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Background: Tamoxifen (TAM) is a widely used drug in patients with

gynecomastia and breast cancer. TAM exerts its anticancer e�ects via its

antiestrogenic activities. Unfortunately, TAM has been reported to exert

gonadotoxic e�ects on male testes. Therefore, this study was designed to

explore the possible associated mechanisms involved in TAM-induced testicular

dysfunction and the possible ameliorative e�ects of omega-3 fatty acids (O3FA).

Methodology: Animals were randomly divided into control, O3FA, TAM, and TAM

+ O3FA. All treatment lasted for 28 days.

Results: TAM exposure impaired sperm qualities (count, motility, and

normal morphology) and decreased testicular 3β-HSD and 17β-HSD. It was

accompanied by a decline in serum testosterone and an increase in estradiol,

luteinizing and follicle-stimulating hormones. These observed alterations were

associated with an increase in testicular injury markers, oxido-inflammatory

response, and mitochondria-mediated apoptosis. These observed alterations

were ameliorated by O3FA treatments.

Conclusions: O3FA ameliorated TAM-induced testicular dysfunction in male

Wistar rats by modulating XO/UA and Nrf2/NF-kb signaling and cytochrome

c-mediated apoptosis in TAM-treated rats.

KEYWORDS

anticancer drugs, nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-

kappa B (NF-κB) signaling, selective estrogen receptor modulators, testicular function,

cytochrome c

Introduction

Tamoxifen (TAM; Z-1-[4-(2-dimethylaminoethoxy)-phenyl]-1,2-diphenyl-1-butene)

is a synthetic nonsteroidal estrogen agonist-antagonist antineoplastic agent (1, 2). TAM

is the major anti-estrogen therapy for the management of hormone receptor-positive

breast cancer in pre-menopausal women (3). TAM has also been recommended for the
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management of gynecomastia in males (4). In fact, TAM is

recommended for pubertal gynecomastia once it is accompanied

by significant pain, irrespective of the disc size (5). TAM is

believed to majorly act through its inhibitory effect on estradiol

binding at the ligand-binding domain of the estrogen receptor

(ER) alpha and blockage of estrogen receptor interaction with

co-activator proteins (6, 7). However, TAM has also been shown

to act as an estrogen agonist. These dual actions on estrogen

could depend on the type of species, cell types, tissue, and

organs (8, 9). In humans and rats, TAM primarily exhibits

antiestrogenic activities with residual estrogenic effects (10). Apart

from these estrogenic effects, TAM also acts via different signaling

proteins such as protein kinase C, mitogen-activated protein

kinases, and c-jun N-terminal kinase (JNK) and also distorts

bcl-2-like protein 4 (BAX)/B-cell lymphoma 2 (BCL-2) ratio.

Furthermore, TAM stimulates the mitochondrial permeability

transition and cytochrome C release, which eventually results in

increased apoptosis (11). With the increasing usage of TAM for

the management of gynecomastia (4) and possibly benign prostatic

hyperplasia (12), attention has been drawn to its possible testicular

toxic effects.

TAM has been shown to impair spermatogenesis and

steroidogenesis (13). TAM administration has also been shown

to disrupt the hypothalamic-pituitary-gonadal (HPG)-axis

(14) responsible for maintaining testicular functions. TAM-

induced testicular toxicities could be associated with reactive

oxygen species (ROS) generation (15), which are capable

of reacting with the cellular DNA, proteins, and lipids to

form DNA-adducts, protein crosslink, and lipid peroxidation

products (16) in the testis. As a result, these activities can

create oxidative stress (redox imbalance), inflammatory

response, mitochondrial dysfunction, uncontrolled cell death,

and impair testicular cells integrity and functionality. Hence,

this study sought to establish a supplement for managing

TAM-induced gonadotoxicity in patients who require

TAM treatment.

