
TYPE Original Research

PUBLISHED 16 September 2024

DOI 10.3389/fnut.2024.1441355

OPEN ACCESS

EDITED BY

Haohao Wu,

Ocean University of China, China

REVIEWED BY

Shiyuan Dong,

Ocean University of China, China

Josafat Marina Ezquerra Brauer,

University of Sonora, Mexico

*CORRESPONDENCE

Andrey Nagdalian

anagdalian@ncfu.ru

Nora Abdullah ALFaris

naalfais@pnu.edu.sa

Mohammad Ali Shariati

shariatymohammadali@gmail.com

RECEIVED 30 May 2024

ACCEPTED 14 August 2024

PUBLISHED 16 September 2024

CITATION

Kurchenko V, Halavach T, Yantsevich A,

Shramko M, Alieva L, Evdokimov I, Lodygin A,

Tikhonov V, Nagdalian A, Ali Zainy FM,

AL-Farga A, ALFaris NA and Shariati MA (2024)

Chitosan and its derivatives regulate lactic

acid synthesis during milk fermentation.

Front. Nutr. 11:1441355.

doi: 10.3389/fnut.2024.1441355

COPYRIGHT

© 2024 Kurchenko, Halavach, Yantsevich,

Shramko, Alieva, Evdokimov, Lodygin,

Tikhonov, Nagdalian, Ali Zainy, AL-Farga,

ALFaris and Shariati. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Chitosan and its derivatives
regulate lactic acid synthesis
during milk fermentation

Vladimir Kurchenko1,2, Tatsiana Halavach1, Alexey Yantsevich3,

Mariya Shramko2, Lyudmila Alieva2, Ivan Evdokimov2,

Alexey Lodygin2, Vladimir Tikhonov4, Andrey Nagdalian2*,

Faten M. Ali Zainy5, Ammar AL-Farga5, Nora Abdullah ALFaris6*

and Mohammad Ali Shariati7*

1Department of Biology, Belarusian State University, Minsk, Belarus, 2Laboratory of Food and Industrial

Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University,

Stavropol, Russia, 3Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus,

Minsk, Belarus, 4Laboratory of Heterochain Polymers, A.N. Nesmeyanov Institute of Organoelement

Compounds of Russian Academy of Sciences, Moscow, Russia, 5Department of Biochemistry, College

of Sciences, University of Jeddah, Jeddah, Saudi Arabia, 6Department of Physical Sports Sciences,

College of Sports Sciences and Physical Activity, Education, Princess Nourah Bint Abdulrahman

University, Riyadh, Saudi Arabia, 7Scientific Department, Semey Branch of the Kazakh Research

Institute of Processing and Food Industry, Almaty, Kazakhstan

Introduction:The influence of chitosan’s physicochemical characteristics on the

functionality of lactic acid bacteria and the production of lactic acid remains

very obscure and contradictory to date. While some studies have shown a

stimulatory e�ect of oligochitosans on the growth of Lactobacillus spp, other

studies declare a bactericidal e�ect of chitosan. The lack and contradiction of

knowledge prompted us to study the e�ect of chitosan on the growth and

productivity of L. bulgaricus in the presence of chitosan and its derivatives.

Methods: We used highmolecular weight chitosan (350 kDa) and oligochitosans

(25.4 and 45.3 kDa). The experiment was carried out with commercial strain

of L. bulgaricus and the low fat skim cow milk powder reconstituted with

sterile distilled water. After fermentation, dynamic viscosity, titratable acidity, pH,

content of lactic acid, colony forming units, chitosan and oligochitosans radii

were measured in the samples. Fermented dairy products were also examined

using sodium dodecyl sulfate electrophoretic analysis, gas chromatography-

mass spectrometry and light microscopy.

Results and discussion: The results of the study showed that when L. bulgaricus

was cultured in the presence of 25.4 kDa oligochitosans at concentrations of

0.0025%, 0.005%, 0.0075% and 0.01%, the average rate of LA synthesis over 24

hours was 11.0 × 10−3 mol/L/h, 8.7 × 10−3 mol/L/h, 6.8 × 10−3 mol/L/h, 5.8

× 10−3 mol/L/h, respectively. The 45.3 kDa oligochitosans had a similar e�ect,

while the average rate of lactic acid synthesis in the control sample was only

3.5 × 10−3 mol/L/h. Notably, 350 kDa chitosan did not a�ect the rate of lactic

acid synthesis compared with the control sample. Interestingly, interaction of

chitosan with L. bulgaricus led to a slowdown in the synthesis of propanol, an

increase in the content of unsaturated and saturated fatty acids, and a change in

the composition and content of other secondary metabolites. The quantity of L.

bulgaricus in a sample with 0.01% chitosan exceeded their content in the control

sample by more than 1,700 times. At the same chitosan concentration, the

fermentation processwas slowed down, increasing the shelf life of the fermented

milk product from 5 to 17 days while maintaining a high content of L. bulgaricus

(6.34 × 106 CFU/g).

KEYWORDS

oligochitosan, lactic acid, lactobacilli, fatty acids, propanol, benzaldehyde, secondary
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1 Introduction

A significant amount of scientific research has been dedicated
to improving the quality and functional value of food products
over the last few decades, as functional products can enhance
people’s quality of life and health compared to conventional foods
(1, 2). One of the most common groups of functional food
products includes fermented dairy products, which are recognized
as the most popular and extensively produced and consumed
dairy products worldwide (3, 4). In the production of fermented
dairy products, the production of lactic acid by bacteria of the
genera Lactobacillus and Bifidobacterium genera is commonly
employed (5). Among lactic acid bacteria, L. bulgaricus represents
the most widespread in Central, Eastern, and South-Eastern
Europe, commonly used in the preparation of fermented dairy
products (6). During the growth of L. bulgaricus in milk and dairy
products, the bacteria produce beta-β-galactosidase (E.C.3.2.1.23),
which catalyzes the fermentative cleavage of milk lactose (β-D-
galactopyranosyl-(1→ 4)-D-glucose) into glucose and galactose,
followed by the homofermentation of these carbohydrates into
lactic acid as the sole or main end product (7, 8).

The cultivation of lactic acid bacteria usually leads to
the production of functional additives such as macro- and
micronutrients and dietary fiber (9, 10). Among them, natural
poly- and oligosaccharides are of particular interest and value,
as they can be used not only as thickeners and gelling agents
but also as prebiotics that stimulate the growth of beneficial
microorganisms and prolongs their activity in the digestive system
(11, 12). Considering this, it is important to note that recent works
are increasingly studying Chitosan as polysaccharides with specific
properties (13–15).

