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Introduction: To achieve and maintain adequate weight, people with cystic 
fibrosis (CF) May often consume energy-dense, nutrient-poor foods high in 
added sugars and refined carbohydrates; however, little is known about the 
glycemic and metabolic effects of dietary composition in this patient population. 
The objective of this pilot study was to investigate the safety and tolerability of a 
low glycemic load (LGL) diet in adults with CF and abnormal glucose tolerance 
(AGT).

Methods: Ten adults with CF and AGT completed this prospective, open-
label pilot study. Mean age was 27.0  ±  2.1  years, 64% were female, and all had 
pancreatic insufficiency. Each participant followed his/her typical diet for 2 
weeks, then transitioned to a LGL diet via meal delivery service for 8 weeks. The 
primary outcome was change in weight from baseline to study completion, with 
safety established if no significant decline was noted. Other key safety outcomes 
included change in hypoglycemia measured by patient report and continuous 
glucose monitoring (CGM). Exploratory outcomes included changes in other 
CGM measures, body composition by dual energy X-ray absorptiometry (DXA), 
and patient reported outcomes.

Results: There were no significant changes in weight or in subjectively-reported 
or objectively-measured hypoglycemia. Favorable non-significant changes 
were noted in CGM measures of hyperglycemia and glycemic variability, DXA 
measures of fat mass, and gastrointestinal symptom surveys.

Discussion: A LGL dietary intervention was safe and well tolerated in adults with 
CF and AGT. These results lay the groundwork for future trials investigating the 
impact of low-glycemic dietary interventions on metabolic outcomes in the CF 
population.
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Introduction

Maintenance of a healthy body mass index (BMI) is associated 
with reduced morbidity and mortality in persons with cystic 
fibrosis (PwCF) (1, 2). Because of this, CF nutritional guidelines 
recommend maintaining a BMI at or above the 50%ile for age for 
children and adolescents, ≥22 kg/m2 in adult females and ≥ 23 kg/
m2 in adult males. To achieve and maintain adequate weight, 
pwCF are encouraged to consume a caloric intake of 120–150% of 
the dietary reference intake (DRI) for the typical healthy adult 
(3–7). Historically, this concern for malnutrition often led 
providers to recommend high-calorie diets without concern for 
dietary quality, resulting in a tendency for PwCF to overconsume 
energy-dense, nutrient-poor foods, particularly foods high in 
added sugars and refined carbohydrates (8–10). High-
carbohydrate intake May lead to complications such as 
dysglycemia (particularly early post-prandial hyperglycemia and 
late post-prandial hypoglycemia), inflammation, and 
gastrointestinal dysmotility, predisposing to obesity, metabolic 
syndrome and cardiovascular disease (11).

Dietary recommendations for children and adults with CF are 
based primarily on consensus and expert opinion. Current guidelines 
do not specify the composition of carbohydrate intake apart from 
avoiding artificial sweeteners and closely monitoring carbohydrate 
intake to maintain glycemic control (2, 5–7). Dietary changes are 
commonly used for treatment of CF-related diabetes (CFRD), which 
affects up to half of adults with CF, despite the lack of efficacy data 
(12). Thus, research is needed to determine whether modifiable 
dietary factors could aid in the management of dysglycemia and 
prevention of associated complications (10, 13, 14).

Glycemic index (GI) quantifies the rise in blood glucose during 
the first two hours after consumption of a food or meal, reflecting the 
rate by which carbohydrates are digested and/or metabolically 
transformed into glucose. Glycemic load (GL), the multiplicative 
product of GI and the amount of carbohydrate consumed, reflects how 
blood glucose is affected by standard portions of carbohydrate-
containing foods. Diets with a low GI (LGI) and low GL (LGL) May 
include non-starchy vegetables, legumes, minimally processed grains, 
and temperate fruits, with reduction of refined grains, starchy 
vegetables, fruit juices, and concentrated sweeteners. A LGL diet also 
typically incorporates a reduction in total dietary carbohydrate. In 
people with both type 1 and type 2 diabetes mellitus, a LGL diet has 
been shown to improve glycemic variability, HbA1c levels, insulin 
sensitivity, and quality of life without increasing hypoglycemic events 
(15–18).

