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Backgrounds: Growing evidence has indicated that the nutritional quality of 
dietary intake and alterations in blood metabolites were related to human brain 
activity. This study aims to investigate the causal relationship between dietary 
component intake, blood metabolites, and delirium risks.

Methods: We performed Mendelian randomization (MR) analysis using 
genetic variants as instrumental variables for dietary component intake, blood 
metabolites, and delirium. Inverse variance weighting, maximum likelihood, 
weighted median, weighted mode, and MR-Egger methods were used for 
statistical analyses.

Results: We found that genetic prediction of salt added to food (odds ratio 
[OR] 1.715, 95% confidence interval [CI] 1.239–2.374, p = 0.001) significantly 
increased the risks of delirium, while low-fat polyunsaturated margarine used 
in cooking (OR 0.044, 95%CI 0.004–0.432, p = 0.007), cheese intake (OR 0.691, 
95%CI 0.500–0.955, p = 0.025) and coffee intake (OR 0.595, 95%CI 0.370–
0.956, p = 0.032) was suggestively associated with decreased risks of delirium. 
Moreover, increased blood 1-stearoylglycerol levels (OR 0.187, 95%CI 0.080–
0.435, p = 9.97E-05) significantly contributed to reducing the risks of delirium. 
3-methoxytyrosine (OR 0.359, 95%CI 0.154–0.841, p = 0.018) also has the 
potential to decrease the risk of delirium.

Conclusion: Our study highlights the potential causal effect relationships of 
dietary component intake and blood metabolites on the risk of delirium, which 
potentially provides novel insights into targeted dietary prevention strategies or 
biomarkers for delirium.
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Introduction

Delirium refers to a brain syndrome, with sudden declined mental 
status characterized by consciousness disorders, disorganized 
behavior, and inattention (1, 2). It is a common complication in 
hospitalized older patients with an estimated incidence of 8–51% (1, 
3, 4). It prolongs hospitalization duration and increases mortality and 
the risk of long-term cognitive impairment (5–7). Delirium is 
associated with various underlying factors including advanced age, 
preexisting diseases, metabolic disorders, inflammation, genetic 
factors, altered sensory function, and so on (8, 9). Although delirium 
is preventable, most of the current strategies for delirium are primarily 
used to control the symptoms and treat the underlying conditions, 
which are less efficacious (10, 11). Therefore, it is urgent to identify 
potential causal molecular targets or novel preventive strategies for 
delirium to improve patient outcomes.

Human dietary intake habits and blood metabolites are believed 
to be  closely linked to brain function and mental health. Dietary 
intake habits have significant or causal influences on the development 
of most neurological and mental disorders (12–14). Good dietary 
intake habits such as low-fat, high-fiber diets rich in antioxidants may 
contribute to preventing and mitigating brain injury and 
neuroinflammation (13–15). Daily micronutrient intake deficiency 
also significantly increases the risk of developing delirium (16). Since 
dietary intervention is modifiable and cost-effective, with higher 
safety and better compliance, it is likely to be a promising strategy for 
preventing and managing delirium. In addition, recent observational 
studies have shown that the serum metabolites including ω3 and ω6 
fatty acids, tricarboxylic cycle intermediates, and phosphatidylinositol 
were linked to the development of postoperative delirium (17, 18). 
Indole-3-propionic acid was recently reported to protect against the 
development of postoperative delirium and relieve neuronal damage 
(19). However, to date, studies on the causal effects of dietary intake 
and blood metabolites on delirium risks remain to be  refined. 

Performing research on the causal relationship between them could 
help to provide opportunities for dietary and metabolic interventions.

Mendelian randomization (MR) methods use single nucleotide 
polymorphisms (SNP) as instrumental variables for inferring causal 
effects. Since irreversibility of heredity and SNP are randomly assigned 
at the time of conception, MR can help overcome the limitations of 
traditional epidemiological or observational studies, including 
confounding and reverse causation (20). MR is widely used to study 
disease pathogenesis and potential strategies for prevention and 
treatment, and they have found that nutrients and metabolic 
disturbances are strongly associated with neurological disorders (5, 
12, 21, 22). The previous MR studies have been extremely reliable in 
assessing causality, we would like to use it to investigate the association 
of dietary component intake and blood metabolites with delirium.