Chitosan is a partially or fully deacetylated chitin—poly-(1→
4)-β-D-N-acetylglucosamine. It is produced industrially by the
deacetylation of chitin from crab, shrimp, or insect shells and is
widely used in pharmaceuticals, food, and cosmetic compositions
due to its wide range of antimicrobial activities against bacteria,
molds, and yeasts (16–19). As an artificial biopolymer, chitosan is
characterized by its molecular weight and degree of deacetylation
(%) (20, 21). Based on molecular weight, chitosan can be divided
into three categories: low molecular weight (molecular weight
< 150 kDa), medium molecular weight (molecular weight <

700 kDa), and high molecular weight (molecular weight > 700
kDa) (22).

High molecular weight chitosan possesses longer molecular
chains with the availability of more hydroxyl groups (23). There
is also a higher possibility that there are more amino groups,
although the number of amino groups is determined by the
degree of deacetylation (24). High molecular weight, high degree
of polymerization, and, as a consequence, a high number of
inter- and intra-molecular hydrogen bonds inside the polymer
chains determine the relatively low solubility of High molecular
weight chitosan and limit its application in some products
due to high viscosity (25). However, specific properties of high
molecular weight chitosan found wide application in development
of active films for food packaging application (26). Medium
molecular weight chitosan is soluble in weak acid solutions.

This limits their usage compared to the antimicrobial capacity
of acid- and water-soluble chitosan with different degrees of
deacetylation and viscosities (22). Low molecular weight chitosan
is a linear amino polysaccharide with high nitrogen content. It
is a weak base with deprotonated amino groups as nucleophiles
that is able to form hydrogen bonds between molecules
and has highly reactive groups for crosslinking and chemical
activation (27).

Low molecular weight chitosan forms salts with organic and
inorganic acids, has chelating and complex properties, and exhibits
ionic conductivity as polyelectrolytes (pH < 7) (28). In contrast
to high and medium molecular weight chitosan, low molecular
weight chitosan demonstrates considerable solubility in various
media. However, it is characterized by an unpredictably wide
distribution of molecular weight and degree of deacetylation,
complicating the standardization of parameters for industrial
applications (29–31). Therefore, to address this challenge in
dispersing food systems such as milk, a promising avenue lies in
the conversion of chitosan into oligomers with more consistent
molecular sizes and improved solubility (32). These oligomers,
termed oligochitosans, result from the profound depolymerization
of chitosan. It is noteworthy that significant disparities exist in
the physicochemical parameters and biological activity between
chitosan and oligochitosans, accentuating the scientific interest
in their comparative study within the realm of food technology
applications (33–35).

Amidst its bioavailability, safety, and antimicrobial attributes,
chitosan exhibits immunostimulatory and anti-angiogenic
properties, mitigating the risk of neurodegenerative conditions
while facilitating the regeneration of articular cartilage in
osteoarthritis, and enhancing the bioavailability of glucosamine
(36–38). In an acid media, chitosan has a high positive charge
density due to the protonation of free amino groups and can
interact with negatively charged cell walls (31, 39). Therefore,
chitosan can potentially interact with the plasma membrane
of lactic acid bacteria causing a stress and perturbation of
the membrane walls and the death of the cells (40, 41). As a
response, LAB can generate a number of adaptive reactions
(42, 43) which may insert desirable or undesirable changes
in the functionality of lactic acid bacteria and fermented
dairy products.

Unfortunately, the influence of chitosan’s physicochemical
characteristics on the functionality of lactic acid bacteria and the
production of lactic acid remains very obscure and contradictory
to date. While some studies have shown a stimulatory effect
of oligochitosans on the growth of Lactobacillus spp., which
used added oligochitosans as nutrients (44, 45), others have
described a bactericidal effect of chitosan (40, 42, 46). The
lack and contradiction of knowledge prompted us to study
the effect of chitosan on the growth and productivity of L.

bulgaricus in the presence of chitosan and its derivatives.
The aim of this work was therefore to study the effect of
different concentrations of oligochitosans and chitosan on the
production of lactic acid and secondary metabolites by L.

bulgaricus during fermentation and long-term storage of skimmed
cow’s milk.
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2 Materials and methods

2.1 Materials

Commercial strain of L. bulgaricus and the low fat skim
cow milk powder (solubility−93%, moisture content−5%; fat
content−1.5%; proteins−32%, and lactose−50 ± 3%) were
purchased from official store of “Stavropolsky Dairy Plant”
(Stavropol, Russia). The milk powder was reconstituted with sterile
distilled water (50ml) at temperature 30–35◦C during 24 h at
sterile conditions to the total solids concentration not <9.0%. The
reconstituted skimmilk solution was characterized by the following
parameters: proteins−3.2%, lactose−5%, total fat−0.15%, and
mineralization−0.7%, pH 5.9.

High molecular weight chitosan with 350 kDa molecular
weight and 5.0% DD manufactured by Bioprogress Ltd. (Moscow,
Russia). Two types of oligochitosans hydrochlorides with 25.4
kDa molecular weight, 1.0% degree of deacetylation and 45.3 kDa
molecular weight, 1.5% degree of deacetylation were obtained
from the initial chitosan according to the protocol of Berezin
et al. (47). The obtained oligochitosans were analyzed in
accordance with the requirements of the EU Pharmacopeia 9.0
for chitosan hydrochloride (48). Oligochitosans with a solubility
in demineralized water Milli-Q > 99.95% formed a colorless
and untroubled 1% solution in accordance with the tests on
transparency and degree of opalescence, and degree of liquids
coloring. The initial 1% chitosan solution was prepared by
dissolving the sample in 1% lactic acid. The pH of the initial
solution of the sample was adjusted to pH 5.0 by adding drops of
1M sodium hydroxide solution.

2.2 Milk sample preparation and
fermentation

Reconstituted skim milk (100mL) was mixed with a fixed
amount (0.0025, 0.005, 0.075, and 0.01 g) of chitosan stock solution,
and the mixture was pasteurized at 85◦C for 5min. After cooling to
43–45◦C, 3 g of the commercial freeze-dried starter culture of L.
bulgaricus was added to achieve a viable count of 105 CFU/mL in
the sample. The sample was thoroughlymixed and incubated at 43–
45◦C for 17 days until the maximum titratable acidity was reached.
Subsequently, the sample was stored at 4◦C before being analyzed.

2.3 Fermented milk product analysis

2.3.1 Dynamic viscosity
After the storage, the dynamic viscosity of fermented dairy

product was measured at 20◦C using a Brookfield digital rotational
viscometer DV-II+PRO (Brookfield Engineering Laboratories,
Middleboro, MA, USA).

2.3.2 Titratable acidity and pH
During the fermentation, the milk sample (10mL) was

centrifuged at 6000 rpm (30min) using MicroCL 17R centrifuge

(Thermo FS,Waltham,MA, USA), and pH value of the supernatant
wasmeasured with analizator Expert-001 (Econix-Expert, Moscow,
Russia). The titratable acidity of fermented dairy product was
determined by titration of the supernatant with 0.1N NaOH using
phenolphthalein as indicator (49). Titratable acidity was expressed
in percentages of lactic acid content (T, %) or as the volume of 0.1M
of sodium hydroxide consumed for the neutralization of 100ml of
fermented milk product (Vt, mL).