Nutritional supplements can be recommended for the

prevention and management of toxicants-induced health

disorders. Omega-3 fatty acids (O3FA) is one of these

natural supplements that has been shown to possess various

pharmacological and biological activities (17, 18). O3FA are

essential fatty acids commonly found in plants and marine

life. They are referred to as essential fatty acids because they

cannot be synthesized in the body; they can only be obtained

from diets. O3FA are required for different functions such as

growth, brain development, vision, and fertility enhancement

(19). O3FA might be performing these functions via its anti-

inflammatory (20), anti-oxidant (21, 22), and anti-apoptotic

(23) activities.

Despite O3FA’s established protective activities, no study has

explored its possible ameliorative role on TAM-induced testicular

injury. Hence, we hypothesize that O3FA might attenuate TAM-

induced testicular toxicity in male Wistar rats. The findings from

this study will establish O3FA as a supplement that can be

introduced as an adjunct therapy together with TAM.

Materials and methods

Chemicals/reagents

TAM 20mg was purchased from Milpharm, Ltd, UK, while

O3FA was procured from Gujarat Liqui Pharmacaps Pvt. Ltd.

Vadodara, Gujarat, India. Each of the O3FA capsules consists of

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)

in 3:2. All other chemicals used in this study except otherwise

stated were of analytical grades and were procured from Sigma

(MS, USA).

Ethical consideration

The animals were humanly handled in accordance with

the Guidelines for Laboratory Animal Care published by

the National Institute of Health (NIH). The experimental

protocol complied with the US NAS guidelines, and ethical

approval was obtained from the Institutional Ethical Review

Committee (UERC/ASN/2022/2396).

Animals

Twenty-four (24) male Wistar rats (aged 10–12

weeks and weighing 180–200 g) were purchased from the

Biochemistry Department, University of Ilorin, and housed

in standard ventilated cages. The rats were allowed free

access to feed and water under a normal 12-h light and

darkness cycle.

Experimental procedure

The animals were allowed to acclimatize for 2 weeks before

they were randomly divided into 4 groups (n = 6 groups): Group

1: Control (Cntrl), vehicle-treated animals with 0.5ml of corn

oil, Group 2: animals treated with 300 mg/kg of O3FA, Group 4:

animals exposed to 0.4 mg/kg of TAM, Group 5: animals co-treated

with 0.4 mg/kg of TAM and 300 mg/kg of O3FA. All treatments

were via oral gavage and lasted for 28 days. The dose of 0.4 mg/kg

used in this study has been earlier reported as the most effective

dosage of TAM for antifertility studies (7) and is similar to that

of Motrich et al. (1) and Lee et al. (15), while the 300 mg/kg of

O3FA was the most effective dosage based on the reports from our

previous findings (19, 22).

The study was terminated 24 h after the last treatment, and

animals were sacrificed via an intraperitoneal administration of

ketamine (40 mg/kg) and xylazine (4 mg/kg) (24). Blood samples

were obtained via cardiac puncture and put into plain bottles. The

obtained blood samples were centrifuged at 3,000 rpm for 10min,

and the obtained serum was used for hormonal assay. Both testes

were removed, and the surrounding tissues were separated. The

left testes were homogenized in phosphate buffer for biochemical
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assays, while the right testes were preserved with bouin solution

for histology.

Sperm analysis

Caudal epididymis was meticulously cut into a clean petri

dish, and sperm count, motility, and abnormal sperm morphology

were estimated based on previous methods (25, 26). Briefly,

for sperm motility, cauda epididymis was cut with surgical

blade; the spermatozoa released onto a sterile glass slide and

then diluted with pre-warmed 2.9% sodium citrate dehydrate

solution. The glass slide was covered with a coverslip, and sperm

motility was evaluated under microscope by examining at least

ten microscopic fields at ×40 magnification. For sperm count,

the cauda epididymis was gently crushed in normal saline and

filtered with a nylon mesh to obtain the sperm suspension.

Five µL of the sperm suspension was mixed with 95 µl of

0.35% formalin containing 0.25% trypan blue and 5% NaHCO3.