Few studies have prospectively evaluated the impact of dietary 
quality on glycemic control and body composition in PwCF. Feeding 
trials, where participants live in confined quarters with close 
monitoring to ensure adherence, have higher internal validity but 
lower external validity compared to trials relying on nutrition 
education and dietary counselling. When assessing dietary 
interventions under free-living conditions, food delivery can enhance 
adherence and increase the rigor of trials aimed at evaluating safety 
and efficacy. As PwCF live longer with highly effective modulator 
therapy (HEMT) and as the prevalence of obesity, cardiovascular 
disease, and metabolic syndrome increases in PwCF (19–24), it is 
crucial to understand the effects of dietary composition on short- and 
long-term endocrine, gastrointestinal, and pulmonary outcomes.

The goal of this pilot study was to determine the safety and 
tolerability of an LGL diet provided via home delivery on dysglycemia 
and body composition in adults with CF and abnormal glucose 
tolerance (AGT). We hypothesized that an LGL diet over an eight-
week period would be  well tolerated and associated with weight 
maintenance in adults with CF.

Materials and methods

Study design and setting

This was a 10-week prospective, open-label study beginning with 
2 weeks of typical diet followed by 8 weeks of the LGL dietary 
intervention provided via home meal delivery service. Study visits 
took place in the Boston Children’s Hospital/Brigham and Women’s 
Hospital (BCH/BWH) CF Center. The study was approved by the 
Boston Children’s Hospital Institutional Review Board (IRB) and 
registered on clinicaltrials.gov (NCT#04529853). Written informed 
consent was obtained from all participants.

Study population

Study enrollment took place between October 2021 and May 
2023. Participants were recruited from the BCH/BWH CF Center. 
Eligibility criteria included adults aged 18–70 years with an established 
diagnosis of CF, pancreatic insufficiency, and a history of documented 
abnormal glucose tolerance, either impaired glucose tolerance (IGT) 
or indeterminate glycemia (INDET; 1-h glucose >200 mg/dL). 
Exclusion criteria included pregnancy, history of solid organ 
transplantation, FEV1 < 50%, BMI <20 or > 28 kg/m2, enteral nutrition 
dependence, use of antibiotics or systemic supraphysiologic 
glucocorticoids within 1 month, initiation of a cystic fibrosis 
transmembrane conductance regulator (CFTR) modulator within 
3 months, current adherence to a LGL or other carbohydrate-restricted 
diet (carbohydrates <30% total daily caloric intake), current use of 
insulin, or a diagnosis of CFRD (HbA1c ≥6.5% or 2-h OGTT glucose 
≥200 mg/dL). The diagnoses of IGT, INDET and CFRD were 
confirmed by chart review, including OGTT and HbA1c levels 
obtained within the preceding 2 years, using the criteria established 
by both the American Diabetes Association (ADA) and Cystic Fibrosis 
Foundation (CFF) (3). These BMI criteria were chosen to avoid who 
might be at risk for becoming underweight if weight loss occurred 
during the study period, and also to include those with mild 
overweight as this would be unlikely to impact glycemia while also 
reflect the increasing frequency of mildly elevated BMI values 
observed in the post-ETI era.

Clinical assessments

Study visits took place at baseline and after completion of the 
8-week feeding period (10 weeks). At each visit, anthropometric data 
were collected, and participants completed questionnaires regarding 
quality of life (QoL, Cystic Fibrosis Questionnaire-Revised [CFQ-R]), 
gastrointestinal symptoms (Patient Assessment of Constipation [PAC-
SYM] Score (25), Patient Assessment of Gastrointestinal Symptoms 
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[PAGI-SYM] Score (26), Bristol Stool Chart), and activity level 
(Modified Activity Questionnaire [MAQ] score) (27). After study 
completion, participants also completed a non-validated questionnaire 
regarding LGL diet tolerability, which included 5 questions assessing 
diet satisfaction, hunger, diet ease, taste, and diet recommendation 
likelihood using a 10-point Likert scale (Supplementary Figure S1).

Baseline clinical characteristics were obtained by questionnaire 
and included medical history, pancreatic insufficiency (defined as 
pancreatic enzyme replacement requirement), medications, 
hospitalizations, and pulmonary exacerbations over the past year. 
Race and ethnicity were self-reported. Height and weight were 
measured on a calibrated wall-mounted stadiometer and electronic 
scale, respectively. Medical records were reviewed for CFTR genotype, 
confirmation of pulmonary exacerbations, and recent spirometry 
results (within 3 months), including percent predicted forced 
expiratory volume in 1 s (FEV1) and forced vital capacity (FVC).