Methods

Study design

The study flow is depicted in Figure 1. Two-sample MR analysis was 
implemented to assess the potential causal relationship between dietary 
component intake, blood metabolite levels, and risks of delirium. The 
MR analysis is according to the following three assumptions to mitigate 
the bias; (1) instrumental variables (IVs) are strongly associated with 
the exposure; (2) IVs are not correlated with the confounders; (3) IVs 
can only affect the outcome through the exposure.

Data source

Summary-level genome-wide association study (GWAS) data for 
dietary component intake phenotypes were derived from 456,019 
individuals of European ancestry in the UK Biobank (23). Refer to the 
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component intake phenotypes in the study of Zhang et  al. (24), 
we included beef intake, poultry intake, raw vegetable intake, fresh fruit 
intake, non-oily fish intake, oily fish intake, processed meat intake, pork 
intake, mutton intake, cheese intake, milk type used (full cream), cereal 
intake, bread intake, salt added to food, water intake, tea intake, coffee 
intake, and type of fat/oil used in cooking. During dietary assessment 
within the UK Biobank study, food and beverage intake over the 
preceding year was evaluated using a touchscreen food frequency 
questionnaire (FFQ), while specific foods and beverages consumed with 
quantities were assessed through a 24-h dietary recall questionnaire 
(Diet WebQ), which was administered on four occasions. Detailed 
information about these questionnaires can be found publicly (Data 
field 113241: Touchscreen questionnaire ordering, validation, and 
dependencies1; Data field 20090: Online 24-h dietary recall 

1 https://biobank.ndph.ox.ac.uk/ukb/refer.cgi?id=113241

questionnaire2). The data considered for each dietary pattern encompass 
both integer variables (e.g., average daily cups of coffee consumption) 
and categorical variables (e.g., poultry consumption frequency). 
Unreasonable responses were excluded during data submission.

The summary statistics data for the levels of endogenous 
metabolites were obtained from a meta-analysis of 7 European 
populations, as published by Shin et al. (25). The dataset includes a 
total of 7,824 individuals of European ancestry. Following rigorous 
quality control procedures, 248 annotated blood metabolites 
were included.

As for some key metabolites related to low-fat polyunsaturated 
margarine, summary statistics of plasma concentrations of total fatty 
acids (Total-FA), omega-3 fatty acids (Omega-3), omega-6 fatty acids 
(Omega-6), polyunsaturated fatty acids (PUFA), monounsaturated 

2 https://biobank.ndph.ox.ac.uk/ukb/refer.cgi?id=118240

FIGURE 1

Flow chart of the study design.
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fatty acids (MUFA), total cholesterol (Total-C), total triglycerides 
(Total-TG), LDL cholesterol (LDL-C), total lipids (Total-L), and HDL 
cholesterol (HDL-C) are from UK Biobank3 (dataset: met-d, 
n  = 114,999 ~ 115,078). Blood levels of coffee-related metabolites 
(caffeine, xanthine, theobromine, and theophylline) are from 
xenobiotics GWAS by Shin et  al. (25) of European populations 
(n = 7,824).

Summary statistics data for delirium were obtained from the 
ninth edition of the FinnGen biobank, a prospective cohort study 
involving 359,699 individuals (26). Delirium patients (n = 3,039) were 
screened using ICD10 and ICD9 diagnosis codes, including dementia 
combined with delirium, postoperative delirium, and other 
unspecified delirium cases, while alcohol and other psychoactive 
drug-induced delirium subtypes were omitted.

