

trend across both datasets underscores the comprehensive roles

of EfficientNet’s feature extraction capabilities, Swin Transformer’s

attention mechanisms, and FPN’s feature fusion techniques

in enhancing model accuracy and robustness. Overall, the

ablation experiment results demonstrate that each component

of our proposed model significantly contributes to the overall

performance. EfficientNet provides a strong foundation for feature

extraction, Swin Transformer enhances the model’s ability to

capture complex patterns, and FPN ensures effective multi-scale

feature fusion.
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TABLE 4 Examples of the nutritional composition from the Nutritions5

dataset.

Ingredient Calorie
(kCal)

Fat (g) Carb (g) Protein
(g)

Dish_1560442303

Berries 83.78 0.43 20.57 1.02

Scrambled eggs 111.15 8.21 1.17 7.58

Bacon 205.54 15.89 0.52 14.08

Quinoa 44.43 0.72 7.79 1.59

Sum 444.9 25.25 30.05 24.27

Dish_1562788816

Pork 231.05 13.64 0 25.28

Fish 36.08 5.28 0 7.45

Rice 133.14 0.34 28.74 2.76

Corn 41.11 0.98 8.64 1.17

Sum 441.38 20.24 37.38 36.66

Dish_1558114609

Grapes 26.87 0.07 7.05 0.29

Sausage 259.04 20.46 3.18 14.43

Bacon 151.44 11.75 0.38 10.39

Almonds 104.08 8.88 4.05 3.98

Sum 541.43 41.16 14.66 29.09

5.4 Visualization analysis

The visualization analysis presents a comparison between

predicted and true nutritional values for four different food items:

Spaghetti Bolognese, Grilled Chicken, Caesar Salad, and Blueberry

Muffin as shown in Figure 8. Across these food items, the predicted

values for calories, fat, carbohydrates, and protein generally align

closely with the true values, demonstrating the model’s accuracy

and robustness. The predictions for macronutrients like calories,

fat, carbohydrates, and protein show only minor discrepancies.

The model accurately identifies key ingredients in simpler dishes,

such as Grilled Chicken, where predictions are precise. For

more complex dishes, like Spaghetti Bolognese and Caesar Salad,

the model performs well but misses some specific ingredients,

such as croutons and dressing in the Caesar Salad or specific

types of meat in the Bolognese. Overall, the model’s ability to

predict nutritional values and identify ingredients is highly reliable,

making it a valuable tool for nutritional analysis. The minor

discrepancies observed are within acceptable ranges, affirming the

model’s practical applicability. Future enhancements could focus

on improving ingredient identification for more complex recipes,

further boosting the model’s accuracy and utility in real-world

scenarios.

Table 4 shows the nutritional composition of different dishes in

the Nutritions5 dataset, which is used to evaluate the effectiveness

of our proposed deep learning nutrition recognition model. For

Dish_1560442303, the total calories are 444.9 kCal, containing

25.25 g of fat, 30.05 g of carbohydrates, and 24.27 g of protein.

The main nutritional sources of this dish are bacon and scrambled

eggs, which provide high levels of calories and protein, while

berries and quinoa contribute a large amount of carbohydrates.

Dish_156278816 has a total of 441.38 kCal, with 20.24 g of fat,

37.38 g of carbohydrates, and 36.66 g of protein. In this dish,

pork and fish are the main sources of calories and protein,

while rice and corn provide most of the carbohydrates. For

Dish_1558114609, the total calories are 541.43 kCal, with 41.16

g of fat, 14.66 g of carbohydrates, and 29.09 g of protein.

Sausage and bacon are the main sources of calories and fat, while

grapes and almonds provide higher amounts of carbohydrates

and protein. Figure 9 presents the visualizations of these dishes’

nutritional composition, intuitively displaying the distribution of

calories, fat, carbohydrates, and protein in different foods. The

results in Table 4 and the visualizations in Figure 9 indicate that

our proposed deep learning model can effectively recognize and

classify various nutritional components in different food images.

This demonstrates the robustness and adaptability of the model

in accurately identifying nutritional information, which is crucial

for precise dietary assessment and monitoring. The model can

quickly and non-destructively detect food components, providing

reliable technical support for food quality evaluation and healthy

diet monitoring. In conclusion, the proposed model significantly

improves the accuracy and efficiency of food nutrition recognition,

providing a solid foundation for intelligent and refined analysis of

nutritional components. This advancement not only supports food

quality evaluation but also has wide applications and social value in

promoting healthy eating habits.

6 Conclusion

In this study, we proposed a novel deep learning model that

integrates EfficientNet, Swin Transformer, and Feature Pyramid

Network (FPN) to enhance the accuracy and efficiency of

food nutrient recognition. Our model was evaluated on two

extensive datasets, Nutrition5k and ChinaMartFood109, where it

demonstrated superior performance compared to several state-

of-the-art models. The experimental results indicated that our

model achieved higher Top-1 and Top-5 accuracy rates for

food classification tasks and significantly lower Mean Absolute

Error (MAE) and Mean Absolute Percentage Error (MAPE) for

nutrient estimation tasks. Additionally, visualization analysis of

the predicted vs. actual nutritional values for various food items

showed that our model could reliably and accurately predict

nutritional content, affirming its practical applicability in real-

world scenarios. Furthermore, our model addresses several key

issues identified in existing methods, such as data processing

efficiency, model robustness, and interpretability. By integrating

EfficientNet for efficient feature extraction, Swin Transformer

for capturing long-range dependencies, and FPN for multi-scale

feature fusion, our model provides a comprehensive approach to

improve food nutrient recognition accuracy. The FPN enhances

interpretability by performing multi-scale feature fusion, which

not only improves classification accuracy but also provides better

feature representations at different scales, making the model’s

decision-making process more transparent. Despite the promising

results, our model has certain limitations. Firstly, it struggles
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FIGURE 9

Visualizations of nutritional composition for di�erent dishes from the Nutrition 5k dataset.

with complex dishes containing multiple ingredients, occasionally

missing specific components such as croutons and certain

types of meat, which could affect overall nutritional estimation.

Secondly, the training process requires substantial computational

resources due to the complex architecture, limiting accessibility

and scalability for users with limited resources. Thirdly, the model

heavily relies on high-quality images for optimal performance.

In real-world scenarios, varying image quality due to different

lighting conditions, occlusions, and variations in image resolution

can adversely affect the model’s accuracy and reliability.

Looking forward, future work should aim to address these

limitations by incorporating more comprehensive and diverse

datasets that include a wider range of complex dishes and their

detailed ingredient annotations. Enhancing the model’s ability to

disaggregate and accurately recognize multiple ingredients within

a single dish will improve its performance in complex food

recognition tasks. Additionally, optimizing the model architecture

to reduce computational requirements without compromising

accuracy could make it more accessible and scalable for broader

use. Developing techniques to handle varying image qualities

and enhancing the model’s robustness to different environmental

conditions will be crucial for its real-world applicability. Advanced

techniques such as transfer learning and incremental learning could

also be explored to maintain high performance while reducing the

computational burden.

In conclusion, our model significantly advances food nutrient

recognition by combining EfficientNet, Swin Transformer, and

FPN. It achieves high accuracy and robustness in nutrient

estimation and is practical for real-world dietary assessment and

monitoring. This work lays a foundation for future research

in intelligent food analysis systems, potentially impacting health

and nutrition sectors by providing reliable tools for dietary

management and food quality assessment. The model’s rapid and

non-destructive nutrient detection enhances understanding of food

nutrition and promotes healthy dietary practices.
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