Dietary intervention

After enrollment, participants continued their typical diet with no 
restrictions on carbohydrate consumption or sugar content for 
14 days. Dietary intake data were collected by the study dietitian twice 
during the first week of the typical diet period and analyzed using the 
Nutrition Data System for Research software version 2022, developed 
by the Nutrition Coordinating Center (NCC), University of 
Minnesota, Minneapolis, MN. The study dietitian then determined 
minimum caloric requirement for each participant utilizing the 
Harris-Benedict (HB) equation to estimate basal metabolic rate 
(BMR). The BMR was multiplied by a stress factor (SF) between 1.4 
and 2.0 to account for the caloric demands of activities of daily living 
(ADL), physical activity, and disease severity. The study dietician then 
cross-checked these calculated values with each participant’s dietary 
intake data obtained during the typical diet period and used the 
higher of these values as the minimum caloric requirement for the 
LGL dietary intervention period.

After the typical diet period, each participant transitioned to a 
LGL diet (macronutrient breakdown: carbohydrate 30%, fat 50%, 
protein 20%; >90% food items with glycemic load <55) for the next 8 
weeks (Supplementary Figure S2). Pancreatic enzyme replacement 
therapy (PERT) was adjusted by study physicians to account for 
changes in dietary fat. All meals and snacks were provided by the food 
delivery service Metabolic Meals™. Participants were encouraged to 
consume only those foods delivered via the delivery service, however 
also received educational materials and a detailed list of acceptable 
food items to account for real-world dietary challenges. Consumption 
of water and sugar-free beverages was unrestricted. Study staff 
communicated with each participant on a weekly basis to encourage 
dietary adherence, query instances of hypoglycemia symptoms, and 
address any questions.

Laboratory and glycemic measures

At each study visit, participants underwent blood draw for 
HbA1c, erythrocyte sedimentation rate (ESR), and C-reactive protein 
(CRP) levels. HbA1c levels were measured using an NGSP-
certified instrument.

Each participant received education about the signs and symptoms 
of hypoglycemia and was provided a glucometer to check fingerstick 
blood glucose values if these symptoms occurred. A blinded CGM 
sensor (Dexcom G6 Pro, Dexcom Inc., San Diego CA, mean absolute 
relative difference 9% (28)) was placed at the initial study visit, and 
participants were taught how to change sensors every 10 days. Sensors 
were mailed back to the study team, and data were uploaded to the 
Dexcom Clarity application.

Weight and body composition

Participants underwent whole body dual-energy X-ray 
absorptiometry (DXA) scans for body composition analyses at 
baseline and study completion (Hologic Horizon densitometer, 
Hologic Inc., Bedford, MA). Participants were provided a calibrated 
digital scale at baseline and reported home-measured weight on a 
weekly basis.

Statistical analysis

Statistical analyses were performed using STATA (version 16, 
2019; College Station, TX: StataCorp LLC). All tests were two-sided, 
and p < 0.05 was considered statistically significant. The primary 
outcome measure was change in weight from baseline to study 
completion, with safety established if no significant decline in weight 
was noted from baseline to study completion. Secondary outcomes 
included change in key CGM measures (average glucose [AG], 
standard deviation [SD], coefficient of variation [CV], % time in range 
70–180 mg/dL [TIR], % tighter time in range [70–140], % 
time > 140 mg/dL, >180 mg/dL, >250 mg/dL, <70 mg/dL and < 54 mg/
dL), DXA-derived body composition measures, biochemical values 
(HbA1c, ESR, CRP), and questionnaire data. The normality of the 
paired difference for each primary and secondary outcome was 
assessed with the Shapiro–Wilk test. Paired t-tests and the Wilcoxon 
signed rank test were used for outcomes with normally and 
non-normally distributed data, respectively.

The key safety concern with this dietary intervention was weight 
loss, which can be detrimental in CF; therefore, the study was powered 
to detect a clinically significant decline in weight over the 10-week 
study period. Sample size calculations were based on prior published 
data estimating average expected weight variability over a 3-month 
period without dietary or other medical intervention in adults with 
CF (1.68 ± 1.71 kg) (29). Based on these data, a sample size of 10 
patients would be needed to have an 80% power to detect a clinically 
significant weight difference using a two-sided test with 5% type 1 
error. Given that this was a pilot and feasibility study, secondary 
outcomes were exploratory and not considered in power calculations.