Instrumental variables selection

We conducted several quality control steps to select eligible IVs. 
Candidate IVs from the GWAS results were included using a threshold 
of p < 1e−5 (27). The specific steps for selection were as follows: (1) To 
avoid linkage disequilibrium (LD), independent SNPs were retained 
adhering to criteria of R2 < 0.001, and window size of 10,000 kb. (2) 
The F-statistic, typically used to evaluate the strength of the correlation 
between each IV and exposure, where weak IVs with an F < 10 were 
excluded (28). The F-statistic was calculated using the formula 1: 
F = R2 (n-k-1)/k(1-R2), where R2 is the variance of exposure explained 
by the IV, n is the sample size, and k is the number of IVs. For 
metabolites, formula 2: F = (PVE(n-k-1))/(1-PVE) k was used, where 
PVE is the proportion of exposure variance for the IV. By setting k 
equal to 1, the PVE for each IV was calculated using the formula 3: 
PVE = (2*β2*MAF*(1-MAF))/[2*β2*MAF*(1-MAF) + 2*Se2*n*MAF* 
(1-MAF)] (25), where MAF is the minor allele frequencies. (3) 
Harmonizing the alleles and effects between the exposures and 
outcome and overlapped SNPs were excluded. (4) We searched SNPs 
with positive results using PhenoScanner and found no SNPs with 
potential confounding effects on delirium. (5) The Mendelian 
Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) 
(29) test was applied to identify potential horizontal pleiotropy. 
We  mitigated the influence of pleiotropy by removing outliers, 
specifically SNPs with a global test p value under 0.05  in the 
MR-PRESSO test. Following removing these outliers, we conducted a 
re-analysis to ensure the accuracy of our results.

MR analysis

We mainly focus on two relationships: between dietary component 
intake and delirium, and between blood metabolites and the risks of 
delirium. First, after rigorously screening quality IVs, a two-sample 
MR with at least three IVs was performed to explore potential causal 
relationships. The inverse-variance weighted (IVW) method was used 
as the primary MR analysis to estimate the causal effects. Then, other 
four methods were used for supplementary analyses, including the 

3 https://gwas.mrcieu.ac.uk/datasets

weighted median estimator (WME), maximum likelihood estimator 
(MLE), weighted mode-based estimator, and MR-Egger regression. 
Estimates are presented as odds ratio (OR) and 95% confidence 
intervals (CIs) for a single unit increment for each trait. False discovery 
rate (FDR) was used to adjust for multiple-testing correction. Results 
with p < 0.05 but above the FDR corrected significance threshold were 
considered suggestive evidence for a potential association.

To ensure the robustness of the results and to identify potential 
bias factors such as pleiotropy and data heterogeneity, we conducted 
additional sensitivity analysis. The sensitivity analysis encompassed a 
pleiotropy test, a heterogeneity test, and a leave-one-out method. 
MR-PRESSO method was used in the pleiotropy test, it was considered 
that the horizontal pleiotropy of the IVs would not significantly 
influence the causal inference if the intercept did not exceed 0.1 and 
the corresponding p value was above 0.05. The heterogeneity test was 
used to identify differences across the IVs. Additionally, the leave-
one-out analysis was conducted to determine whether the MR 
estimate was driven or biased by a single SNP.

Finally, we performed reverse MR analysis on significant results 
to ensure the validity of the results and to avoid confusion in the 
causal interpretation.

Software

Data cleaning and structuring were conducted using Jupyter 
Notebook in Python (version 3.0). All analyses were performed using 
the “TwoSampleMR” package and R Software (version 4.2.1).

Results

Selection of instrumental variables

The characteristics of the selected IVs for each dietary component 
intake are listed in Supplementary Table S1. The ultimate counts of 
2,244 SNPs were selected as IVs for subsequent MR analyses between 
dietary component intake and delirium risks. Supplementary Table S2 
provides the details of the selected IVs for each metabolite, and a total 
of 6,277 SNPs were selected as IVs in subsequent MR analyses.

In all analyses for delirium, the F-statistics of the IVs were > 10, 
indicating less possibility of weak instrument bias.

Dietary component intake on delirium

Using the IVW method (Figure 2), we found that host-genetic-
driven salt added to food (OR IVW = 1.715 [95%CI: 1.239–2.374], 
p = 0.001, FDR = 0.023) was significantly associated with a higher risk 
of delirium. There was evidence for a suggestive association between 
genetically predicted low-fat polyunsaturated margarine used in 
cooking (OR IVW = 0.044 [95%CI: 0.004–0.432], p = 0.007) and cheese 
intake (OR IVW = 0.691 [95%CI: 0.500–0.955], p = 0.025) with 
decreasing risk of delirium. We also found that genetically predicted 
coffee intake (OR IVW = 0.595 [95%CI: 0.370–0.956], p = 0.032) was 
potentially associated with a lower risk of delirium. Consistent causal 
effects were observed for the above associations across different 
supplementary analyses including MR-Egger, MR-PRESSO, maximum 
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likelihood, and weighted median methods, with similar directions and 
comparable magnitudes of effect (Figure  3 and 
Supplementary Table S3). We  next performed heterogeneity and 
horizontal pleiotropy tests as sensitivity analyses and found no 
significant pleiotropy and heterogeneities (p > 0.05, 
Supplementary Table S3). Besides, the intercept of the MR-Egger 
regression approached 0, and the p value of the MR-Egger and 
MR-PRESSO global test was above 0.05, indicating no evidence of 
horizontal pleiotropy. The leave-one-out analysis showed the above-
identified causal associations with no sensitivity to any single IVs 
(Supplementary Figures S1–S4).

