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Background and aims: The role of dietary factors in metabolic dysfunction-
associated steatotic liver disease (MASLD)—which represents a new definition of 
liver steatosis and metabolic dysfunction— remains unclear. This study aimed to 
explore the relationships between dietary indices and MASLD.

Methods: We analyzed data from the United  States National Health and 
Nutrition Examination Survey (NHANES) 2017–2020  cycle, including 4,690 
participants with complete vibration-controlled transient elastography (VCTE) 
data. Multivariate logistic regression models adjusted for covariates were used to 
assess the association between dietary indices, MASLD, and MASLD-associated 
liver fibrosis (MASLD-LF). Restricted cubic spline (RCS) models and subgroup 
analyses were also performed.

Results: The Alternative Healthy Eating Index (AHEI), Healthy Eating Index-2020 
(HEI-2020), Dietary Approaches to Stop Hypertension Index (DASHI), and 
Mediterranean Diet Index (MEDI) were found to be negatively associated with 
MASLD risk, while the Dietary Inflammatory Index (DII) had a positive association. 
The highest quartile of MEDI was linked to a 44% reduction in MASLD risk [Q1 
vs. Q4 odds ratio (OR): 0.56; 95% confidence interval (CI): 0.34–0.94, P for 
trend: 0.012]. DASHI was uniquely associated with a reduced risk of MASLD-
LF (continuous OR: 0.79; 95% CI: 0.64–0.97; p for trend: 0.003). Our RCS 
curves indicated a nonlinear association with DASHI-MASLD (p-overall: 0.0001, 
p-nonlinear: 0.0066). Subgroup analyses showed robust associations among 
the non-Hispanic White and highly educated populations.

Conclusion: Specific dietary patterns were associated with reduced risks of 
MASLD and MASLD-LF. The DASHI, in particular, showed a significant protective 
effect against MASLD-LF. These findings suggest potential dietary interventions 
for managing MASLD and MASLD-LF, although large-scale randomized 
controlled trials are warranted to validate these findings.
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1 Introduction

Over recent decades, non-alcoholic fatty liver disease (NAFLD) 
has emerged as the leading cause of chronic liver disease worldwide, 
affecting 30% of adults across the planet (1). Owing to certain 
limitations in the definition of NAFLD, such as its exclusive diagnostic 
criteria and the stigmatization of the word “fatty” (2), a recent expert 
panel adopted new terms and definitions for liver disease—ultimately 
replacing the term NAFLD with metabolic dysfunction-associated 
steatotic liver disease (MASLD) (3).

The disease spectrum of MASLD includes simple steatosis, 
steatohepatitis, fibrosis, and cirrhosis. Its high prevalence makes 
MASLD a leading cause of end-stage liver disease, liver 
transplantation, and liver-related mortality (4). However, no specific 
pharmaceutical medications are currently available to treat 
MASLD. Lifestyle modifications therefore remain an important 
approach for improving MASLD. Diet, weight loss, and physical 
activity are considered the cornerstones of MASLD treatment (5), 
with dietary factors considered to play a key role in its pathogenesis 
and a high-quality diet being considered a potential prophylactic 
strategy (6). Nevertheless, previous guidelines regarding the dietary 
recommendations for patients with MASLD have been relatively 
vague or nonspecific (7, 8), unlike those for patients with type 
2 diabetes.

Dietary pattern indices consider the contributions of various 
aspects of diet, including nutrients and food quality. As a result, they 
can more closely simulate real-world scenarios of nutrient and food 
combinations, facilitating the translation of clinical findings into 
dietary recommendations (9). Recently, several dietary indices have 
been developed to explore the associations between dietary quality 
and health outcomes (10). These indices include the Alternative 
Healthy Eating Index (AHEI), Healthy Eating Index-2020 (HEI-2020), 
Dietary Approaches to Stop Hypertension Index (DASHI), Dietary 
Inflammatory Index (DII), and Mediterranean diet Index (MEDI) 
(11–16). Several studies have predicted NAFLD risk according to 
different dietary indices (10, 17); however, the applicability of these 
findings to MASLD remains uncertain.

This study aimed to explore the effects of various dietary patterns 
on MASLD and MASLD-associated liver fibrosis (MASLD-LF) 
adopting the latest definition of MASLD and dietary pattern indices.

2 Methods

2.1 Study population

The National Health and Nutrition Examination Survey 
(NHANES) is a population-based cross-sectional survey designed to 
collect health and nutritional information about the U.S. population. 
It includes demographic data, participant examinations, laboratory 
data, and information concerning health and nutritional statuses. 
Written informed consent was obtained from all of the participants 
before any data were collected, and all of the study protocols were 
approved by the National Center for Health Statistics’ ethical 
review board.

We extracted data from the NHANES 2017–2020 cycle, because it 
contained data regarding vibration-controlled transient elastography 
(VCTE). VCTE is a commonly used non-invasive examination that 
measures the controlled attenuation parameter (CAP) and liver 
stiffness measurement (LSM) to assess liver steatosis and fibrosis (18).

A total of 15,560 individuals participated in this cycle, of whom 
9,021 had complete VCTE results. Subsequently, we excluded other 
causes of steatotic liver disease (205 participants with viral hepatitis B 
and C, and 605 with excessive alcohol consumption), 1,620 underage 
participants, 1,221 participants with missing dietary interview data, 
and 680 participants with other missing data—resulting in a final total 
of 4,690 participants included in our analysis (Figure 1).