Results

Participant flow and baseline 
characteristics

Eleven participants were enrolled, 10 of whom completed the 
study (Supplementary Figure S1). Upon enrollment, 5 participants 
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had evidence of pre-diabetes (HbA1c 5.7–6.4%), 8 participants had 
IGT on OGTT, and 2 participants met criteria both for pre-diabetes 
and IGT. No participant was enrolled purely with INDET. The average 
time between eligibility data and enrollment was 10.9 months (median 
9 months, range 0–22.8 months). Four of the 11 participants had 
enrollment data older than 12 months. Baseline clinical characteristics 
of all participants (n = 11) are summarized in Table 1. Mean age was 
27 ± 2 years (range 19–45 years). Seven participants (63.6%) were 
female, 9 (82%) had at least one copy of the F508del mutation, and all 
had a history of exocrine pancreatic insufficiency. All but one 
participant was taking a CFTR modulator (90.9%), the majority of 
whom were taking highly effective CFTR modulator therapy 
(elexacaftor-tezacaftor-ivacaftor, ETI). None of the participants 
initiated or changed modulator therapy in the 1-year preceding 
enrollment. The average percent predicted forced expiratory volume 
in 1 s (FEV1) was 86%, BMI 24 kg/m2, and HbA1c 5.6%. One 
participant dropped out of the study <1 week into the dietary 
intervention phase due to study-independent personal concerns, and 
the remainder completed the dietary intervention. Of the remaining 
10 participants, 8 provided DXA body composition data at baseline 
and study completion.

Baseline nutrition data from participants’ run-in period showed 
a macronutrient composition of 44% of energy from carbohydrate, 
38% from fat and 18% from protein. Carbohydrate intake (120%) and 
added sugar (171%) exceeded recommendations for the general 
population (Table 1).

Weight and body composition

From baseline to study completion, there were no significant 
changes in weight (mean 64.8 vs. 64, median 62 vs. 61.5, p-value 0.26) 
or BMI (mean 24.1 vs. 23.8, median 24.3 vs. 23.6, p-value0.23) 
(Table 2). No participant experienced a weight change >7%.

DXA body composition analyses showed non-significantly 
reduced fat mass, percent fat, and fat mass index after the LGL dietary 
intervention (n = 8; Table 2). With exclusion of one participant who 
significantly decreased activity level during the dietary intervention 
phase, the remaining cohort (n = 7) showed significant reductions in 
% fat mass, total fat mass, trunk fat mass, and % truncal fat 
(Supplementary Table S1). Figure 1 depicts the individual and average 
changes in % fat and fat mass pre- and post-LGL diet.

Glycemic outcomes

During the dietary intervention phase, there were no subjective 
episodes of hypoglycemia reported by participants, nor were any 
significantly low fingerstick glucose values identified (<54 mg/dL). 
HbA1c did not change over the course of the study period (mean 5.7% 
vs. 5.65%, median 5.5% vs. 5.7%, p = 0.55, Table 2). Similarly, there 
were no changes in CGM-measured hypoglycemia pre- and post-LGL 
dietary intervention (% time < 54: mean 0.3% vs. 0.5%, median 0.2% 
vs. 0.2%, p = 0.36; % time < 70: mean 1% vs. 1.4%, median 0.6% vs. 
1.2%, p = 0.28, Table 2). Several CGM measures showed non-significant 
changes favoring the LGL dietary intervention phase, including 
reductions in AG, SD, % time > 180, % time > 140, % time > 250 mg/dL 
and increase in % TIR and %TTIR (Table 2). Figure 2 displays the 

individual and average changes in TIR and % time > 180 mg/dL 
throughout the study duration.