Blood metabolites on delirium

Initially, we identified eight annotated metabolites potentially to 
be  associated with the risks of delirium (p  < 0.05). Then, these 
associations are further validated using supplementary analyses. 
Finally, two metabolites with causal associations were validated in 
more than two MR methods (Supplementary Table S4). Genetically 
predicted 1-stearoylglycerol (OR IVW = 0.187 [95%CI: 0.080–0.435], 
p = 9.97E-05, FDR = 0.025) was associated with decreased risks of 
delirium. Besides, the host-genetic-driven 3-methoxytyrosine (OR 
IVW = 0.359 [95%CI: 0.154–0.841], p = 0.018) was also suggestive to 
be related to a decreased risk of delirium (Figure 4). Furthermore, 
sensitivity analyses showed no significant horizontal pleiotropy and 
heterogeneities (Supplementary Table S4). The scatter plots of the SNP 
effect sizes for the above associations are shown in Figures  5A,B, 
demonstrating relatively consistent effect direction and magnitude 
across methods. The leave-one-out sensitivity analysis confirmed that 
no individual SNPs significantly affected these associations 
(Figures 5C,D). Moreover, we further investigated whether there is a 
causal association between four types of dietary component intake 
related to delirium and 1-stearoylglycerol and 3-methoxytyrosine, and 
found no significant relationship (Supplementary Table S5).

In addition, we also investigated the causal relationship between 
some key metabolites related to low-fat polyunsaturated margarine 

used in cooking and coffee intake (30, 31) with the delirium risks 
(Supplementary Table S6). Given that low-fat polyunsaturated 
margarine is characterized by its low-fat content, we focused on blood 
lipid levels that might be affected by a low-fat diet. We found that 
lower levels of plasma levels of low-density lipoprotein cholesterol 
(LDL-C) are suggestively linked to a decreased risk of delirium (OR 
IVW  = 1.163 [95%CI: 1.008–1.342], p  = 0.039). However, the four 
coffee-related metabolites did not show a causal relationship 
with delirium.

Reverse MR

The results of the reverse MR analysis are shown in 
Supplementary Table S7. Here, no significant causal estimates were 
detected by the five MR methods, suggesting a lack of evidence for a 
causal effect from the delirium risks to identified dietary component 
intake or blood metabolites.

Discussion

In our study, we performed an MR analysis to assess the causal 
impact of dietary component intake and blood metabolites on the risk 
of delirium. Our research provided evidence that the host-genetic-
driven habit of salt added to food may significantly elevate the risk of 
delirium, while the habit of low-fat polyunsaturated margarine used 
in cooking, cheese intake, and coffee intake appears to mitigate the 
delirium risk. Furthermore, we  found that the elevated level of 
genetically predicted 1-stearoylglycerol and 3-methoxytyrosine may 
contributed to reducing delirium susceptibility, suggesting a protective 
role against delirium development. The summary of the study is in 
Graphical abstract.

The recognition and management of delirium possess 
significant challenges for clinics, particularly within intensive care 
units (ICU) where it often goes under-recognized (8). While 
traditional management strategies have largely revolved around 

FIGURE 2

Forest plots of the MR results of dietary component intake with risks of delirium. OR, odds ratio; 95% CI, 95% confidence interval.
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pharmacological treatments and multicomponent intervention 
(32), the potential of dietary interventions in reducing delirium risk 
is gaining traction thanks to their affordability, cost-effectiveness, 
and feasibility. Growing evidence suggests a causal link between 
dietary components and the risk of delirium, supplements like 
green tea polyphenols (33), fish oil omega-3 fatty acids (34), taurine 
(35), and melatonin (36) have been recognized for their beneficial 
roles in brain function, potentially aiding in the prevention of 
delirium (37). However, our understanding of how the habits of 
dietary component intake influence delirium development 
remains limited.