A fraction (10 µl) of the diluted spermatozoa was placed on

the haemocytometer, allowed to sediment for 5min, and then

counted using the Improved Neubauer chamber and a light

microscope at ×40. For sperm morphology, The abnormalities

in the head, middle-piece and tail (tailless head, bent mid piece,

curved mid-piece, headless tail, bent tail, curved tail, looped tail)

were counted and classified as documented by Bloom (27) and

Parkinson (28).

Steroidogenic enzymes

Testicular 3 beta-hydroxysteroid (3β-HSD) (29, 30) and 17

beta-hydroxysteroid (17 β-HSD) dehydrogenase (30, 31) were

estimated as previously established respectively. “For 3β-HSD,

testicular tissue was homogenized, and the supernatant was

carefully separated. 1ml of the supernatant was mixed with 1ml

of 100 µmol sodium pyrophosphate buffer (pH 8.9), 30 µg of

dehydroepiandrosterone in 40 µl of ethanol, and 960 µl of 25%

BSA. The mixture was then incubated and 0.5 µmol of NAD

was added. The absorbance was read spectrophotometrically at a

wavelength of 340 nm using a blank as reference. For testicular 17β-

HSD, 1ml of the supernatant obtained from the testicular sample

was mixed with 1ml of 440 µmol sodium pyrophosphate buffer

(pH 10.2), 40 µl of ethanol containing 0.3 µmol of testosterone,

and 960µl of 25% BSA. Themixture was incubated and 1.1µmol of

NAD was added in a U 2,000 spectrophotometer cuvette at 340 nm

against a blank.”

Reproductive hormones

The serum levels of luteinizing hormone (LH), follicle-

stimulating hormone (FSH), testosterone, and estradiol (Bio-

Inteco, UK) were determined using an ELISA method according

to the manufacturer’s description.

Testicular histology

Histology was performed according to the established method

(32, 33). The preserved testis in bouin solution was dehydrated

using ethanol series and cleared with toluene. The cleared testes

were embedded and blocked in paraffin wax. After that, 5µm thick

paraffin sections were stained with hematoxylin and eosin (H&E).

Testicular biopsy/Johnsen score was estimated as previously

described (30, 34).

Testicular injury markers

Testicular lactate dehydrogenase (LDH) and Gamma-glutamyl

transferase (GGT) activities were determined as described by the

manufacturer (Agape Diagnostics Ltd.). Additionally, testicular

lactate concentration was evaluated based on the manufacturer’s

guideline (EnzyChrom, ELAC-100).

Oxidative stress markers

Testicular malondialdehyde (MDA) level was assayed as

previously reported (35, 36). In addition, testicular glutathione

(GSH), glutathione peroxidase (GPx), Glutathione-S-transferase

(GST), superoxide dismutase (SOD), and catalase (CAT) activities

were assayed based on established methods (30, 37, 38).

“Malondialdehyde (MDA), a marker of oxidative stress, was

determined as previously documented based on the generated

amount of thiobarbituric acid reactive substance (TBARS) during

lipid peroxidation. This method involves the reaction between

2- thiobarbituric acid (TBA) and malondialdehyde, a byproduct

of lipid peroxidation, by analyzing the pink chromogen complex

[(TBA) 2-malondialdehyde adduct] formed upon heating at acidic

pH. The sample (200 µl) was first treated with 500 µl of

Trichloroacetic acid (TCA) to remove proteins and centrifuged at

3,000 rpm for 10min. Next, 1ml of 0.75% TBA was added to 0.1ml

of the supernatant and heated in a water bath at 100◦C for 20min,

then cooled with ice water. The absorbance of the sample/standard

was then read at 532 nm using a spectrophotometer and compared

to a blank. The concentration of TBARS was determined by

extrapolating from a standard curve.

For GSH, an aliquot of the sample was deproteinized by adding

an equal volume of 4% sulfosalicylic acid, and was centrifuged at

4,000 rpm for 5min. 0.5ml of the supernatant was then added to

4.5ml of Ellman’s reagent. A blank was prepared by mixing 0.5ml

of the diluted precipitating agent with 4.5ml of Ellman’s reagent.

The level of GSH was calculated by measuring the absorbance at

412 nm.