2.3.3 Content of lactic acid
Molar concentrations of lactic acid (mol/L) in the fermented

milk supernatant were determined following the method described
in the previous work (50). The molar concentrations of lactic acid
(mol/L) were calculated following the equation:

LA(mol/L) = [Vt 0.1]/100; (1)

where Vt–titratable acidity of the fermented milk supernatant.

2.3.4 Sodium dodecyl sulfate electrophoretic
analysis

The analysis of the protein composition of fermented milk
product was carried out after 17 days of storage using the
method of sodium dodecyl sulfate (SDS) electrophoretic separation
in polyacrylamide gel (20%) under denaturing conditions (DSN
electrophoresis) in accordance with the generally accepted
protocol (51).

2.3.5 Colony forming units counting
Colony count technique for CFU determination was used in

accordance with ISO 15214 (1998-2021) after 10–1000-fold dilution
of the fermented milk supernatant solution.

2.3.6 Microscopy
Sample supernatant was centrifuged at 15,000 rpm for 10min

using MicroCL 17R centrifuge (Thermo FS, Waltham, MA, USA)
and filtrated using a 0.2µm PVDF membrane. The morphology
of lactic acid bacteria was observed after the membrane filtration.
Samples was treated with methylene blue, destained by water
washing and dried on air. Photographs were made and recorded
using a BIOLAM light microscope (Scopica, Ekaerinburg, Russia).

2.3.7 Measuring the chitosan and oligochitosans
radii

The dynamic light scattering method was used to measure
the chitosan and oligochitosans molecules radii. Experiments on
dynamic light scattering were carried out in a disposable micro-
cuvette with a volume of 4 µl, using a detector located at an
angle of 90◦ in the DynaPro Nanostar device (Wyatt Technology,
Santa Barbara, CA, USA). The samples were filtered through a
0.2µm nylon filter. The data was analyzed using the “Regulation
fit” (multimodal) analysis method in the Dynamics software (Wyatt
Technology, Santa-Barbara, CA, USA).
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2.3.8 Analysis of secondary metabolites: gas
chromatography-mass spectrometry

After 17 days of storage, a 10mL sample of the fermented
dairy product was centrifuged at 6,000 rpm for 30min using
a MicroCL 17R centrifuge (Thermo FS, Waltham, MA, USA),
followed by lyophilization. The residual solid product (1 g) was
then extracted twice with 70% ethanol (1:10 wt/v). The resulting
extracts were combined and filtered through 0.25µm PVDF
membranes. Secondary metabolites were separated and analyzed
using an Agilent 5975B gas chromatograph equipped with a mass
selective detector (Agilent Technologies, Santa Clara, CA, USA).
The separation of secondary metabolites was performed using
a capillary column DB-5MS (5% phenyl methyl siloxane, J&W
122-5062). Identification of components in the mass spectra was
conducted using a library of mass spectra NIST0.5A. Comparative
semi-quantitative analysis of secondary metabolites was performed
based on peak areas without using correction factors. The semi-
quantitative content of secondary metabolites was calculated from
the peak area without considering the peak of lactic acid and
without using correction factors.

2.4 Statistical analysis

In order to compare the means of factor’s levels, a one-,
two-, or three-way analysis of variance (ANOVA) with subsequent
Dunnett’s test (comparing several treatments with a control),
Student’s t-test (matching the means of two groups) or Tukey’s
Honest Significant Difference (HSD) test (performing multiple
pairwise comparisons) were applied. R functions aov, DunnettTest,
t-test, TukeyHSD and DescTools packages were involved in the
statistical analysis. Statistical differences between groups were set
as significant at p < 0.05 level with correction for multiple
pairwise comparisons. Correlation analysis was performed using
Pearson’s Criterion. Plots were created in Microsoft Office Excel
(MS Corporation, Shadeland, IN, USA). The data in tables and
graphs are shown as the mean ± the half-width of 95% confidence
interval (n= 3).

3 Results and discussion

3.1 Cultivation of L. bulgaricus in the
presence of chitosan and oligochitosans

The effect of oligochitosans of 25.4 kDa molecular weight,
1% degree of deacetylation, and 45.3 kDa molecular weight, 1.5%
degree of deacetylation on the lactic acid fermentation process was
studied in comparison with CH of 350 kDa molecular weight,
5.0% degree of deacetylation at L. bulgaricus cultivation. During
cultivation, pH and titratable acidity of the culture liquid were
measured in experimental and control samples every 4 h for 24 h.
Based on the results of titratable acidity, the molar concentration
and the rate of synthesis of lactic acid were calculated. Figure 1
shows changes in the pH and titratable acidity of a culture
liquid containing 0.0025, 0.005, 0.0075, and 0.01% oligochitosans
of 25.4 and 45.3 kDa. According to the data obtained, pH
depends on the concentration of oligochitosans (Figures 1A,
C). Notably, the maximum decrease in pH was observed at

oligochitosans concentration of 0.0025% (Table 1). At the end of
24-h cultivation, pH of the experimental samples was lower than
in control sample by 73% in 25.4 kDa oligochitosans, by 75%
in 45.3 kDa oligochitosans, and by 1% in 350 kDa chitosan. At
higher concentrations, pH less intense decreased in samples with
oligochitosans, but particularly was not changed in samples with
chitosan. Inversely dependent, the titratable acidity of the culture
liquid decreased with the increase of oligochitosans concentration,
but was higher than the titratable acidity of control samples
(Figures 1B, D).

According to Table 1, at the same percentage concentration
of oligochitosans and chitosan, their molar concentration in
fermented dairy products differs significantly. However, the total
content of glucosamine monomers included in their composition
was the same. In the acidic environment, the oligochitosans amino
groups are in a protonated state (52). Being positive charge,
they can interact with negatively charged cell walls of lactic
acid bacteria (53, 54). With an increase in the concentration
of oligosaccharides in the experimental samples, the content of
glucosamine monomers also increased. Consequently, the number
of positively charged amino groups capable of interacting with
lactic acid bacteria increased.

It was revealed that at 0.0025% concentration and 1.39 ×

10−4 mol/L glucosoamine monomers, oligochitosans increase the
synthesis of lactic acid by 3 times (25.4 kDa) and 2.7 times
(45.3 kDa) relative to control sample. It should be noted that
samples with chitosan, like samples with oligochitosans, contained
1.39 × 10−4 mol/L glucosoamine monomers at a concentration
of 0.0025%. However, it was surprisingly found that at 0.0025%
chitosan and 1.39× 10−4 mol/L glucosoaminemonomers, chitosan
slowed down the synthesis of lactic acid by 0.98 times relative
to the control. Higher concentrations of chitosan more intense
affected lactic acid synthesis and consequently, fermented dairy
product with chitosan had less lactic acid concentration than
control sample.