Other exploratory outcomes

No significant changes were noted in inflammatory markers (ESR, 
CRP) or questionnaire data, though there were favorable 
non-significant improvements in self-reported gastrointestinal 
symptoms (PAC, PAGI SYM; Table 2). Of the 8 participants with 
complete questionnaire data, 7 (87.5%) had improvement in 
PAGI-SYM score and 8 (100%) in PAC score. There were no significant 
changes in CFQ-R scores (data not shown). In terms of diet tolerability, 
6 of 8 (75%) reported overall satisfaction with the diet, 5 (63%) felt 

TABLE 1 Summary statistics.

n  =  11

Age (years) 27.0 ± 2.1

Female, n (%) 7 (63.6%)

Race, n (%)

 - Caucasian 11 (100%)

Ethnicity, n (%)

 - Hispanic

 - Non-Hispanic

1 (9.1%)

10 (90.9%)

Height (cm)

 - Females

 - Males

163.6 ± 3.0

157.9 ± 2.0

173.5 ± 2.0

Weight (kg) 64.5 ± 3.0

BMI (kg/m2) 24.0 ± 0.62

Genotype, n (%)

 - F508del homozygous

 - F508del heterozygous

 - Other

6 (54.5%)

3 (27.3%)

2 (18.2%)

Pancreatic insufficiency, n (%) 11 (100%)

FEV1 (% predicted) 86 ± 6

FVC (% predicted) 96 ± 5

HbA1c 5.6 ± 0.1

CF liver disease 4 (36.4%)

Modulator use, n (%)

 - Elexacaftor/tezacaftor/ivacaftor

 - Ivacaftor

10 (90.9%)

9 (81.8%)

1 (9.1%)

Baseline nutrition data (% daily value)

 - Total calories (kcal)

 - Carbohydrate (g)

 - Fat (g)

 - Protein (g)

 - % calories from carbohydrate

 - % calories from fat

 - % calories from protein

 - Total sugars (g)

 - Added sugars (g)

2,975

329 (120%)

130 (167%)

131

44%

38%

18%

139.5

86 (171%)

Data displayed as mean ± standard error of the mean or n (%) unless otherwise stated.
FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; HbA1c, hemoglobin A1c.
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that the diet was easy to follow, and 7 (88%) would overall recommend 
the diet to others (Supplementary Table S1). After completion of the 
LGL diet, participants reported an average tolerability score of 33 out 
of 50 total points (Table  2). None of the participants stopped the 
dietary intervention early due to side effects or intolerance.

Discussion

In this prospective, open-label pilot study, a LGL dietary 
intervention was safe and well tolerated over 8 weeks in PwCF and AGT, 
with no evidence of significant weight loss or subjectively-reported or 
objectively-measured hypoglycemia. Non-significant changes toward 
improvements in CGM-derived measures of hyperglycemia, DXA 
measures of fat mass, and gastrointestinal symptom scores were noted 
after the LGL diet, though the small sample size likely limited the power 
to detect significant changes in these exploratory outcomes. To our 
knowledge, this is the first study utilizing a standardized meal delivery 
service to prospectively evaluate the impact of dietary modification on 
weight, body composition, and dysglycemia in PwCF. These results 
support future larger, longer interventional studies investigating dietary 
quality in this patient population.

Nutritional optimization has long been a focus of care in PwCF, 
as maintaining a healthy BMI has been associated with improved 
lung function, clinical outcomes, and overall survival (1–3, 30). The 
Academy of Nutrition and Dietetics, CFF, ADA, and European 
Society for Clinical Nutrition and Metabolism (ESPEN) recommend 
utilizing the same dietary macronutrient percentages as 
recommended for the general population (40–50% calories from 
carbohydrate, 35–50% from fat, and 20% from protein) (3, 5, 31). 
However, these recommendations are built on general consensus 
rather than evidence and do not specify the type of carbohydrate (2, 
5–7). Historically, many PwCF have tended to maintain BMI by 
consuming energy dense but nutritionally devoid food items (14, 32). 
For example, a cross-sectional study comparing 80 children ages 
2–18 years with CF and gender- and age-matched controls found that 
children with CF consumed significantly more energy-dense, 
nutrient poor foods, as well as a higher number of sugar-added 
beverages (8). We previously conducted a cross-sectional analysis in 
38 adolescents and adults with CF compared to 19 gender- and 
age-matched controls and found that participants with CF consumed 
significantly higher GI foods, a greater proportion of calories from 
fat, and a lower proportion from protein (10). Baseline nutrition data 
from our current study showed notably higher intake of carbohydrates 
and added sugars than the recommended percent daily value.

TABLE 2 Changes in glycemic and body composition measures from 
baseline to post-LGL diet.