For catalase, 1:29 dilution of the sample was made by mixing

1ml of the supernatant of the testicular homogenate with 19ml

of diluted water. 4ml of H2O2 solution (800 µmoles) and 5ml

of phosphate buffer were added to a 10ml flat bottom flask.

1ml of the diluted enzyme preparation was mixed into the

reaction mixture by gentle swirling at 37◦C. Samples of the

reaction mixture were withdrawn at 60 s intervals, and the H2O2

content was determined by blowing 1ml of the sample into 2ml
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FIGURE 1

E�ect of O3FA on sperm (A) count (B) motility (C) abnormal morphology in TAM exposed rats. aP < 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs.

TAM. Data were analyzed by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega-3 fatty acids; TAM, Tamoxifen.

dichromate/acetic acid reagent. Catalase levels in the sample were

determined by comparing the absorbance at 653 nm to that of a

certified catalase standard.

For GPx, the sample was incubated at 37◦C for 3min, then

0.5ml of 10% trichloroacetic acid (TCA) was added and themixture

was centrifuged at 3,000 rpm for 5min. The supernatant was then

mixed with 2ml of phosphate buffer and 1ml of 5
′

- 5
′

- dithiobis-

2-dinitrobenzoic acid (DTNB) solution, and the absorbance was

measured at 412 nm using a blank as reference. The GPx activity

was determined by plotting a standard curve and determining the

concentration of remaining GSH from the curve.

The activity of glutathione-S-transferase in testicles was also

measured. This method utilizes the enzyme’s high activity with 1-

chloro-2,4-dinitrobenzene as a substrate. The assay was performed

at 37◦C for 60 s and the absorbance was read at 340 nm after

comparing it with a blank sample.

For SOD, a 1:10 dilution of the sample was made using 1ml

of sample and 9ml of distilled water. 0.2ml of the diluted sample

was added to 2.5ml of 0.05M carbonate buffer (pH 10.2) and

the reaction was initiated by adding 0.3ml of freshly prepared

0.3mM adrenaline. The mixture was mixed and the increase in

absorbance was monitored at 480 nm every 30 s for 150 s using a

spectrophotometer. A reference cuvette containing 2.5ml buffer,

0.3ml substrate (adrenaline), and 0.2ml water was also used.”

Inflammatory markers

Testicular tumor necrotic factor-alpha (TNF-α) and interleukin

6 (IL-6) were assayed using ELISA kits (Solarbio, China). Also,

testicular myeloperoxidase (MPO) was estimated according to

previously reported methods (30, 39), while testicular nitric

oxide (NO) concentration was determined based on the Griess

reaction (40).

Briefly, “the method for measuring MPO is based on the

ability of myeloperoxidase to catalyze the oxidation of guaiacol

to oxidized guaiacol in the presence of hydrogen peroxide. The

oxidized form of guaiacol has a brown color, which is measured
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FIGURE 2

E�ect of O3FA on testicular (A) 3β-HSD (B) 17β-HSD in TAM exposed rats. aP < 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were

analyzed by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega-3 fatty acids; TAM Tamoxifen; 3β-HSD, 3 beta-hydroxysteroid dehydrogenase;

17β-HSD, 17 beta-hydroxysteroid dehydrogenase.

FIGURE 3

E�ect of O3FA on serum (A) Luteinizing hormone (LH) (B) Follicle stimulating hormone (FSH) (C) testosterone (D) estradiol in TAM exposed rats. aP <

0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were analyzed by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega-3 fatty

acids; TAM, Tamoxifen.
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FIGURE 4

Testicular histology. Control, O3FA, and TAM + O3FA: section shows the testicular tissue composed of coils of seminiferous tubules (ST) with a

defined lumen (L) containing sperm cells (SP), the seminiferous tubules contained germinal epithelium with germ cells at varying degree of

maturation (line). The interstitium, contained blood vessel (arrow) which is free of collection and contained interstitial cells of Leydig (arrow head)

appearing unremarkable. TAM, The blood vessels (black star) within the interstitium (plain star) appeared congested, and the interstitial cells of Leydig

(arrow head) appears unremarkable.

spectrophotometrically at a wavelength of 470 nm. The intensity of

the color produced is proportional to the concentration of oxidized

guaiacol produced in the reaction, thus providing a measure of

myeloperoxidase activity.