2.2 Metabolic dysfunction-associated 
steatotic liver disease

VCTE was performed, and CAP and LSM values were measured 
to assess hepatic steatosis and fibrosis. For each participant, CAP 
≥264 dB/m was defined as liver steatosis (19), and LSM ≥8.0 kPa was 
defined as fibrosis (20). MASLD was defined as patients with liver 
steatosis who excluded excessive alcohol consumption [≥30/20 g/day 
(male/female)] and viral hepatitis (hepatitis B Surface Antigen/
hepatitis C antigen/hepatitis C RNA positive) and fulfilled one of the 
following cardiometabolic risk factors: (1) body mass index (BMI) 
≥25 kg/m2 (23 kg/m2 for Asia) or waist circumference (WC) 
≥94/80 cm (male/female); (2) fasting blood glucose ≥100 mg/dL or 
glycosylated hemoglobin ≥5.7%), or type 2 diabetes, or undergoing 
treatment for type 2 diabetes; (3) blood pressure ≥ 130/85 mmHg or 
undergoing antihypertensive treatment; (4) plasma triglycerides 
≥150 mg/dL or undergoing lipid-lowering treatments; (5) plasma 
high-density lipoprotein cholesterol (HDL-C) <40 mg/dL for men 
or < 50 mg/dL for women, or receiving lipid-lowering treatments (2).

2.3 Dietary indices

All dietary indices in this study were calculated based on 
information from the two-day, 24-h dietary interviews conducted by 
the NHANES (Supplementary Table 1). The HEI-2020, the most 
recent version of the HEI, measures the quality of an individual’s 
dietary patterns, independent of quantity, and has been evaluated for 
consistency with the Dietary Guidelines for Americans (DGA) (15). 
The HEI-2020 was calculated based on 13 dietary components—
including nine adequacy components and four moderation 

Abbreviations: MASLD, metabolic dysfunction-associated steatotic liver disease; 

NAFLD, non-alcoholic fatty liver disease; AHEI, Alternate Healthy Eating Index; 

HEI-2020, Healthy Eating Index-2020; DASH, Dietary Approaches to Stop 

Hypertension; DASHI, Dietary Approaches to Stop Hypertension Index in serving 

sizes adapted from the DASH trial; DII, Dietary Inflammatory Index; MED, 

Mediterranean diet; MEDI, Mediterranean diet Index in serving sizes from the 

PREDIMED trial; MASLD-LF, MASLD-associated liver fibrosis; NHANES, National 

Health and Nutrition Examination Survey; VCTE, Vibration-controlled transient 

elastography; CAP, controlled attenuation parameter; LSM, liver stiffness 

measurement; BMI, body mass index; WC, waist circumference; HDL-C, high-

density lipoprotein cholesterol; TC, total cholesterol; TG, total triglycerides; DGA, 

Dietary Guidelines for Americans; IL, Interleukin; TNF-α, tumor necrosis factor-

alpha; SSB, sugar-sweetened beverages; RCS, restricted cubic spline; ALT, alanine 

aminotransferase; AST, aspartate aminotransferase; MUFA, monounsaturated fatty 

acids; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids; IR, insulin 

resistance.
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components. For the moderating components, higher scores were 
associated with lower levels of consumption. The total score ranged 
between 0 and 100, with higher scores indicating higher dietary 
quality. Similarly, the AHEI consists of 11 dietary components, with 
each component accounting for 0–10 points and a total score ranging 
between 0 and 110. This score assesses diet quality and risk of chronic 
diseases based on an individual’s food and nutrient intake (14).

DII is a score that quantifies the association between an 
individual’s dietary intake and six inflammatory factors, namely 
interleukin-1beta (IL-1β), IL-4, IL-6, IL-10, tumor necrosis 

factor-alpha (TNF-α), and C-reactive protein (16). The DII was 
designed to measure the inflammatory potential of a given diet, with 
higher scores indicating a more pro-inflammatory diet and lower 
scores indicating a more anti-inflammatory one (21).

The DASHI is a dietary index based on nine nutrients (protein, fiber, 
magnesium, calcium, potassium, total fat, saturated fat, cholesterol, and 
sodium) (22), and is calculated based on 1-day nutrient consumption. 
All nutrients were divided by total energy/2000 kcal, to adjust for energy 
intake (11). The total DASHI score ranges between 0 and 9, with higher 
scores suggesting a dietary pattern that tends to prevent hypertension.

FIGURE 1

Flowchart of the study population selection.
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The MED differs from the conventional Western diet, which is 
rich in red meat, refined grains, and sugar-sweetened beverages (SSB). 
It emphasizes the intake of fruits, vegetables, whole grains, nuts, 
peanuts, olive oil, and seafood (6). The MEDI is calculated based on 
the serving sizes of these food equivalents per day. The additional 
inclusion of levels of intake of SSB, sweets, discretionary fats, and red 
meat—all of which are not recommended in the MED—improves the 
reliability of the score (12).

2.4 Covariates

Based on previous studies, several MASLD-related covariates were 
included: sex, age, ethnicity (Mexican-American, Other Hispanic, 
Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Asian, 
Other/Multiracial), education level (<High school, ≥High school), 
BMI grade (obesity: ≥30 kg/m2, overweight: 25–30 kg/m2, and normal 
weight: <25 kg/m2), smoking status (never smoker, former smoker, or 
current smoker), hypertension, diabetes, total cholesterol (TC), total 
triglycerides (TG), and HDL-C (23). Diabetes was defined as fasting 
blood glucose of ≥126 mg/dL or glycated hemoglobin ≥6.5%, self-
reported diabetes mellitus, or receiving insulin treatment (24). 
Participants with systolic blood pressure measurements of 
≥130 mmHg or diastolic blood pressure measurements of ≥80 mmHg, 
self-reported hypertension, or those taking antihypertensive 
medication were defined as having hypertension (23).