On the other hand, at the highest concentration of
oligochitosans (0.01 %), the content of glucosamine monomers
reached 5.56 × 10−4 mol/L and lactic acid synthesis slowed down.
However, the resulting lactic acid content in both oligochitosans
groups was still higher than in the control sample. The rate of
lactic acid synthesis is critically important in milk fermentation
(55). Thus, dependence of the average rate of lactic acid synthesis
on concentration of glucosamine monomers of oligochitosans
and chitosan at 24 h-cultivation was analyzed and presented in
Figure 2.

The analysis of the interaction of lactic acid bacteria with the
positively charged amino groups of oligochitosans glucosamine
monomers shows that with an increase in their concentration, the
rate of lactic acid synthesis slows down (Figure 2). Theoretically,
at a concentration of oligochitosans glucosamine monomers close
to 10−3 mol/L, a process of deep inhibition of lactose metabolism
and lactic acid synthesis is possible (56, 57). Similarly, an increase
in the content of glucosamine monomers of 350 kDa chitosan
leads to a reduction in lactic acid, as shown in Figure 2. According
to Figure 1, pH and titratable acidity stabilize on the 20th h of
cultivation in samples with 0.0025% oligochitosans. This indicates
a slowdown in the synthesis of lactic acid by lactic acid bacteria.
Therefore, it is critically important to understand the dynamics of
lactic acid accumulation in the presence of oligochitosans. For this
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FIGURE 1

E�ect 25.4 kDa (A, B) and 45.3 kDa (C, D) OCHs on active acidity pH (A, C) and titratable acidity ◦T (B, D) during 24h cultivation (t, h) of L. bulgaricus:

1 – control sample, 2 – 0.0025 % OCHs, 3 – 0.0050 % OCHs, 4 – 0.0075 % OCHs, 5 – 0.01 % OCHs.

purpose, the rate of lactic acid synthesis was analyzed every 4 h of
cultivation. The results obtained are presented in Figure 3.

Notably, the maximum rate of lactic acid synthesis was
observed at 0.0025% 25.4 kDa oligochitosan on the 12th h of L.
bulgaricus cultivation, which is 6.44 times higher than in the control
sample. Similarly, on the 12th h of L. bulgaricus cultivation, the
rate of lactic acid synthesis was the most intense, being 5.44 times
higher than in the control sample. It should be pointed out that with
an increase in oligochitosans concentration, the rate of lactic acid
synthesis decreases and achieves the minimal value on the 24th h
of L. bulgaricus cultivation. Simultaneously, the rate of lactic acid
synthesis reached the maximum value only on the 24th h of L.
bulgaricus cultivation.

Thus, the results obtained show that 25.4 and 45.3 kDa
oligochitosans significantly influence the rate of lactic acid
synthesis. The presence of 1.39 × 10−4 mol/L oligochitosan
glucosamine monomers in the culture liquid leads to a significant
decrease in pH, an increase in titratable acidity, and rapid synthesis
and accumulation of lactic acid compared to the control sample.
Such oligochitosan activity may be explained by the mechanism
of exposure to L. bulgaricus through extracellular, intracellular, or
both extracellular and intracellular effects (58–61).

The cell wall of L. bulgaricus can prevent the direct binding
of lactic acid to the cell membrane components and impede
intracellular effects (62). Transporting molecules through the
barrier of the outer layer of the rigid cell wall occurs through
several subtle mechanisms or via simple diffusion (63–66). The
porosity of the cell wall and the pore size determine whether
oligochitosans can pass through the bacterial cell wall (67). Pore

sizes vary among different bacteria and fungi, ranging from 2–4 to
8 nm (68, 69). Therefore, the radii of hydrated oligochitosans were
measured using the dynamic light scattering method. According
to the data obtained, the average hydrodynamic radius was 2.5 nm
for 25.4 kDa oligochitosan and 3.5 nm for 45.3 kDa oligochitosan.
Consequently, due to their small sizes, oligochitosans can penetrate
the pores of the lactic acid bacteria cell walls and interact with
plasma membrane proteins. It is likely that oligochitosans induce
stress in lactic acid bacteria cells, leading to adaptive reactions
that result in deviations in physiological and biochemical processes
(70, 71). For instance, based on the results presented in Figure 3, the
presence of 0.0025% oligochitosans in the culture liquid stimulates
the acceleration of lactose catabolism, leading to increased lactic
acid synthesis and accumulation.

Likely, the reason for such changes is the reaction of lactic acid
bacteria stress response caused by oligochitosans. The mechanism
of stress response entails the metabolic changes necessary for
the survival of lactic acid bacteria (72–74). Previous studies have
demonstrated that oligochitosans and chitosan, upon interacting
with eukaryotic cells, induce abiotic stress, triggering physiological
protective reactions (75). These protective responses may include
overexpression of genes associated with carbohydrate metabolism
(76), among other reactions (77–79).

At high concentrations, oligochitosans cause not only
intracellular but also extracellular effects. Gram-positive bacteria
have a negative charge due to the presence of phosphate groups
associated with teichoic acids in the cell wall structure (80, 81).
With an increase in the concentration of oligochitosans molecules,
an electrostatic interaction with negatively charged lactic acid
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TABLE 1 E�ect of OCHs and CH on LA fermentation parameters after 24h of L. bulgaricus cultivation.

Index Concentration of OCHs and CH, %

0 (control) 0.0025 0.005 0.0075 0.01

25.4 kDa, 1% DD OCH (glucosamine monomers 140/mol OCH)

Molar concentration of OCH, mol/L - 0.99× 10−6 1.98× 10−6 2.98× 10−6 3.97× 10−6

Glucosamine monomers content, mol/L - 1.39× 10−4 2.78× 10−4 4.17× 10−4 5.56× 10−4

pH 5.00± 0.20A 3.65± 0.10B 3.82± 0.10 B 4.29± 0.10 C 4.56± 0.20 C

LA content, mol/L 0.085± 0.009A 0.255± 0.02B 0.209± 0.019C 0.163± 0.015D 0.139±0.011E

The average rate of LA synthesis, mol/L/h 3.5× 10−3A,I 11.0× 10−3B,I 8.7× 10−3C,I 6.8× 10−3D,I 5.8× 10−3E,I

45.3 kDa, 1.5% DD OCH (glucosamine monomers 248/mol OCH)

Molar concentration of OCH, mol/L - 0.56× 10−6 1.12× 10−6 1.68× 10−6 2.24× 10−6

Glucosamine monomers content, mol/L - 1.39× 10−4 2.78× 10−4 4.17× 10−4 5.56× 10−4

pH 5.00± 0.20A 3.78± 0.10B 3.87± 0.10B 4.70± 0.20C 4.82± 0.10C

LA content, mol/L 0.087± 0.009A 0.228± 0.025B 0.202± 0.018B 0.123± 0.011C 0.111± 0.008C