For NO, a mixture of 100 µl of Griess reagent, 300 µl

of a nitrate-containing testicular homogenate, and 2.6ml

of deionized water were incubated for 30min at room

temperature in a spectrophotometer cuvette. A blank

was prepared by mixing 100 µl of Griess reagent and

2.9ml of deionized water. The absorbance of the nitrate-

containing sample was measured at 548 nm in relation to the

reference sample.”

Xanthine oxidase/uric acid

The activities of testicular xanthine oxidase (XO) were

determined based on the method of Zahide and Bahad (41), while

a colorimetric method was used for uric acid (UA) concentration

(Precision, UK).

Transcriptional factors

Testicular nuclear factor kappa B (NFkB) and nuclear

factor erythroid 2-related factor 2 (Nrf2) levels were
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determined using the ELISA method (Elabscience Biotechnology

Inc., USA).

Apoptotic markers

Testicular BCl-2, cytochrome C, and caspase 3 activities

were determined by an ELISA method as described by the

manufacturer (Elabscience Biotechnology Inc., USA). At the same

time, the testicular DNA Fragmentation Index (DFI) was estimated

according to the method of Perandones et al. (42). Five ml each

of testicular homogenate supernatant and pellet were treated with

3ml of freshly prepared diphenylamine (DPA) reagent for color

development. The solutionwas incubated at 37◦C for 16 to 24h. The

absorbance of light green/yellowish-green supernatant was read

spectrophotometrically at 620 nm. The percentage of fragmented

DNA was calculated by dividing the absorbance of the homogenate

supernatant by the sum of the absorbance of the pellet and the

absorbance of the supernatant.

Statistical analysis

Data were analyzed using a one-way analysis of variance

(ANOVA) followed by Tukey’s post hoc test using GraphPad

PRISM 5 software, and they were reported as mean ± standard

deviation. Also, all P values below 0.05 were classified as

statistically significant.

Results

As shown in Figure 1, TAM exposure led to a significant

decrease in sperm count (p < 0.0001), motility (p < 0.0001), and

an increase in abnormal morphology (p < 0.0001) compared with

the control and O3FA groups. These impaired sperm qualities were

ameliorated by O3FA treatment.

In the same vein, TAM administration impaired steroidogenic

enzymatic activities, evidenced by a significant decrease in 3β-

HSD (p < 0.0001) and 17β-HSD (p < 0.0001) compared with

the control and O3FA groups (Figure 2). These observed decreases

were abrogated in animals in the TAM+ O3FA group.

Furthermore, compared with the control groups, animals

administered with TAM had a significant increase in serum LH

(p < 0.0001), FSH (p < 0.0001), and estradiol and a decrease in

testosterone (Figure 3). TAM and O3FA co-administration blunted

these observed hormonal imbalances.

Histopathological findings revealed features consistent with

normal testicular tissue of animals in the control, O3FA, and

TAM + O3FA groups, while their counterparts in the TAM group

exhibited histological features that suggest cellular reaction to

injury and inflammatory response (Figure 4). Also, a decrease in

Johnsen score was observed in TAM-exposed animals compared

with the controls (Figure 5). This alteration was ameliorated in

animals that received TAM and O3FA co-treatment.

Additionally, TAM administration led to a significant increase

in testicular lactate, LDH, and GGT and a decrease in testicular

SDH (Figure 6) compared with the controls. These observed

FIGURE 5

E�ect of O3FA on Johnsen Score in TAM exposed rats. aP < 0.05 vs.

control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were analyzed

by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega 3 fatty

acids; TAM, Tamoxifen.

increases in testicular injury markers were ameliorated in animals

treated with TAM and O3FA.