2.5 Statistical analysis

Continuous variables are expressed as means (standard errors 
[SEs]), and categorical ones are expressed as numbers and percentages. 
Comparisons between groups were performed using Student’s t-tests 
and Chi-squared tests with complex survey samples. Multivariate 
logistic regression analyses were performed to explore the effects of 
different dietary indices on MASLD and MASLD-LF. All dietary 
indices were divided into quartiles for trend testing. Three models were 
used: Model 1 (unadjusted); Model 2 (adjusted for age, sex, ethnicity, 
and educational level); and Model 3 (adjusted for the variables in 
Model 2, as well as BMI grade, smoking status, hypertension, diabetes, 
TG, TC, and HDL-C). Nonlinear associations between the five dietary 
indices and MASLD and MASLD-LF scores were explored using a 
four-knot-restricted cubic spline curve (RCS). Subgroup analyses and 
interaction tests were performed for different populations based on 
categorical covariates (sex, age [<50, ≥50], ethnicity, educational level, 
BMI grade, smoking status, hypertension, and diabetes). According to 
the NHANES recommendations, unequal probability of selection and 
non-response were accounted for using “WTMECPRP” weights. 
Statistical analysis and data visualization were performed using R 4.2.3 
software, and statistical significance was set at p < 0.05.

3 Results

3.1 Baseline population characteristics

A total of 4,690 participants were involved in this study. They had 
a mean age of 48.63 ± 0.62 years, 47.47% were male, 2,383 had MASLD 

(weighted prevalence, 49.30%), and 375 had MASLD-LF (weighted 
prevalence, 15.81%). As for dietary scores, AHEI [39.26 (0.45)], HEI 
[50.19 (0.41)], DASHI [3.29 (0.03)], and MEDI [3.60 (0.04)] levels 
were generally low, none of them reaching the median. The mean DII 
[1.22 (0.66)] exceeded the value of 0 suggesting that the diet was 
pro-inflammatory. At baseline, there were significant differences in 
most variables between the non-MASLD and MASLD groups. 
Compared to the population without MASLD population, the one 
with MASLD had a higher proportion of males (51.73% vs. 43.33%), 
an older mean age (51.93 ± 0.74 vs. 45.43 ± 0.73), a higher proportion 
of Mexican-Americans (10.94% vs. 5.66%), and a lower proportion of 
individuals with more than a high school educational level (89.26% 
vs. 91.76%). The population with MASLD had a higher prevalence of 
diabetes and hypertension; higher BMI, WC, alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), TC, TG, CAP, LSM, AHEI, 
HEI-2020, DASHI, and MEDI levels; and lower HDL and DII levels 
(all p < 0.05). There were no significant differences in terms of age, sex, 
ethnicity, educational level, smoking status, TC, TG, or DII between 
the participants with non-fibrotic MASLD and those with MASLD-
LF. However, significant differences were observed in terms of the 
other variables. Table  1 summarizes the clinical characteristics of 
the participants.

3.2 Association of dietary indices with 
MASLD

In the non-adjusted Model 1, all dietary indices were significantly 
correlated with MASLD. The AHEI, HEI-2020, DASHI, and MEDI 
were negatively correlated with the prevalence of MASLD, whereas 
DII was positively correlated. These correlations remained statistically 
significant after dividing all dietary indices into quartiles. The same 
conclusions still stood in Models 2 and 3 after the inclusion of different 
covariates, with different dietary indices affecting the risk of MASLD 
to varying degrees. Higher AHEI (continuous OR: 0.99; 95% CI: 0.98–
0.99; p for trend: 0.002), HEI-2020 (continuous OR: 0.99; 95% CI: 
0.98–0.99; p for trend: <0.001), DASHI (continuous OR: 0.89; 95% CI: 
0.83–0.96; p for trend: 0.019), MEDI (continuous OR. 0.85; 95% CI: 
0.75–0.97; p for trend: 0.012) reduced the risk of MASLD in Model 3, 
which was contrary to the case for DII (continuous OR: 1.09; 95% CI: 
1.02–1.17; p for trend: 0.001)—as is further detailed in Table  2. 
Smooth curve-fitting further suggested no nonlinear association 
between AHEI (p-overall: 0.0021, p-nonlinear: 0.9682), HEI-2020 
(p-overall: 0.0002, p-nonlinear: 0.3982), DII (p-overall: 0.0009, 
p-nonlinear: 0.0521), MEDI (p-overall: 0.0001, p-nonlinear: 0.3464) 
with MASLD; however, there was a temporary plateau in the RCS 
curve of DASHI versus MASLD, with a lower risk of MASLD at 
DASHI >4.70 compared to the reference point (p-overall: 0.0001, 
p-nonlinear: 0.0066; Figures 2A–E).

3.3 Association of dietary indices with 
MASLD-LF

The effects of the five dietary indices on MASLD-LF in the 
population with MASLD were analyzed using the three models under 
the same covariate conditions. Significant negative associations 
between AHEI, HEI-2020, DASHI, and MEDI with MASLD-LF were 
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TABLE 1  Characteristics of the study population.