The average rate of LA synthesis, mol/L/h 3.6× 10−3A,I 9.5× 10−3B,I 8.4× 10−3B,I 5.1× 10−3C,II 4.6× 10−3C,II

350 kDa, 5% DD CH (glucosamine monomers 1850/mol CH)

Molar concentration of CH, mol/L - 0.75× 10−7 1.50× 10−7 2.25× 10−7 3.00× 10−7

Glucosamine monomers content, mol/L - 1.39× 10−4 2.78× 10−4 4.17× 10−4 5.56× 10−4

pH 5.00± 0.20A 4.95± 0.20A 4.99± 0.10A 4.98± 0.10A 5.01± 0.20A

LA content, mol/L 0.090± 0.010A 0.089± 0.009A 0.082± 0.009B 0.083± 0.009B 0.075± 0.007C

The average rate of LA synthesis, mol/L/h 3.8× 10−3A,I 3.7× 10−3A,II 3.4× 10−3B,II 3.4× 10−3B,III 3.1× 10−3C,III

The values represent the mean± SD (n= 3). Means without a common letter within the same column (I–III) and row (A–E) indicate significant difference at p < 0.05.

bacteria cell walls can occur (40, 82, 83). Cell walls are dynamic
structures that undergo changes during replication, development,

and age (84). This flexibility allows different molecules to pass

through the cell wall (85). Consequently, ion immobilization of

oligochitosans on the lactic acid bacteria cell wall can lead to a loss

of flexibility, porosity, and alteration of its permeability (86, 87).

The low permeability of the lactic acid bacteria cell walls leads to

reduction of nutrient intake, resulting in a slowdown in the lactic

acid synthesis and an increase in the pH of the culture liquid.

This process, as depicted in Figures 1–3 and Table 1, depends on

the molecular weight of oligochitosans and their concentration.

Thus, two mechanisms of their action are realized depending on

the concentration of oligochitosans. At low concentrations of

oligochitosans, the acceleration of lactic acid synthesis occurs due

to intracellular processes in L. bulgaricus. However, increasing

the concentration of oligochitosans by four times leads to the

realization of their extracellular effects, which slow down the

metabolism of lactose and decrease the accumulation of lactic acid

by 1.6 times at 25.4 kDa oligochitosan, or by 1.28 times at 45.3 kDa

oligochitosan. The implementation of these two mechanisms of
oligochitosans activity is multidirectional. As observed in Figure 2
and Table 1, the dominance of the mechanism of extracellular
action of oligochitosans increases with an increase in the content
of glucosamine monomers.

FIGURE 2

E�ect of the content of glucosamine monomers in samples with

25.4 kDa OCHs (1), 45.3 kDa OCHs (2), and 350 kDa CH (3) on the

average rate of LA synthesis.
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FIGURE 3

The rate of LA accumulation (V1) in the control sample (1) and in the presence of 25.4 kDa OCHs (A) and 45.3 kDa OCHs (B) at concentration of

0.0025% (2) during 24h cultivation of L. bulgaricus (t).

These observations are confirmed by the study of the effect
of various concentrations of chitosan on the cultivation of L.

bulgaricus. According to Table 1, the chitosan molecule contained
1850 glucosamine monomers and had an average hydrodynamic
radius of 133.2 nm. Due to the large size of the chitosan
molecules and the positively charged amino groups of glucosamine
residues, this polysaccharide can interact with the cell walls of
lactic acid bacteria (23). With an increase in pH and chitosan
concentration, the density of its positive charge increases, and
it effectively interacts with the negatively charged cell walls of
L. bulgaricus. As can be seen from Table 1, at 0.0025% chitosan
and oligochitosans, their molar concentrations differ, but the total
content of glucosamine monomers remains the same (1.39 × 10−4

mol/L). However, at 0.0025% oligochitosans, interaction with L.

bulgaricus leads to the realization of the intracellular mechanism of
their action, which leads to an acceleration of lactic acid synthesis.
At the same time, 0.0025% chitosan causes opposite effects in
lactic acid bacteria, which slow down the catabolism of lactose
and the lactic acid synthesis due to extracellular interaction. At
0.01% chitosan and oligochitosans, the total content of glucosamine
monomers increases by 4 times and reaches 5.56× 10−4 mol/L.

As a result, the total number of protonated amino groups of
these polysaccharides increases, which leads to effective interaction
with the lactic acid bacteria cell wall and inhibition of lactose
catabolism. Moreover, the biochemical effects of oligochitosans
and chitosan are unidirectional, which may indicate the same
mechanism of their action due to extracellular effects. Thus,
comparative studies of the effect of different concentrations of
oligochitosans and chitosan on the cultivation of L. bulgaricus

revealed two mechanisms of their action. At low concentrations,
oligochitosans interact with the plasma membrane, which leads to
an acceleration of metabolic processes in L. bulgaricus. At 0.01%
oligochitosans and chitosan, they interact with the L. bulgaricus cell
wall and affect the rate of lactic acid synthesis. This observation
confirms the previously obtained results (88).

Thus, the results obtained expand the understanding of the
mechanism of oligochitosans and chitosan effect on lactic acid
bacteria. However, regarding fermented milk products, it is also
critical to understand the oligochitosans and chitosan behavior
toward lactic acid bacteria not only at cultivation but also at storage.

Therefore, the next stage of the experiments represents the effect
of these cationic polysaccharides on the metabolic processes of L.
bulgaricus during long-term storage of fermented dairy products.

3.2 E�ect of oligochitosans and chitosan
on the metabolic processes of L. bulgaricus
during long-term storage of fermented
milk product

During a 17-day storage period of fermented dairy products
containing oligochitosans, a slowdown in lactic acid fermentation
was observed alongside a decrease in oligochitosans concentration.
The interaction of oligochitosans with the plasma membrane of
Lactobacillus bulgaricus affects intracellular processes related to
lactose catabolism and cell division. Table 2 illustrates that at low
concentrations of oligochitosans, the CFU value of L. bulgaricus
were lower than in the control sample. This decrease in viable cells
in the fermented dairy product led to a slowdown in the average
rate of lactic acid synthesis after 17 days of storage. Consequently,
there was a slight increase in LA content, maintaining low pH
values compared to the control sample. At a concentration of 0.01%
oligochitosans, where they interact with the L. bulgaricus cell wall,
the synthesis of LA slows down, but a significant number of viable
L. bulgaricus cells are preserved.