Also, Figure 7 showed that TAM administration led to a

significant increase in testicular MDA and a decrease in testicular

SOD, CAT, GSH, GPX, and GST. This observed redox imbalance

was abrogated in animals that received O3FA and TAM co-

treatment.

Similarly, TAM treatment significantly led to an increase

in testicular TNF-α, IL-6, MPO, and NO compared with

the control groups (Figure 8). These observed TAM-induced

inflammatory responses were ameliorated in animals treated with

TAM and O3FA.

Furthermore, testicular XO and UA were significantly elevated

in animals treated with TAM compared with the control (Figure 9).

These observed TAM-induced XO/UA signaling distortions were

blunted in animals treated with TAM and O3FA.

Additionally, TAM administration led to a significant decrease

in testicular Nrf2 and an increase in testicular Nf-κB compared

with the control groups (Figure 10). This observed TAM-induced

Nrf2/Nf-κB signaling distortion in TAM-treated animals was

ameliorated in their counterparts treated with TAM and O3FA.

Finally, TAM exposure led to a significant increase in testicular

cytochrome C, BCl-2, caspase 3, and DFI compared with the

animals in the control group (Figure 11). TAM and O3FA co-

treatment blunted this observed increase in apoptotic markers.

Discussion

It has been sufficiently established that estrogen plays a major

role in male reproductive system development and maintenance.

In fact, the presence of ER α and β in the testicular (43, 44)
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FIGURE 6

E�ect of O3FA on testicular (A) lactate (B) lactate dehydrogenase (LDH) (C) Gamma-glutamyl transferase (GGT) (D) sorbitol dehydrogenase (SDH) in

TAM exposed rats. aP < 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were analyzed by one way ANOVA and Tukey’s post-hoc test.

O3FA, Omega 3 fatty acids; TAM, Tamoxifen.

and sperm cells (45, 46) indicates the cognate role of estrogen in

testicular functions. Supportively, Korach (47) reported impaired

testicular functions in ER α and β knockout mice. TAM is a

potent nonsteroidal antiestrogen that has been recommended

for managing breast cancer and gynecomastia. In fact, it has

been recommended for treating idiopathic oligospermia despite

insufficient data on its effectiveness (48, 49). However, these

authors did not compare their findings with a placebo control,

which is a fundamental aspect to consider when testing the real

therapeutic effect of a drug. In fact, Rolf et al. (50) concluded

that the beneficial role of TAM may not justify its side effects

in healthy males after reviewing 29 clinical trials involving 1,586

patients. TAM has been reported to negatively impact male fertility

status in different strains, including rats, monkeys, and dogs (1).

Although different studies have studied the antiestrogenic and

estrogenic effects of TAM, information on its effect on oxido-

inflammatory response and apoptosis on testicular tissue is still

lacking. Hence, we investigated the putative gonadotoxic effects

of TAM and the possible role of redox imbalance, inflammation,

and apoptotic response in TAM-induced testicular dysfunction.

Also, we explored the possible ameliorative effect of O3FA on

TAM-induced gonadotoxicity.

Our findings revealed that O3FA treatment inhibited the

impaired sperm quality, steroidogenesis, HPG-axis, and surge

in testicular injury markers following TAM exposure. These

histological and biochemical events were accompanied by O3FA-

induced amelioration of TAM-mediated distortion of Nrf2/Nf-κb

signaling and the consequent redox balance, the suppression of

inflammatory response, and cytochrome C-mediated apoptosis.

In this study, TAM administration led to a significant

decrease in sperm motility, count, and normal morphology.

This impaired sperm quality was accompanied by a significant

decline in serum testosterone and steroidogenic enzymatic

activities, which are in tandem with previous reports (13).