Characteristics Overall (n  =  4,690) Non-MASLD 
(n  =  2,307)

MASLD (n  =  2,383) p-value* Non-Fibrosis 
MASLD (n  =  2008)

MASLD-LF 
(n  =  375)

p-value*

Age (years) 48.63 (0.62) 45.43 (0.73) 51.93 (0.74) <0.001 51.68 (0.75) 53.24 (1.15) 0.147

Sex <0.001 0.544

 � Female 2,495 (52.53%) 1,319 (56.67%) 1,176 (48.27%) 1,004 (48.70%) 172 (45.98%)

 � Male 2,195 (47.47%) 988 (43.33%) 1,207 (51.73%) 1,004 (51.30%) 203 (54.02%)

Race <0.001 0.315

 � Non-Hispanic White 1,656 (63.75%) 767 (63.84%) 889 (63.67%) 738 (62.88%) 151 (67.86%)

 � Non-Hispanic Black 1,245 (11.35%) 730 (13.65%) 515 (9.00%) 436 (9.23%) 79 (7.75%)

 � Mexican American 564 (8.26%) 185 (5.66%) 379 (10.94%) 317 (11.07%) 62 (10.27%)

 � Non-Hispanic Asian 520 (5.31%) 280 (5.65%) 240 (4.97%) 214 (7.28%) 34 (6.17%)

 � Other Hispanic 483 (7.40%) 235 (7.68%) 248 (7.11%) 212 (5.29%) 28 (3.28%)

 � Other/multiracial 222 (3.92%) 110 (3.52%) 112 (4.32%) 91 (4.26%) 21 (4.66%)

Education 0.004 0.766

 � <High School 761 (9.47%) 328 (8.24%) 433 (10.74%) 370 (10.84%) 63 (10.23%)

 � High School or above 3,929 (90.53%) 1,979 (91.76%) 1,950 (89.26%) 1,638 (89.16%) 312 (89.77%)

 � Hypertension 2,700 (51.80%) 1,082 (38.00%) 1,618 (65.98%) <0.001 1,314 (63.07%) 304 (81.45%) <0.001

 � Diabetes 950 (15.73%) 229 (5.90%) 721 (25.84%) <0.001 527 (21.58%) 194 (48.52%) <0.001

Smoking status 0.002 0.108

 � Current smokers 729 (13.41%) 406 (14.97%) 323 (11.80%) 277 (12.01%) 46 (10.69%)

 � Former smokers 1,105 (25.86%) 443 (21.90%) 662 (29.93%) 538 (28.70%) 124 (36.45%)

 � Nonsmoker 2,856 (60.73%) 1,458 (63.13%) 1,398 (58.27%) 1,193 (59.29%) 205 (52.86%)

BMI grade <0.001 <0.001

 � Normal (<25) 1,115 (25.05%) 949 (43.74%) 166 (5.84%) 157 (6.70%) 9 (1.23%)

 � Obesity (≥30) 2,087 (43.59%) 568 (21.85%) 1,519 (65.95%) 1,213 (62.21%) 306 (85.85%)

 � Overweight (25–30) 1,488 (31.35%) 790 (34.40%) 698 (28.22%) 638 (31.09%) 60 (12.92%)

BMI (kg/m2) 29.89 (0.22) 26.46 (0.20) 33.41 (0.27) <0.001 32.48 (0.30) 38.39 (0.50) <0.001

(Continued)
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TABLE 1  (Continued)

Characteristics Overall (n  =  4,690) Non-MASLD 
(n  =  2,307)

MASLD (n  =  2,383) p-value* Non-Fibrosis 
MASLD (n  =  2008)

MASLD-LF 
(n  =  375)

p-value*

WC (cm) 100.92 (0.57) 91.91 (0.52) 110.20 (0.64) <0.001 107.97 (0.65) 122.04 (1.17) <0.001

ALT (U/L) 22.16 (0.27) 18.62 (0.38) 25.80 (0.51) <0.001 24.52 (0.53) 32.62 (1.42) <0.001

AST (U/L) 21.14 (0.16) 20.24 (0.25) 22.07 (0.29) <0.001 21.18 (0.28) 26.82 (1.13) <0.001

TC (mg/dL) 187.54 (1.41) 185.19 (1.58) 189.96 (1.77) 0.014 190.74 (1.85) 185.77 (2.62) 0.077

TG (mg/dL) 139.77 (2.65) 108.65 (1.72) 171.76 (3.66) <0.001 167.49 (3.74) 194.48 (15.02) 0.103

HDL (mg/dL) 52.58 (0.45) 57.15 (0.56) 47.89 (0.47) <0.001 48.37 (0.48) 45.34 (0.87) 0.002

CAP (dB/m) 264.66 (1.72) 213.81 (1.17) 316.96 (1.36) <0.001 312.78 (1.23) 339.21 (2.82) <0.001

LSM (kPa) 5.79 (0.12) 4.91 (0.08) 6.70 (0.21) <0.001 5.17 (0.05) 14.83 (0.99) <0.001