Based on the data presented in Table 2, it is evident that an
increase in the concentration of chitosan leads to a reduction in the
intensity of lactic acid fermentation. The most notable deceleration
of lactose catabolism via homofermentative lactic acid fermentation
occurred in the sample containing 0.01% chitosan. This decrease
in lactose catabolism intensity in L. bulgaricus could be attributed
to the interaction between chitosan and the bacterial cell wall.
This external influence may disrupt the permeability of the cell
wall to the substrate and the enzyme β-galactosidase (EC 3.2.1.23),
responsible for lactose hydrolysis into glucose and galactose (89).
Additionally, structural alterations in the cell wall might impede the
active transport of lactose hydrolysis products into Lactobacillus
cells (90). On the 17th day of storage, the L. bulgaricus content
in the control sample of fermented milk product was measured at
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TABLE 2 E�ect of OCHs and CH on pH and metabolism and content of L. bulgaricus in the fermented milk product at 17-days storing.

Index Concentration of OCHs and CH, %

0 (control) 0.0025 0.005 0.0075 0.01

25.4 kDa, 1% DD OCH (glucosamine monomers 140/mol OCH)

pH 3.80± 0.10A 3.30± 0.10B 3.66± 0.10A 3.88± 0.10A 4.35± 0.10B

LA content, mol/L 0.121± 0.011A 0,037± 0.001B 0,017± 0.001C 0,034± 0.002B 0,015± 0.002C

The average rate of LA synthesis, mol/L/h 7.3× 10−3A,I 2.2× 10−3B,I 1.0× 10−3C,I 2.0× 10−3B,I 0.9× 10−3C,I

L. bulgaricus content, CFU/g 3.73× 103A,α 2.28× 102B,α 2.46× 102B,α 3.89× 103A,α 4.65× 104C,α

45.3 kDa, 1.5% DD OCH (glucosamine monomers 248/mol OCH)

pH 3.82± 0.10A 3.48± 0.10B 3.61± 0.10B 3.91± 0.10A 3.96± 0.10A

LA content, mol/L 0.116± 0.01A 0.043± 0.001B 0.048± 0.001B 0.070± 0.001C 0.063± 0.001C

The average rate of LA synthesis, mol/L/h 6.8× 10−3A,I 2.5× 10−3B,I 2.8× 10−3B,II 4.1× 10−3C,II 3.7× 10−3C,II

L. bulgaricus content, CFU/g 3.71× 103A,α 2.6× 102B,α 2.56× 102B,β 3.49× 103A,α 4.89× 104C,α

350 kDa, 5% DD CH (glucosamine monomers 1850/mol CH)

pH 3.82± 0.1A 3.85± 0.1A 3.87± 0.1A 3.96± 0.1A 4.04± 0.1A

LA content, mol/L 0.113± 0.01A 0.102± 0.009B 0.104± 0.009B 0.072± 0.007C 0.063± 0.005C

The average rate of LA synthesis, mol/L/h 7.0× 10−3A,I 6.0× 10−3B,II 6.0× 10−3B,III 4.2× 10−3C,II 3.7× 10−3C,II

L. bulgaricus content, CFU/g 3.69× 103A,α 3.65× 103A,β 3.59× 103A,γ 5.3× 105B,β 6.34× 106C,β

The values represent the mean± SD (n= 3). Means without a common letter within the same column (I–III; α-γ) and row (A–C) indicate significant difference at p < 0.05.

3.69 × 103 CFU/g. Table 2 illustrates that the inclusion of chitosan
resulted in an increase in L. bulgaricus content, reaching 3.65 ×

103 CFU/g at 0.0025% chitosan, 3.59 × 103 CFU/g at 0.005%
chitosan, 5.3× 105 CFU/g at 0.0075%CH, and 6.34× 106 CFU/g at
0.01% chitosan. Consequently, the fermented milk product sample
containing 0.01% CH contained 1,700 times more L. bulgaricus

than the control sample.
As can be seen from Tables 1, 2, the effect of oligochitosans

and chitosan on the metabolic processes of L. bulgaricus is
multidirectional. The acceleration of metabolic processes is realized
due to intracellular processes of interaction of oligochitosans
with lactic acid bacteria cells. Chitosan interacting with the lactic
acid bacteria cell wall slows down metabolic processes. Based
on the results obtained, it is logical to assume that due to the
differences in the mechanism of action of oligochitosans and
chitosan, they should significantly affect the composition and
content of secondary metabolites during long-term storage of
fermented milk product. In this regard, the relative content of
secondary metabolites in the control and experimental samples was
determined using GC-MS. A typical GC-MS chromatogram of a
fermented milk product extract on the 17th day of storage is shown
in Supplementary Figure 1. The chromatogram contains a profile
of the metabolites that were analyzed and included in Table 3.
Samples of fermented dairy products with 45.3 kDa oligochitosan
were chosen due to the higher values of rate of lactic acid synthesis
and lactic acid content in comparison with ones with addition of
25.4 kDa oligochitosan.

The analysis of the results shows that 0.0025% of 45.3 kDa
oligochitosan accelerates the synthesis of propanol, leading to a
230% increase in its relative content compared to the control
sample. Propanol metabolism is closely related to the synthesis

of lactic acid (91), the content of which was 260% higher in
this sample than in the control sample. The acceleration of
lactic acid synthesis was accompanied by an increase in propanol
synthesis, consistent with previously obtained results (92, 93).
With an increase in oligochitosan concentration, the process of
lactic acid synthesis slows down and the relative propanol content
decreases. Another important component of secondary metabolites
presented in Table 3 is benzoic acid. It was revealed, that different
concentrations of oligochitosan had practically no effect on its
synthesis compared to the control sample.

Fermented dairy products also contained a significant
number of phenolic compounds: 3,4-dihydro-4,4-dimethyl-
2H-1,2-benzisothiazine; 2-furanmethanol; 3,5-dimethyl-4-
deuteroxymethyl-isoxazole; 4H-pyran-4-one, 3-hydroxy-2-methyl;
2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one. Their total
content in the control sample reached 54.68%. In the experimental
samples of fermented dairy products with oligochitosan, the
content of phenolic compounds ranged from 31.81% at a
concentration of 0.0025% 45.3 kDa oligochitosans to 45.65% at a
concentration of 0.005% 45.3 kDa oligochitosans. It is important
to note that phenolic substances exhibit antioxidant properties
and affect the sensory characteristics of fermented dairy products
(94, 95).

Fatty acids have a significant role in shaping the sensory
attributes of fermented dairy products. Saturated fatty acids made
up 1.81% of the control sample, including methyl stearate (0.44%),
heptadecanoic acid, methyl ester (0.89%), and heptadecanoic acid,
16-methyl-, and methyl ester (0.49%). Furthermore, the control
sample had two unsaturated fatty acids, 8-octadecanoic acid,
methyl ester, (E)—(0.66%) and 12-octadecenoic acid, methyl ester
(0.63%), that were absent from the other samples. The control
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TABLE 3 Relative content of the main secondary metabolites in extracts from fermented dairy products containing various concentrations of OCHs and

CH on the 17th day of storage.