Baseline Post-LGL 
diet

p-value

Body composition

Weight (kg) 64.8 ± 3.3

(57.2, 72.3)

64.0 ± 3.2

(56.9, 71.2)

0.26

BMI (kg/m2) 24.1 ± 0.6

(22.6, 25.5)

23.8 ± 0.6

(22.5, 25.1)

0.23

Total fat mass (gm) 23,159 ± 2,681

(16,818, 29,498)

22,133 ± 2,848

(15,398, 28,869)

0.11

Total lean mass (gm) 43,545 ± 3,868

(34,398, 52,691)

43,552 ± 3,980

(34,138, 52,965)

0.99

% fat mass 34 ± 3.7

(25.4, 42.7)

33 ± 3.9

(23.7, 42.4)

0.09

Trunk fat (gm) 10,294 ± 1,449

(6,867, 13,720)

9,805 ± 1,502

(6,253, 13,357)

0.14

% trunk fat 30.7 ± 3.7

(22, 39.4)

29.8 ± 4.0

(20.3, 39.3)

0.18

Fat mass index (FMI, 

kg/m2)

8.6 ± 1.1

(6.1, 11.1)

8.2 ± 1.1

(5.6, 10.9)

0.16

Lean mass index (LMI, 

kg/m2)

15.8 ± 0.8

(14, 17.5)

15.8 ± 0.8

(13.8, 17.8)

0.68

Appendicular lean mass 

index (ALMI, kg/m2)

6.5 ± 0.5

(5.4, 7.6)

6.6 ± 0.5

(5.5, 7.6)

0.55

Glycemic measures

HbA1c (%) 5.7 ± 0.2

(5.2, 6.3)

5.6 ± 0.2

(5.2, 6.1)

0.55

AG (mg/dL) 127.1 ± 5.5

(114.8, 139.5)

120.7 ± 3.1

(113.7, 127.7)

0.16

SD (mg/dL) 29.8 ± 2.3

(24.6, 35.1)

28.5 ± 1.5

(25.1, 31.9)

0.96

CV (%) 23.2 ± 1.0

(21, 25.4)

23.6 ± 1.1

(21.1, 26.2)

0.58

% time < 54 mg/dL 0.2 ± 0.1

(0.05, 0.4)

0.5 ± 0.2

(0.05, 0.9)

0.36

% time < 70 mg/dL 1.0 ± 0.5

(0.1, 2)

1.4 ± 0.4

(0.4, 2.4)

0.28

% time 70–180 mg/dL 91.4 ± 2.6

(85.6, 97.2)

94.2 ± 0.9

(92.2, 96.2)

0.48

% time 70–140 mg/dL 74.2 ± 5.3

(62.3, 86)

78.8 ± 5.4

(73.2, 84.4)

0.51

% time > 180 mg/dL 7.6 ± 2.7

(1.6, 13.7)

4.4 ± 0.8

(2.5, 6.4)

0.17

% time > 140 mg/dL 24.8 ± 2.5

(12.6, 37.1)

19.8 ± 2.5

(14.1, 25.5)

0.28

% time > 250 mg/dL 1.1 ± 0.5

(0.2, 2.3)

0.3 ± 0.1

(0.03, 0.6)

0.39

Questionnaire data

PAGI 13.3 ± 2.6

(7, 19.6)

8.7 ± 6.3

(0, 24.2)

0.07

(Continued)

TABLE 2 (Continued)

PAC 13.3 ± 5.7

(0.7, 27.2)

5.3 ± 1.9

(0.7, 9.9)

0.16

Bristol 3.7 ± 0.6

(2.1, 5.3)

3.6 ± 0.4

(2.7, 4.5)

0.87

MAQ 11,386 ± 6,188

(0, 25,818)

12,358 ± 9,735

(0, 39,431)

0.72

Data displayed as average ± standard error (95% confidence interval).
Weight, BMI, CGM measures, n = 10; DXA measures, n = 8; Questionnaire data n = 7.
LGL, low glycemic load; BMI, body mass index; AG, average glucose; SD, standard deviation; 
CV, coefficient of variation; PAGI, patient assessment of gastrointestinal symptoms; PAC, 
patient assessment of constipation; MAQ, modified activity questionnaire.
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The introduction of HEMT has changed the nutritional landscape 
of CF. HEMT has been associated with significant weight gain 
occurring within the first 6 months of initiation and has contributed 
to rising rates of overweight and obesity in people with CF after FDA 
approval in the fall of 2019 (24, 32, 33). According to the 2022 CF 
Foundation Patient Registry Annual Report, 40.9% of adults with CF 
met criteria for either overweight or obesity (44.6% men, 36.9% 
women) (12). Nutrition studies investigating dietary quality in the 
post-modulator era are critical to guide the development of a new 
approach for optimizing not only BMI but also other important 
outcomes including body composition and glycemia.