HEI-2020 50.19 (0.41) 51.35 (0.54) 48.99 (0.38) <0.001 49.51 (0.42) 46.21 (0.94) 0.005

AHEI 39.26 (0.45) 40.50 (0.58) 37.98 (0.41) <0.001 38.39 (0.43) 35.79 (0.87) 0.011

DASHI 3.29 (0.03) 3.40 (0.04) 3.17 (0.04) <0.001 3.23 (0.04) 2.88 (0.08) <0.001

DII 1.22 (0.06) 1.13 (0.08) 1.31 (0.06) 0.011 1.30 (0.07) 1.39 (0.14) 0.582

MEDI 3.60 (0.04) 3.70 (0.05) 3.50 (0.04) <0.001 3.53 (0.04) 3.35 (0.08) 0.018

Continuous variables were expressed as mean (SE), and categorical variables were expressed as numbers (percentage). *Comparisons between groups were performed using t-tests and chi-square tests with complex survey samples. MASLD: metabolic dysfunction-
associated steatotic liver disease, MASLD-LF, MASLD-associated liver fibrosis; BMI, body mass index; WC, waist circumstance; MASLD, metabolic dysfunction-associated steatotic liver disease; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TC, total 
cholesterol; TG, total triglycerides; HDL-C, high-density lipoprotein cholesterol; HEI-2020, Healthy Eating Index-2020; AHEI, Alternate Healthy Eating Index; DASHI, Dietary Approaches to Stop Hypertension index in serving sizes adapted from the DASH trial; DII, 
Dietary Inflammatory Index; MED, Mediterranean diet index in serving sizes from the PREDIMED trial.
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found in Models 1 and 2, with interquartile trends (p < 0.05) only for 
HEI-2020 and DASHI. In Model 3, as continuous variables, higher 
HEI-2020 (continuous OR: 0.98; 95% CI: 0.95–1.00) and DASHI 
(continuous OR: 0.79; 95% CI: 0.64–0.97) were still associated with a 
lower risk of fibrosis. Compared to the lowest quartile, the risk of 
MASLD-LF was reduced by 60% (OR: 0.40; 95% CI: 0.21–0.76; p for 
trend: 0.003) in the highest DASHI quartile (Table 3). The RCS results 
suggested a nonlinear association between HEI-2020 and MASLD-LF 

(p-overall: <0.0001, p-nonlinear: 0.0022) and a reduced risk of 
fibrosis when HEI-2020 was >64.07 vs. the reference point. No 
nonlinear associations were found in terms of AHEI (p-overall: 
0.0040, p-nonlinear: 0.2330) and DASHI (p-overall: <0.0001, 
p-nonlinear: 0.1181), with MASLD-LF. No correlation with fibrosis 
was found for DII (p-overall: 0.1962, p-nonlinear: 0.0998) and MEDI 
(p-overall: 0.0671, p-nonlinear: 0.8410)—as is further detailed in 
Figures 2F–J.

TABLE 2  Relations between dietary indices and MASLD.

Model 1 Model 2 Model 3

OR 95% CI p OR 95% CI p OR 95% CI p

AHEI

Continuos 0.98 (0.97, 0.99) <0.001 0.97 (0.96, 0.98) <0.001 0.99 (0.98, 0.99) <0.001

Quartile <0.001* <0.001* 0.002*

Q1 (8.28, 30.63) Ref. Ref. Ref.

Q2 (30.63, 38.70) 1.04 (0.79, 1.36) 0.796 0.92 (0.70, 1.21) 0.537 0.80 (0.58, 1.11) 0.141

Q3 (38.70, 46.79) 0.94 (0.75, 1.17) 0.544 0.75 (0.59, 0.96) 0.023 0.73 (0.53, 1.01) 0.055

Q4 (46.79, 87.29) 0.62 (0.50, 0.77) <0.001 0.45 (0.36, 0.58) <0.001 0.64 (0.46, 0.89) 0.017

HEI-2020

Continuos 0.98 (0.98, 0.99) <0.001 0.98 (0.97, 0.98) <0.001 0.99 (0.98, 0.99) <0.001

Quartile <0.001* <0.001* <0.001*

Q1 (18.74, 40.94) Ref. Ref. Ref.

Q2 (40.94, 49.04) 0.90 (0.68, 1.18) 0.412 0.80 (0.60, 1.07) 0.125 0.72 (0.47, 1.11) 0.111

Q3 (49.04, 58.75) 0.88 (0.69, 1.11) 0.264 0.75 (0.58, 0.97) 0.033 0.73 (0.48, 1.10) 0.102

Q4 (58.75, 91.33) 0.62 (0.49, 0.79) <0.001 0.48 (0.38, 0.60) <0.001 0.61 (0.46, 0.80) 0.006

DASHI

Continuos 0.84 (0.78, 0.92) <0.001 0.81 (0.74, 0.89) <0.001 0.89 (0.83, 0.96) <0.001

Quartile <0.001* <0.001* 0.019*

Q1 (0.53, 2.47) Ref. Ref. Ref.

Q2 (2.47, 3.18) 0.70 (0.54, 0.90) 0.009 0.69 (0.52, 0.92) 0.014 0.80 (0.51, 1.24) 0.242

Q3 (3.18, 4.02) 0.71 (0.54, 0.93) 0.014 0.68 (0.51, 0.90) 0.012 0.81 (0.54, 1.22) 0.245

Q4 (4.02, 7.59) 0.60 (0.47, 0.76) <0.001 0.53 (0.41, 0.69) <0.001 0.74 (0.58, 0.95) 0.026

DII

Continuos 1.06 (1.02, 1.11) 0.006 1.13 (1.07, 1.18) <0.001 1.09 (1.02, 1.17) 0.003

Quartile <0.001* <0.001* 0.001*

Q1 (−4.82, 0.09) Ref. Ref. Ref.