Retention
time

Substance, CAS,
molecular formula

The relative content, %

Control Concentration of 45.3
kDa OCH, %

Concentration of 350
kDa CH, %

0.0025 0.0075 0.01 0.0025 0.0075 0.01

5.64 2-Propanol, 000067-63-0, C3H8O 8.35 19.50 2.45 1.63 4.84 2.08 n.d.

5.66 3,4-Dihydro-4,4-dimethyl-2H-1,2-
benzisothiazine, 2000114-14-7,
C49H66N10O12S

2.55 3.95 n.d. n.d. n.d. 1.69 n.d.

5.72 2-Furanmethanol, 000098-00-0,
C5C6C2

n.d. n.d. n.d. n.d. n.d. 2.48 2.05

9.03 3,5-dimethyl-4-deuteroxymethyl-
isoxazole, 2000024-72-1,
C12H12N2O

n.d. n.d. n.d. n.d. n.d. n.d. 2.77

9.90 4H-Pyran-4-one,
3-hydro-xy-2-methyl, 000118-71-8,
C6H6O3

10.17 0.91 1.21 1.22 0.99 2.35 8.85

10.33 Carbamic acid, butyl-, ethyl ester,
000591-62-8, C7H15NO2

4.13 n.d. n.d. n.d. n.d. n.d. n.d.

10.46 2,3-Dihydro-3,5-dihydroxy-6-
methyl-4H-pyran-4-one,
028564-83-2, C6H8O4

37.86 26.95 44.44 37.24 37.90 35.23 20.70

10.67 Benzoic acid, 000065-85-0, C7H6O2 8.87 9.22 7.60 8.68 12.40 12.77 9.62

13.25 Pentadecanoic acid, 001002-84-2,
C15H30O2

n.d. n.d. n.d. n.d. n.d. 1.31 1.28

19.60 Hexadecanoic acid, methyl ester,
000112-39-0, C17H34O2

0.89 0.69 0.73 1.26 0.60 1.14 0.90

19.95 n-Hexadecanoic acid, 000057-10-3,
C16H32O2

n.d. n.d. n.d. n.d. n.d. n.d. 7.91

21.28 8-Octadecenoic acid, methyl ester,
(E)-, 026528-50-7, C19H36O2

0.66 n.d. n.d. n.d. n.d. n.d. n.d.

21.29 12-Octadecenoic acid, methyl ester,
056554-46-2, C19H36O2

0.63 n.d. n.d. n.d. n.d. n.d. n.d.

21.39 Methyl stearate, 000112-61-8,
C19H38O2

0.44 0.37 n.d. n.d. 0.37 n.d. n.d.

21.49 Heptadecanoic acid, 16-methyl-,
methyl ester, 005129-61-3,
C19H38O2

0.49 n.d. 0.39 n.d. n.d. 0.74 0.55

21.64 Cis-11-octadecenoic acid,
000506-17-2, C18H34O2

n.d. n.d. n.d. n.d. n.d. 5.79 21.58

21.82 Octadecanoic acid, 000057-11-4,
C18H36O2

n.d. n.d. n.d. n.d. 1.07 2.09 2.93

29.91 Cholest-5-en-3-ol, 2000683-53-6,
C27H46O

1.34 0.98 1.22 2.67 1.25 2.47 1.35

sample of fermented dairy product had a total fatty acid level
of 3.11%.

Variations in the content of 45.3 kDa oligochitosan
led to notable alterations in the fatty acid synthesis in
fermented dairy products. Table 3 shows that samples with
an oligochitosan of 45.3 kDa were devoid of unsaturated fatty
acids. Heptadecanoic acid, methyl ester (C17H34O2), methyl
stearate (C19H38O2), and hepta-decanoic acid, 16-methyl-,

methyl ester (C19H38O2) are examples of saturated fatty acids.
Their overall content was lower than that of the control sample
(3.11%), although it did grow significantly with increasing OCH
concentration, reaching 1.06% at 0.0025% oligochitosan, 1.15%
at 0.0075% oligochitosan, and 1.26% at 0.01% oligochitosan.
Saturated fatty acids have been demonstrated in the past
to be a crucial growth factor for several lactic acid bacteria
(9, 96).
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TABLE 4 E�ect of 350 kDa CH on titratable acidity of fermented milk product during storage.

Storage time, days Titrated acidity, ◦T

Concentration of 350 kDa CH, %

0 (control) 0.0025 0.005 0.0075 0.01

1 90± 3A,I 89± 2A,I 82± 2B,I 83± 1B,I 75± 1C,I

3 117± 2A,II 110± 3B,II 106± 1B,II 104± 3B,C,II 100± 4C,II

5 140± 4A,III 132± 3B,III 118± 3C,III 110± 2D,II,III 103± 2E,II

7 157± 3A,IV 145± 2B,IV 132± 3C,IV 116± 4D,III 114± 1D,III

9 180± 2A,V 164± 1B,V 148± 3C,V 128± 4D,IV 126± 4D,IV

11 185± 4A,V,VI 170± 3B,VI 155± 2D,VI 138± 2D,V 129± 4E,IV,V

13 192± 5A,VI,VII 179± 2B,VII 161± 4C,VI,VII 142± 5D,V,VI 131± 3E,IV,V

15 198± 4A,VII,VIII 185± 4B,VII,VIII 164± 2C,VII 145± 3D,VI 132± 4E,IV,V

17 203± 2A,VIII 191± 5B,VIII 186± 2B,VIII 155± 3C,VII 138± 4D,V

The values represent the mean± SD (n= 3). Means without a common letter within the same column (I–VIII) and row (A–E) indicate significant difference at p < 0.05.

The main and secondary metabolite composition of the
fermented milk product underwent considerable alterations as a
result of the 45.3 kDa oligochitosan, according to the data shown in
Tables 1–3. This is because the 45.3 kDa oligochitosan’s intracellular
mechanism of action causes biochemical alterations, which are
responsible for the fermentedmilk product’s low pH, high propanol
and LA content, minimal saturated fatty acid content, and low
L. bulgaricus content. Consequently, the consumer qualities of
the fermented dairy product with 45.3 kDa oligochitosan are
lost. Nevertheless, in light of the effects that have been found,
oligochitosans may be utilized as a stimulant for lactic acid
synthesis during lactic acid bacteria culture.