Studies investigating the relationship between macronutrient 
distribution and dysglycemia in PwCF are limited and show varied 
results. One study in 36 adults with CF and a broad range of glycemia 
(NGT, AGT, and CFRD) compared 3-day self-reported dietary recall 
data to CGM data collected over the same period, finding no 
association with macronutrient content or total energy and measures 
of glycemic variability including SD, CV, mean amplitude of 
glycemic excursions (MAGE); however, carbohydrate quality, GI, 
and GL were not assessed (13). On the other hand, another study in 
18 adults with CF without CFRD found that SD and MAGE were 

positively correlated with carbohydrate content, sugar, added sugar, 
and GL. Percent time > 7.8 mmol/L (140 mg/dL) was correlated with 
GI, while % time 3.9–7.8 mmol/L (70–140) was negatively correlated 
with added sugar, GI and GL (14). One prospective study compared 
fasting glucose, HbA1c, and triglyceride levels in 44 children and 
adolescents with CF randomized to receive nutritional instruction 
for either a high-fat, high-calorie (HFHC) diet or a low-glycemic 
HFHC diet over a 3-month period (34). Children receiving 
instruction on a low-glycemic diet had a significant decrease in 
fasting glucose, HbA1c and triglyceride levels as well as a 
significantly greater increase in weight; however, this study was 
conducted under free-living conditions without any measures of 
dietary adherence. Additionally, GI was measured via participant-
reported nutrition logs, CGM was not utilized, and significant 
drop-out occurred in this study (34), limiting generalizability of the 
results. There are no prior published dietary intervention studies 
investigating glycemic outcomes that have utilized home delivery of 
meals in CF.

In our study, we identified favorable non-significant changes in 
CGM measures of hyperglycemia, even though none of our 
participants had CFRD and our sample size was relatively small. Most 
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Percent change in % fat, fat mass and FMI pre- and post-LGL diet percent change in key DXA body composition metrics for each participant from 
study baseline to completion, as well as the average change across the entire study cohort.
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participants had HbA1c levels that were either normal or in the range 
of pre-diabetes; given that the dietary intervention phase of our study 
took place over only 8 weeks, the lack of meaningful changes in 
HbA1c in our population is not surprising.

While insulin is currently the only known effective treatment 
option for CFRD, it has not yet proven to be clinically beneficial for 
individuals with CF who have AGT (3, 14). AGT has been associated 
with earlier progression to CFRD and poorer clinical outcomes (35–
37). Although the size of our cohort and relatively short study period 
cannot address the long-term effect of a LGL diet on key clinical 
outcomes and/or CFRD progression, these results highlight the need 
for long-term prospective studies designed to investigate the impact 
of dietary modification on future development of CFRD and 
pulmonary decline.

Data from our current study showed no significant changes in 
weight, BMI or lean mass over the 8-week intervention period, but did 
show several favorable non-statistically significant decreases in 
multiple measures of fat mass. While BMI has classically been the 
primary measure of nutritional outcomes in PwCF, there is interest in 
evaluating other potentially more meaningful predictors of health 
status in CF that better distinguish between fat and lean mass. Many 
centers are starting to utilize DXA and/or bioelectrical impedance 
analysis (BIA) to measure body composition in PwCF (10, 38–40). 
Our body composition results are particularly noteworthy given that 
prior data in PwCF have shown positive correlations between lung 
function and measures of lean mass and negative correlations with 
measures of fat mass (% fat, % truncal fat, fat mass index [FMI, kg/
m2]) when adjusting for age, gender and BMI (9, 10, 38, 40–42). 
While we cannot draw definitive conclusions from these preliminary 
results, it is certainly possible that a diet that only partially restricts 
carbohydrate consumption and instead focuses more on carbohydrate 
quality would minimize the risk of significant weight loss by 
preserving lean mass, potentially leading to clinically advantageous 
body composition changes over the long-term for PwCF. Larger, long-
term studies are needed to answer this question.