Q2 (0.09, 1.35) 1.37 (1.14, 1.65) 0.002 1.55 (1.25, 1.92) <0.001 1.65 (1.13, 2.42) 0.020

Q3 (1.35, 2.61) 1.51 (1.19, 1.93) 0.002 1.80 (1.40, 2.31) <0.001 1.57 (1.10, 2.24) 0.022

Q4 (2.61, 4.80) 1.23 (0.98, 1.54) 0.074 1.62 (1.28, 2.05) <0.001 1.47 (1.01, 2.13) 0.046

MEDI

Continuos 0.84 (0.76, 0.92) <0.001 0.81 (0.74, 0.89) <0.001 0.85 (0.75, 0.97) 0.004

Quartile <0.001* <0.001* 0.012*

Q1 (0.5, 3.0) Ref. Ref. Ref.

Q2 (3.0, 3.5) 0.81 (0.62, 1.05) 0.101 0.80 (0.61, 1.06) 0.11 0.83 (0.52, 1.30) 0.331

Q3 (3.5, 4.5) 0.80 (0.65, 0.99) 0.037 0.75 (0.60, 0.93) 0.013 0.79 (0.59, 1.08) 0.11

Q4 (4.5, 8.0) 0.55 (0.39, 0.78) 0.002 0.51 (0.35, 0.72) 0.001 0.56 (0.34, 0.94) 0.036

OR, Odds ratio; CI, Confidence interval; AHEI, Alternate Healthy Eating Index; HEI-2020, Healthy Eating Index-2020; DASHI, Dietary Approaches to Stop Hypertension index in serving 
sizes adapted from the DASH trial; DII, Dietary Inflammatory Index; MED, Mediterranean diet index in serving sizes from the PREDIMED trial. Model 1: No covariates were adjusted. Model 
2: Adjusted for age, sex, race, and education. Model 3: Adjusted for age, sex, race, education, BMI grade, smoking status, hypertension, diabetes, TG, TC, and HDL-C. *p for trends. 
Bold values indicate statistical significance.
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3.4 Subgroup analysis

Further, subgroup analyses were performed to assess the 
robustness of the results. No interaction was found across the 
subgroups for the five dietary indices with MASLD 
(Supplementary Figures S1–S5). The non-Hispanic White and more 
highly educated subgroups did show robust correlations with these 
parameters (p-interaction: >0.05). By contrast, the effects of HEI-2020 
and DII on MASLD-LF were found to be  significantly stratified 
according to educational level, hypertension, and ethnicity 
(p-interaction: <0.05; Supplementary Figures S6–S10). No interactions 
were found for any of the other variables.

4 Discussion

Specific dietary components or patterns have been mentioned as 
being associated with NAFLD in several previous studies, and dietary 
patterns such as low-calorie, Mediterranean, and high-quality diets 
have been suggested to be associated with a reduced risk of NAFLD 
(10, 25, 26). Since the Delphi Consensus Statement proposed MASLD 
as a new definition of steatotic liver disease, to replace NAFLD, it has 
not been confirmed whether the conclusions of previous studies on 
NAFLD are equally applicable to MASLD.

At baseline, nearly half of the population was found to have 
MASLD, diet quality assessed by the dietary indices was generally low, 
and Mexican Americans appeared to be more susceptible to MASLD, 
consistent with previous studies (11, 17, 27). Epidemiologic studies 
have shown that Mexican Americans have higher rates of obesity and 
prevalence of metabolic syndrome than other ethnicities (28, 29). In 
addition, some studies have reported that variants in the susceptibility 

gene for MASLD, PNPLA3, are more common among Mexican 
populations (30). As such, the prevalence of MASLD in specific 
populations appears to result from a complex interaction of behavioral 
and genetic factors that are not fully understood.

In this study, the associations of the five dietary pattern indices 
with MASLD and MASLD-LF were evaluated in a nationally-
representative sample of adults living in the U.S. We found that AHEI, 
HEI-2020, DASHI, and MEDI were negatively associated with the risk 
of developing MASLD, whereas DII was positively associated. Anti-
inflammatory diets reduced the risk of MASLD; however, a higher 
positive DII did not further increase MASLD risk. Among these, the 
highest quartile of MEDI scores was associated with the greatest 
reduction in MASLD risk compared to the lowest quartile, up to 44% 
(Q1 vs. Q4 OR: 0.56). These results are similar to previously reported 
associations between different definitions of fatty liver and dietary 
indices (10, 17, 31, 32). However, in our analyses related to fibrosis, 
only DASHI was found to be significantly associated with MASLD-LF 
on both continuous and quartile scales.

Smoothed curve-fitting visually demonstrated the relationship 
between dietary indices and MASLD traits. Our subgroup analyses 
identified a small number of variables that interacted with 
MASLD-LF—including the educational level and hypertension 
subgroups in the HEI-2020—suggesting that caution should 
be exercised when interpreting the association between HEI-2020 and 
MASLD-LF. We  found robust associations in multiple subgroup 
analyses between the Dietary Index-MASLD for non-Hispanic White 
and highly educated populations. On the one hand, we considered that 
this result may have been related to other factors such as energy intake 
and socioeconomic status. For example, the AHS-2 cohort study found 
that healthy dietary patterns were less effective for preventing 
cardiovascular risk factors in Black populations compared to 