Unlike the 45.3 kDa oligochitosan, chitosan’s effect on L.

bulgaricus occurs via extracellular interaction. According to
Tables 2, 3, with an increase in the chitosan concentration, the
lactic acid synthesis slows down and the synthesis of propanol
is prevented. Fermented dairy product containing 0.0025 and
0.0075% has a 140% higher content of benzoic acid relative to
the control sample. It is well-known that a relatively high content
of benzoic acid can prevent contamination of fermented milk
products by yeast and other microorganisms (97–99). Table 3
shows that chitosan causes additional synthesis of some saturated
fatty acids: pentadecanoic acid; hexadecanoic acid, methyl ester; n-
hexadecanoic acid; methyl stearate; heptadecanoic acid, 16-methyl-
, methyl ester; octadecanoic acid; as well as one unsaturated fatty
acid—cis-11-octadecenoic acid. At 0.0025% chitosan, fermented
milk product contained 2.04% saturated fatty acids and did not
contain unsaturated acids. However, 0.0075% chitosan caused
an increase in the content of saturated fatty acids to 5.28%
and unsaturated by 5.79%. Fermented milk product with 0.01%
chitosan had the highest content of fatty acids after 17 days
of storage: 13.57% saturated fatty acids and 21.58% unsaturated
fatty acid (cis-11-octadecanoic acid). As presented in Table 2,
with an increase in the chitosan concentration, the content of
L. bulgaricus increased as well. At the same time, according to
Table 3, there was a significant increase in the content of fatty
acids, which confirms their importance for L. bulgaricus growth.
Thus, chitosan in interaction with L. bulgaricus causes metabolic
shifts in the synthesis of secondary metabolites. As a result, lactic
acid bacteria produce antifungal metabolites such as organic acids,

phenolic compounds and a wide range of carboxylic acids and
their esters (100, 101). These substances determine the high sensory
characteristics of fermented milk product (102).

Furthermore, the shelf life of a fermented dairy product is a
crucial indicator. Titratable acidity is seen to rise with an increase in
storage duration. The titratable acidity of fermented dairy products,
which should not be more than 140◦T (49), determines their
maximum shelf life. This value was attained in the control sample
on the 5th day of storage and surpassed by 145% on the 17th day of
storage (Table 4).

Experimental samples containing 0.0025, 0.005, 0.0075, and
0.01% chitosan reached the required titratable acidity levels on the
7, 9, 13, and 17th days of storage, respectively. Surprisingly, the
optimal concentration of 0.01% chitosan maintained the titratable
acidity of the fermented dairy product at 138◦T on 17th day of
storage. In general, this concentration increased the shelf life of the
fermented dairy product by three times compared to the control
sample. Additionally, lactic acid fermentation process was slowed
down, while maintaining a high content of lactic acid bacteria and
a low concentration of lactic acid.

An important sensory indicator of fermented milk product
during storage is the clot density of the clot (103, 104). On the 17th
day of storage, the viscosity of the control sample was 168 MPa×s,
while the viscosity of the sample with 0.01% chitosan reached to
176 MPa×s. Thus, in the presence of chitosan, the liquefaction
of the clot slowed down during storage. This is attributed to the
fact that the experimental sample contained less lactic acid and
maintained a relatively high pH value. Consequently, hydrolysis
of milk proteins and destruction of casein micelles does not occur
in experimental samples, as confirmed by SDS-electrophoretic
examination (Supplementary Figure 2).

Further, in order to clarify the effect of chitosan on the form
of LAB and confirm the absence of extraneous microflora in the
samples, fixed preparations were obtained and studied after 17
days of storage. The results of microscopic studies are depicted in
Figure 4.

Analysis of the microscopic preparations showed that
interaction of L. bulgaricus with chitosan at concentrations of
0.0075 and 0.01% did not lead to a change in their rod shape.
There were no foreign microflora in the samples examined. This
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FIGURE 4

Microscopic preparations of fermented milk product: control sample (A), 0.0075% CH (B), 0.01% CH (C).

may be due to the high content of secondary metabolites, such as
benzoic acid, which prevent contamination of the product by other
microorganisms (105).

Thus, the effective interaction of L. bulgaricus with chitosan
is due to the presence in its 1850/mol structure of glucosamine
monomers which, in an acidic environment, perform a multipoint
ionic interaction with negatively charged teichoic acid molecules
of the lactic acid bacteria cell wall. With increasing chitosan
concentration, the process of lactose catabolism by L. bulgaricus

and the accumulation of the lactic acid slows down. As a result
of this process, the shelf life of the fermented milk product
is significantly increased. At the same time 0.01% chitosan
provided a high level of lactic acid bacteria and improved
sensory characteristics of the product during 17 days storage. The
concentrations of chitosan used did not give astringent taste to the
fermented dairy product.

4 Conclusions

This study presents the results of a comparative study of
the effect of oligochitosans and chitosan on the lactic acid
fermentation process during cultivation of L. bulgaricus and long-
term storage. The foundation of this study was the potential
utilization of the ionic interaction between cationic polysaccharides
and negatively charged L. bulgaricus cells to regulate lactic acid
synthesis. Depending on the molecular weight, concentration, and
molecules size of oligochitosans and chitosan effect on lactic acid
synthesis due to intracellular or extracellular interactions during
cultivation of L. bulgaricus and long-term storage of the fermented
dairy product. When L. bulgaricus was cultured in the presence
of 0.0025% 25.4 kDa oligochitosan, 45.3 kDa oligochitosan, and
350 kDa chitosan, their molar concentrations were 0.99 × 10−6,
0.56 × 10−6, and 0.75 × 10−7 mol/L, respectively. At the same
time, the total content of glucosamine monomers in these samples
was the same and amounted to 1.39 × 10−4 mol/L. After 24 h
of cultivation, the lactic acid content in the fermented milk
samples was 0.087 mol/L in the control sample, 0.255 mol/L
in sample with 25.4 kDa oligochitosan, 0.228 mol/L in sample
with 45.3 kDa oligochitosan, and 0.089 mol/L in sample with
350 kDa chitosan. At equal glucosamine monomers content,
oligochitosans accelerate the synthesis of lactic acid, while chitosan

has no such an effect compared to the control sample. These
results indicate different mechanisms of action of oligochitosans
and chitosan on the synthesis of lactic acid. With increasing
concentrations of oligochitosans, a slowdown in the synthesis of
lactic acid is observed. At the same time, its content remained
higher than in the control sample. During long-term storage
(17 days) of dairy product fermented with oligochitosan, further
accumulation of lactic acid, decrease in pH and L. bulgaricus

content occurred. The results obtained confirm that oligochitosans
can be used as stimulators of lactic acid synthesis based on lactose
containing substrates industrial fermentation using L. bulgaricus

starter cultures.
Chitosan with molecular weight 350 kDa had the opposite

effect on metabolic processes in fermented dairy product. With
increasing chitosan concentration, lactic acid and propanol
synthesis slowed down and the content of saturated and
unsaturated fatty acids significantly increased. As a result, the
titratable acidity decreased and the L. bulgaricus content increased.
The result was an increase in the shelf life of the fermented
dairy product. Chitosan provided low acidity of the product, high
content of biologically active substances, increased L. bulgaricus

content and better sensory characteristics compared to samples
with addition of oligochitosans. The concentrations of chitosan
used did not give astringent taste to the fermented dairy product.
Further prospects are related to the study of the effect of 350
kDa chitosan on the technological processes of lactic acid bacteria
various strains cultivation used in the production of commercial
fermented dairy products.
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