In this study, we  provided evidence that specific dietary 
component intake is causally linked to delirium risk. Notably, 
we found that salt added to food with a notable 1.72-fold increase in 
delirium risk. Existing research has already established high salt intake 
as a primary risk factor for cardiovascular diseases, particularly 
through its association with hypertension. Furthermore, emerging 
evidence highlights its direct impacts on central nervous system 

(CNS) disorders and brain toxicity (38). For instance, diets high in salt 
have been shown to exacerbate cognitive decline and the development 
of Alzheimer’s disease-like pathology by influencing tau protein 
abnormalities, neurovascular unit dysfunction, and synaptic deficits 
(39, 40). Additionally, a high salt diet could induce stroke onset and 
brain toxicity involving sympathetic nerve activation and brain 
oxidative stress (41). It also impairs long-term brain recovery after 
stroke by modulating macrophage function and mitochondrial 
oxidative phosphorylation (42). Recent findings also suggested that 
high salt intake induced cognitive dysfunction and CNS autoimmune 
pathology by altering the gut-brain axis and promoting the 
differentiation of T helper 17 cells (43). Thus, we  advocate that 
reducing the habit of adding salt to food may help decrease the risk 
of delirium.

Our study indicates that low-fat polyunsaturated margarine 
used in cooking, cheese, and coffee intake, might help lower 
delirium risks. Low-fat polyunsaturated margarine is rich in 
omega-3 polyunsaturated fatty acids (PUFA). The role of omega-3 

FIGURE 3

Scatter plots of the five MR models for causal relationships between four dietary component intake with risks of delirium. (A) Salt added to food. 
(B) Type of fat/oil used in cooking: low fat polyunsaturated margarine. (C) Cheese intake. (D) Coffee intake.
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FIGURE 4

Forest plots of the MR results of blood metabolites with risks of delirium. OR, odds ratio; 95% CI, 95% confidence interval.

FIGURE 5

Scatter plots and Leave-One-Out plots of the MR results of blood metabolites with risks of delirium. (A,B) Scatter plots of the five MR models for 
1-stearoylglycerol (A) and 3-methoxytyrosine (B) on delirium. (C,D) Forest plots of Leave-One-Out analysis results for 1-stearoylglycerol (C) and 
3-methoxytyrosine (D) on delirium.
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PUFA supplementation is highlighted in delirium prevention, 
causing their neuroprotective, anti-inflammatory, and antioxidant 
properties (34, 44). However, our MR analysis does not confirm a 
direct causal link between omega-3 PUFA levels in blood and 
delirium. It suggests that omega-3 PUFA supplementation’s benefits 
may involve complex interactions beyond elevated blood omega-3 
PUFA levels, possibly involving other nutrients or metabolic 
processes not fully captured in our analysis. Crucially, our study 
emphasized that low-fat, rather than normal-fat polyunsaturated 
margarine, reduces the risk of delirium. Moreover, our MR analysis 
also reveals a positive association between high levels of LDL-C and 
delirium risk, corroborated by an observational cross-sectional 
study that identifies LDL-C as a risk factor for postoperative 
delirium (45). Growing evidence suggests a link between elevated 
LDL-C levels and cognitive decline (46), possibly due to its role in 
cerebral vascular pathology. Thus, given the important role of 
low-fat diets and lowering LDL-C levels against cognitive decline 
and age-related disorders, opting for low-fat polyunsaturated 
margarine is advisable (47).

The health benefits of cheese intake were underscored, including 
its inverse associations with all-cause and cardiovascular mortality, 
dementia, and stroke incidence (48, 49). The healthy effects of cheese 
can be attributed to its rich content of high-quality proteins, minerals 
(e.g., calcium, phosphorus, and magnesium), vitamins (e.g., vitamin 
A, K2, B2, B12, and folate), probiotics, and bioactive molecules (e.g., 
bioactive peptides, lactoferrin, and milk fat globule membrane) (48). 
Cheese is a significant source of vitamin K2, known for maintaining 
neurocognitive functions by activating vitamin K-dependent proteins 
and aiding in sphingolipids synthesis (50). The matrix of cheese can 
help alleviate the adverse effects of saturated fat (51) and sodium-
induced cutaneous microvascular dysfunction (50). Moreover, the 
lactic acid bacteria produced during cheese fermentation exert 
probiotic benefits in improving cognitive function and ameliorating 
neuroinflammation by modulating the gut-brain axis (52, 53). Thus, 
we speculate that the positive effects of cheese intake are likely due to 
the combined roles of various components rather than a single one. 
Further research is needed to identify the roles of these specific 
components or combinations.