Different mechanisms might be responsible for the observed

spermatogenesis and steroidogenesis impairment. TAM might

impair testicular function by disrupting the HPG axis activities

or via direct testicular damage. In male reproduction, the

hypothalamus is responsible for secreting GnRH, which stimulates

LH and FSH secretion from the pituitary gland, which also

stimulates the testis. The secreted LH stimulates steroidogenesis

(testosterone and estrogen secretion), while FSH stimulates

spermatogenesis. Additionally, testosterone and estrogen also play

a dominant role in spermatogenesis. Testosterone and estrogens,
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FIGURE 7

E�ect of O3FA on testicular (A) malondialdehyde (MDA) (B) superoxide dismutase (SOD) (C) catalase (CAT) (D) glutathione (GSH) (E) glutathione

peroxidase (GPx) (F) Glutathione-S-transferase (GST) in TAM exposed rats. aP < 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were

analyzed by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega 3 fatty acids; TAM, Tamoxifen.

in turn, inhibit the synthesis of the gonadotropins at the level of the

pituitary or directly inhibit GnRH secretion from the hypothalamus

(51). Thus, the disruption of the HPG axis activities at any

level will directly impair testicular functions (spermatogenesis and

steroidogenesis). The fact that TAM exposure led to a significant

increase in gonadotropins (LH and FSH) might suggest that
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FIGURE 8

E�ect of O3FA on testicular (A) tumor necrotic factor-alpha (TNF-α) (B) interleukin 6 (IL-6) (C) myeloperoxidase (MPO) (D) nitric oxide (NO) in TAM

exposed rats. aP < 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were analyzed by one way ANOVA and Tukey’s post-hoc test. O3FA,

Omega 3 fatty acids; TAM, Tamoxifen.

FIGURE 9

E�ect of O3FA on testicular (A) Xanthine oxidase (XO) (B) uric acid (UA) in TAM exposed rats. aP < 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs.

TAM. Data were analyzed by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega 3 fatty acids; TAM, Tamoxifen.

TAM-induced testicular dysfunction could be independent of the

HPG axis activities rather than via direct testicular damage since

circulatory LH was unable to stimulate the gonad (testis) to

synthesize testosterone.

The fact that TAM exposure disrupted the normal testicular

cytoarchitecture supports our claim that TAM might impair

testicular function via direct testicular damage. Also, the increase in

testicular injury markers (Lactate, LDH, GGT, and SDH) following
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FIGURE 10

E�ect of O3FA on testicular (A) Nrf2 (B) Nf-kb in TAM exposed rats. aP < 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were analyzed

by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega 3 fatty acids; TAM, Tamoxifen.

TAM exposure further substantiates our claim. Additionally,

spermatogenesis is a complex process that requires energy balance

(52). Unfortunately, the observed increase in lactate is a marker

of energy imbalance (53), which is an indication of impaired

spermatogenesis and testicular degeneration (22). These findings

corroborated previous findings of Marek et al. (54), who reported

that TAM activities are associated with energy imbalance and an

increase in lactate.

This direct testicular damage could result from oxidative

stress or redox imbalance, which plays a key role in testicular

functions (55, 56). Oxidative stress occurs when there is

an imbalance between pro-oxidant generation and antioxidant

activities. Oxidative stress, on the other hand, can stimulate

different transcription factors to activate inflammatory pathways

(57, 58). TAM treatment could impair testicular function via

its oxido-inflammatory activities evidenced by an increase in

testicular MDA, IL-6, TnF-a, MPO, and NO and a decrease in

CAT, SOD, GSH, GST, and GPx. These observed TAM-induced

oxido-inflammatory responses could be mediated by the increase

in XO/UA signaling. An increase in XO and the consequent

increase in UA has been implicated in lipid peroxidation (59).

Although UA is an antioxidant, it becomes a pro-oxidant once

produced in excess (60), thereby generating excessive ROS.

Excessive ROS can overwhelm Nrf2 activities, the endogenous

transcription factor responsible for maintaining redox balance (35).

The consequent redox imbalance might activate Nf-κb, responsible

for increasing pro-inflammatory gene induction, leading to an

inflammatory response (61). The increase in Nf-κb will further

inhibit Nrf2 activities, thereby leading to a further decline in

the endogenous antioxidant activities. This observed XO/UA

and Nrf2/Nf-κb-mediated oxido-inflammatory response following

tamoxifen exposure agreed with the study of Ahmed et al. (62) and

Schieber and Chandel (63), who reported that TAM can impair

cellular functions via oxidative stress.