Up to 85% of people with CF experience gastrointestinal 
symptoms, including malabsorption, gastroesophageal reflux 
(35–81%), gastroparesis (38%), chronic abdominal pain (60% 
children, 36% adults), constipation (47%), distal intestinal obstruction 
syndrome (~16%), and small intestine bacterial overgrowth (30–50%) 
(43). Some have theorized that high-GI carbohydrates cannot 
be  metabolically used by gut microbes, resulting in decreased 
production of gut-microbiota-generated short chain fatty acids, and 
shift from an anti- to pro-inflammatory state (44). The majority of our 
participants had normal baseline inflammatory markers; therefore, 
we did not detect any notable changes in these values. However, our 
study did find non-significant changes toward improvement in 
gastrointestinal symptoms via validated questionnaires, though these 
values were not statistically significant. The fact that symptom scores 
did not worsen over the course of the study despite the substantial 
change in dietary composition is also reassuring.

Strengths of this study include the comprehensive, prospectively 
measured clinical, DXA, and CGM measures, as well as utilization of 
a meal home delivery service for optimal dietary adherence. However, 
several important limitations of this study should be  noted. 
Participants were recruited from a single study center and 
geographical region with limited racial and ethnic representation. 
Participants enrolled in this study were relatively healthy with mild 

impairments in lung function; individuals with more advanced lung 
disease May have a different clinical response to a dietary intervention. 
While this pilot study was appropriately powered for our primary 
outcome, the sample size was small, thus limiting detection of any 
statistically significant changes in exploratory outcome measures such 
as CGM measures and body composition. Three individuals did not 
complete a follow-up DXA analysis, which likely further limited the 
power to detect changes in body composition results. The time period 
between DXA scans was also relatively short (2 months); however, 
studies in other patient populations have found that DXA analysis can 
accurately detect changes in body composition over time intervals 
such as this (45, 46). In addition, physical activity was measured via 
participant-reported surveys and not by a wearable activity tracker or 
fitness monitor. While meal delivery significantly improves dietary 
intervention compliance, we  cannot definitively know if all 
participants strictly adhered to the dietary intervention throughout 
the entire study duration. However, participants received nutrition 
education and materials about acceptable LGL food items to account 
for this possibility. Utilization of a live-in/residential model would 
be the most ideal study design to ensure strict dietary adherence but 
was cost-prohibitive and logistically unfeasible for this study. Our 
study focused on changes in glycemia, not on beta-cell function or 
insulin secretory capacity. Mixed meal tolerance testing can be used 
in future larger studies to assess the impact of LGL diet on pancreatic 
endocrine function. Given the timing of the COVID-19 pandemic, 
many potential participants were lacking typical annual glycemic 
screening data, leading us to use a longer inclusion timeframe for our 
enrollment criteria (HbA1c or OGTT data within 2 years). This lack 
of data is in line with the 2022 CFF patient registry report, which 
showed only around 30% of adults with CF underwent recommend 
annual OGTT for diabetes screening. Given the known inter-
variability in glucose tolerance among PwCF, it is possible that 
glycemic status in those individuals with older data May have 
changed. Similarly, recent data regarding cholesterol levels and 
hepatic function were missing on the majority of participants at 
baseline, therefore we  could not assess the potential effect of a 
higher-fat diet on these metrics. Given the small sample size of this 
study, we did not have the power to stratify participants based on 
characteristics such and duration of CF-related dysglycemia or 
pancreatic enzyme replacement. Lastly while we did not include a 
control group in our pilot study, these data do support the need for a 
larger randomized control trial investigating nutritional intervention 
in PwCF.

In conclusion, this pilot study found that an 8-week LGL dietary 
intervention was safe and well tolerated in PwCF and AGT, with no 
evidence of significant weight loss or increase in hypoglycemia. 
Despite the small sample size, there were several favorable 
non-significant changes toward improvements in body composition, 
glycemia, and gastrointestinal symptoms. While this was intended 
primarily as a feasibility study, limiting conclusions that can be drawn, 
these results provide critical preliminary data to inform prospective 
long-term interventional studies designed to more comprehensively 
test the impact of a LGL diet on key clinical outcomes in PwCF, 
including those with more severe dysglycemia and CFRD. Particularly 
as rates of metabolic syndrome and CFRD in PwCF continue to 
increase, there is a great need for studies investigating the role of 
dietary quality to provide rigorous, evidence-based data guiding 
nutrition recommendations in the post-modulator era.
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