Coffee has been recognized for its various pharmacological 
benefits, including anti-inflammatory, antioxidant, neuroprotective, 
and anticancer properties (54). Meta-analyses have consistently 
suggested that drinking three cups of coffee daily could prevent 
approximately 6% of years of healthy life loss (55). Furthermore, 
coffee consumption may offer protective effects against cognitive 
decline and depression (56, 57). Key neuroprotective compounds in 
coffee, such as caffeine, polyphenols, chlorogenic acid, and 
trigonelline (54), contribute to reducing pro-inflammatory cytokine 
release by microglia and promoting microglia phenotype shifting. 
Prophylactic use of caffeine perioperatively can prevent 
postoperative headaches (58) and facilitate quicker recovery from 
sedation and anesthesia, especially in those prone to post-
extubation complications. However, clinical evidence on consuming 
coffee in perioperative periods remains scarce (58). Moreover, 
further studies are needed to explore which neuroprotective 
compounds in coffee, or their combination, might affect the risk 
of delirium.

Prior observational studies have established that metabolic 
imbalances play a significant role in the development of 

postoperative delirium, highlighting the involvement of ω3 and ω6 
fatty acids, intermediates of the tricarboxylic acid cycle, and 
phosphatidylinositol (17, 18). Our MR results indicated that 
elevated blood 1-stearoylglycerol (1-SG) levels and 
3-methoxytyrosine (3-MT) may causally contribute to reducing 
delirium risk. 1-SG, a lipid metabolite mainly converted to free fatty 
acids by monoacylglycerol lipase (MAGL), will accumulate due to 
reduced MAGL activity. Although still lacking direct evidence 
connecting 1-SG with delirium, both pharmacological or genetic 
inactivation of MAGL, have been demonstrated to alleviate 
neuroinflammation and neuropathology, and enhance synaptic and 
cognitive functions in animal models of neurodegenerative diseases 
(59, 60), suggesting a potential protective role against delirium. 
3-MT is a major metabolite of dopa precursor L-dopa used in 
Parkinson’s disease treatment and has been shown to reduce brain 
dopamine (dopa) levels by limiting L-dopa breakdown (61). An 
increasing body of evidence points to neurotransmitter system 
dysfunctions, particularly the overproduction of acetylcholine, 
5-hydroxytryptamine (5-HT), and dopa, as central to the 
pathophysiology of delirium (62, 63). Since the severe side effects 
of the first-line drug dopa receptor D2 antagonist haloperidol, 
psychiatrists are considering shifting toward alternative treatments 
targeting dopa and 5-HT (63). 3-MT attenuated the formation of 
dopa and 5-hydroxytryptophan (5-HT precursor) by about 25% in 
brain tissue (64). 5-HT receptor antagonist has demonstrated the 
potential to reverse delirium symptoms in rats (62). Thus, 
we speculated that 3-MT might correct dopa and 5-HT imbalances, 
which might help to prevent and treatment of delirium. However, 
further research is needed to clarify these metabolites’ roles in 
delirium and to identify effective metabolic-based interventions.

Our study presented several limitations. Firstly, the GWAS 
summary data primarily involved participants of European descent, 
potentially limiting the extension of our findings to other populations. 
Hence, future studies utilizing multiethnic cohorts are warranted to 
validate our findings. Additionally, this study provides new evidence 
for the causal associations between dietary component intake, blood 
metabolites, and delirium. Future experimental investigations are also 
needed to confirm the underlying biological mechanisms and to 
elucidate specific components or combinations that may mediate the 
effect of dietary intake on delirium.

Conclusion

Our findings support a causal association between certain dietary 
component intake, blood metabolites, and delirium, and provide new 
evidence for potential intervention strategies for the prevention and 
treatment of delirium. Further research is warranted through 
randomized controlled trials (RCT) and experimental studies to 
elucidate the impact of specific dietary habits and metabolites on the 
development of delirium, including the mechanisms involved.
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