Additionally, excessive oxidative stress and inflammatory

response can collaborate to stimulate apoptosis (64), which

is another key factor that can be responsible for TAM-

induced testicular dysfunction. The observed increase in testicular

cytochrome c following TAM exposure could account for the

observed TAM-induced apoptotic response. In mammals, the

cytochrome c-initiated pathway is a key caspase activation pathway

(65). Various apoptotic stimuli can stimulate the release of

cytochrome c from the mitochondria, leading to a series of

biochemical reactions that activate caspase and the consequent

cell death. Mitochondria plays a major role in the redistribution

of cytochrome c (66). Also, the anti-apoptotic protein (BCl-2)

located predominantly at the outer mitochondria membrane assists

in blocking 1ψm reduction and cytochrome c release (67). Hence,

during mitochondrial dysfunction, there is a leakage of cytochrome

c from the mitochondria and a decrease in BCl-2 (66), thereby

leading to caspase 3- 3-mediated apoptosis (68). Hence, it is

plausible that the observed increase in testicular caspase 3 and

DFI and decrease in testicular BCl-2 might be associated with

the leakage of cytochrome c from the mitochondria of TAM-

treated rats. Our guess that TAM disrupts testicular function

via mitochondria dysfunction-mediated apoptosis corroborates the

findings of Unten et al. (69) and Nazarewicz et al. (70).

Another key finding from this study is the therapeutic

potential of O3FA against TAM-induced testicular dysfunction.

This study revealed that O3FA ameliorated TAM-induced

testicular dysfunction by decreasing testicular injury markers and

oxido-inflammatory and apoptotic response, thus improving

spermatogenesis, sperm quality, hormone synthesis, and

testicular histoarchitecture. These findings agreed with

previous studies that established the antioxidant (71), anti-

inflammatory (22), and anti-apoptotic (72) effects of O3FA.

Hence, it is safe to infer that the increase in testicular SOD,

CAT, GSH, GPX, and GST and decrease in TNF-a, IL-6, MPO,

and NO of TAM exposed rats showed that O3FA –driven

repression UA release via XO activities downregulation probably

modulated the Nrf2/Nf-κb signaling, thereby inhibiting the

transcription of genes responsible for encoding pro-inflammatory
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FIGURE 11

E�ect of O3FA on testicular (A) cytochrome c (B) B-cell lymphoma 2 (BCl-2) (C) caspase 3 (D) DNA fragmentation index (DFI) in TAM exposed rats. aP

< 0.05 vs. control, bP < 0.05 vs. O3FA; cP < 0.05 vs. TAM. Data were analyzed by one way ANOVA and Tukey’s post-hoc test. O3FA, Omega 3 fatty

acids; TAM, Tamoxifen.

cytokines and oxidative response. Furthermore, the observed

increase in BCl-2 and decrease in caspase 3 and DFI in

O3FA and TAM co-treated rats could also be associated

with O3FA-associated decline in cytochrome c release from

the mitochondria.

Conclusion

The findings from this study revealed that O3FA

ameliorated impaired sperm quality, hormonal imbalance,

oxido-inflammatory response, and apoptosis by modulating

XO/UA and Nrf2/NF-kb signaling and cytochrome c-mediated

apoptosis in TAM-treated rats. These findings suggests the

combination therapy with TAM and O3FA in the management

of gynecomastia and breast cancer, since O3FA can help

alleviate the side effects associated with TAM with respect to

male fertility.

Limitations

This study was conducted in healthy animals and we suggest

a replica of it in gynecomastia subjects receiving TAM treatment.

Additionally, downstream target genes responsible for maintain

oxido-inflammatory response and apoptosis were not estimated

using real-time PCR, western blot, immunohistochemistry,

or TUNEL analysis (for apoptosis). However, the observed

modulation of XO/UA and Nrf2/NF-kb and cytochrome c-

mediated apoptosis accompanied by oxido-inflammatory response

suggests the involvement of these pathways in TAM-induced

testicular dysfunction.
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