FIGURE 2

Restricted cubic spline curves for dietary indices and MASLD/MASLD-associated liver fibrosis. The red solid line indicates a smooth curve fit between 
the variables. The blue area indicates the 95% confidence interval of the fit. MASLD, metabolic dysfunction-associated steatotic liver disease; AHEI, 
Alternate Healthy Eating Index; HEI-2020, Healthy Eating Index-2020; DASHI, Dietary Approaches to Stop Hypertension index in serving sizes adapted 
from the DASH trial; DII, Dietary Inflammatory Index; MEDI, Mediterranean diet index in serving sizes from the PREDIMED trial. (A–E) Visualized 
relationships of AHEI, HEI-2020, DASHI, DII, MEDI with MASLD. (F–J) Visualized relationships of AHEI, HEI-2020, DASHI, DII, MEDI with MASLD-LF.
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non-Hispanic White ones (33), while another cohort study reported 
that the Black population had a significantly higher energy intake than 
the White population across all dietary groups (34). These findings 
suggest that the effect of dietary indices vary across different ethnicities, 
with differences in energy intake serving as a possible explanation. 
Additionally, people with higher educational levels tend to have higher 
socioeconomic statuses, and therefore be more likely to have access to 
healthier diets and better health care. On the other hand, the large 

sample sizes of these two groups may have increased their statistical 
power, making the observed associations more significant and stable. 
This tendency was also observed in another study (35).

When comparing the components of the different dietary indices, 
it can be seen that AHEI, HEI-2020, DASHI, and MEDI all encourage 
eating more vegetables, fruits, whole grains, nuts, proteins, and 
mono-and polyunsaturated fatty acids (MUFA/PUFA) while restricting 
the consumption of red meat (MEDI), processed meat (AHEI, MEDI), 

TABLE 3  Relations between dietary indices and MASLD-associated liver fibrosis.

Model 1 Model 2 Model 3

OR 95% CI p OR 95% CI p OR 95% CI p

AHEI

Continuos 0.98 (0.96, 1.00) 0.008 0.97 (0.95, 1.00) 0.008 0.98 (0.95, 1.01) 0.071

Quartile 0.094* 0.089* 0.234*

Q1 (9.39, 30.07) Ref. Ref. Ref.

Q2 (30.07, 37.70) 0.84 (0.54, 1.32) 0.427 0.81 (0.50, 1.30) 0.356 0.74 (0.36, 1.51) 0.329

Q3 (37.70, 45.13) 0.59 (0.31, 1.14) 0.112 0.55 (0.27, 1.12) 0.095 0.53 (0.23, 1.21) 0.104

Q4 (45.13, 81.34) 0.55 (0.32, 0.94) 0.032 0.49 (0.26, 0.94) 0.033 0.59 (0.25, 1.42) 0.184

HEI-2020

Continuos 0.98 (0.96, 0.99) 0.002 0.97 (0.96, 0.99) 0.003 0.98 (0.95, 1.00) 0.029

Quartile 0.021* 0.029* 0.109*

Q1 (20.35, 40.21) Ref. Ref. Ref.

Q2 (40.21, 47.81) 0.57 (0.30, 1.07) 0.077 0.55 (0.28, 1.08) 0.080 0.52 (0.24, 1.14) 0.086

Q3 (47.81, 57.33) 0.62 (0.34, 1.14) 0.119 0.61 (0.30, 1.22) 0.147 0.63 (0.27, 1.48) 0.223

Q4 (57.33, 91.33) 0.48 (0.30, 0.79) 0.006 0.46 (0.26, 0.82) 0.012 0.51 (0.23, 1.12) 0.079

DASHI

Continuos 0.75 (0.64, 0.88) <0.001 0.75 (0.64, 0.90) <0.001 0.79 (0.64, 0.97) 0.006

Quartile <0.001* <0.001* 0.003*

Q1 (0.53, 2.33) Ref. Ref. Ref.

Q2 (2.33, 3.08) 0.70 (0.46, 1.08) 0.103 0.70 (0.45, 1.10) 0.115 0.71 (0.43, 1.18) 0.142

Q3 (3.08, 3.90) 0.59 (0.37, 0.95) 0.033 0.59 (0.36, 0.96) 0.036 0.67 (0.35, 1.28) 0.172

Q4 (3.90, 7.53) 0.37 (0.24, 0.58) <0.001 0.37 (0.23, 0.60) <0.001 0.40 (0.21, 0.76) 0.015

DII

Continuos 1.03 (0.91, 1.17) 0.580 1.05 (0.91, 1.19) 0.484 1.00 (0.84, 1.20) 0.947

Quartile 0.526* 0.460* 0.628*

Q1 (−4.09, 0.19) Ref. Ref. Ref.

Q2 (0.19, 1.44) 0.98 (0.63, 1.54) 0.944 1.01 (0.63, 1.63) 0.962 0.99 (0.57, 1.74) 0.976

Q3 (1.44, 2.59) 1.00 (0.60, 1.68) 0.992 1.04 (0.61, 1.79) 0.877 0.91 (0.45, 1.85) 0.759

Q4 (2.59, 4.65) 1.39 (0.81, 2.39) 0.224 1.47 (0.81, 2.66) 0.185 1.29 (0.60, 2.77) 0.438

MEDI

Continuos 0.84 (0.73, 0.98) 0.017 0.85 (0.73, 0.99) 0.028 0.85 (0.71, 1.03) 0.042

Quartile 0.231* 0.232* 0.328*

Q1 (0.5, 3.0) Ref. Ref. Ref.

Q2 (3.0, 3.5) 0.90 (0.50, 1.63) 0.727 0.91 (0.49, 1.69) 0.757 0.91 (0.47, 1.76) 0.721

Q3 (3.5, 4.0) 0.81 (0.50, 1.30) 0.363 0.82 (0.48, 1.37) 0.416 0.81 (0.39, 1.67) 0.484

Q4 (4.0, 8.0) 0.63 (0.39, 1.00) 0.051 0.63 (0.39, 1.02) 0.061 0.66 (0.37, 1.18) 0.123

OR, Odds ratio; CI, Confidence interval; AHEI, Alternate Healthy Eating Index; HEI-2020, Healthy Eating Index-2020; DASHI, Dietary Approaches to Stop Hypertension index in serving 
sizes adapted from the DASH trial; DII, Dietary Inflammatory Index; MED, Mediterranean diet index in serving sizes from the PREDIMED trial. Model 1, No covariates were adjusted. Model 
2, Adjusted for age, sex, race, and education. Model 3, Adjusted for age, sex, race, education, BMI grade, smoking status, hypertension, diabetes, TG, TC, and HDL-C. *p for trends. 
Bold values indicate statistical significance.
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SSB (AHEI, MEDI), sodium (AHEI, HEI-2020, DASHI), and saturated 
fatty acids (SFA) (HEI-2020, DASHI). Previous studies have reported 
that the excessive intake of saturated fat, SSB, red and processed meat, 
and sodium promotes hepatic fat accumulation (6, 36). SSBs are rich in 
fructose and are metabolized by the liver. Compared to glucose, fructose 
is more likely to be a substrate for de novo lipogenesis, as it is metabolized 
independently of insulin and cellular energy status. The excessive intake 
of fructose therefore induces hepatic fat accumulation and further 
triggers hepatic and systemic insulin resistance (IR) via endoplasmic 
reticulum stress and other pathways (37, 38). High-sodium diets can 
also induce IR by increasing plasma free fatty acid levels and white 
adipose tissue mass. White adipose tissue secretes leptin and 
inflammatory factors that exacerbate IR and hepatic inflammation (36). 
Several cross-sectional and longitudinal studies have found a positive 
correlation between SFA and hepatic fat, and a negative correlation 
between PUFA and hepatic fat (39, 40). Compared to PUFA, SFA leads 
to hepatic steatosis by decreasing whole-body oxidation and insulin-
mediated inhibition of lipolysis upon entry into the human body (41), 
thus increasing hepatic and other visceral fat deposition, as well as 
weight gain (42). Therefore, dietary patterns that restrict SFA intake and 
promote the intake of PUFA-rich foods, such as nuts and olive oil, are 
associated with a reduced risk of MASLD.

Our study found a robust negative association between DASHI 
score and MASLD-LF risk. The DASHI is the only one of the five scores 
that were included in this study. It is calculated based on nutrients and 
emphasizes the intake of minerals and dietary fiber, in addition to the 
restriction of sodium and SFA intake (which are all mentioned in the 
other scores as well). Only a few cross-sectional studies have reported 
that higher intakes of soluble dietary fiber and magnesium are associated 
with a reduced risk of advanced fibrosis (43, 44). The mechanism by 
which DASH significantly reduces the risk of MASLD-LF compared to 
other dietary patterns remains to be elucidated in further studies. As for 
the other scores were not associated with MASLD-fibrosis for some 
reason. We also do not except the possibility that dietary factors may 
influence liver fibrosis in specific situations so that we were unable to 
find such a correlation in the overall population. For example, patients 
with MASLD who possess a susceptibility mutation in of PNPLA3 are 
also more sensitive to liver steatosis mediated by dietary factors (45), 
and further studies are needed to elaborate on the association between 
diet and liver fibrosis in this population.

The major strengths of this study include its being the first to 
analyze the associations of MASLD and MASLD-LF with five different 
dietary indices using a nationally representative sample from the most 
recent NHANES cycle, as well as applying the latest diagnostic and 
dietary index criteria to this analysis. Nevertheless, several key 
limitations should be noted as well. First, its cross-sectional design 
inherently provided only a low level of evidence to determine whether 
the associations between dietary indices and MASLD traits were 
causally related. Further studies are therefore warranted to validate 
these associations. Second, all of the dietary indices analyzed were 
calculated based on information from questionnaires, which may have 
introduced recall bias and therefore may not represent long-term 
dietary habits. Despite the large overall sample size of the study, certain 
subgroups (e.g., certain ethnic minorities and populations with lower 
educational levels) may have been under-represented, thus limiting 
accurate analyses in these subgroups. Finally, owing to the lack of 
diagnostic codes in our dataset, it was not possible to definitively 
exclude the potential presence of other comorbid diseases in the study 
population that may have also contributed to liver steatosis or 

fibrosis—such as autoimmune liver disease, Wilson’s disease, and 
hypobetalipoproteinemia. Although the determination of liver steatosis 
or fibrosis based on VCTE carries the advantages of being non-invasive 
and safe, it cannot replace liver biopsy because its accuracy is affected 
by obesity, ascites, and operator techniques. These factors may have 
introduced some degree of bias to the study. Future studies should 
consider these limitations and perform in-depth explorations of the 
mechanisms behind different dietary effects on MASLD traits.

5 Conclusion

The AHEI, HEI-2020, DASHI, DII, and MEDI nutritional indices 
were all found to be associated with the risk of developing MASLD in 
the United States population, whereas the DASHI was associated with 
the risk of MASLD-LF. Based on the results of this study, specific 
dietary habits may reduce the risk of MASLD and MASLD-
LF. However, large-sample randomized controlled trials are warranted 
to validate these findings.
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