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Background: Observational studies indicate a correlation between food intake 
and allergic rhinitis. The potential interplay between the immune system and 
allergic rhinitis might contribute causally to both food intake and allergic rhinitis, 
providing promising therapeutic avenues. However, elucidating the causal 
relationship and immune-mediated mechanisms between food intake and 
allergic rhinitis remains a pending task.

Methods: We utilized a two-sample Mendelian randomization (MR) methodology 
to explore the causal relationship between food intake and allergic rhinitis. 
Furthermore, we investigated the potential causal relationship of immune cell 
signals with allergic rhinitis, as well as the potential causal relationship between 
food intake and immune cell signals. Moreover, employing both two-step 
Mendelian randomization and multivariable Mendelian randomization, we delved 
into the mediating role of immune cell signals in the causal relationship between 
food intake and allergic rhinitis. Leveraging publicly accessible genetic datasets, 
our analysis encompassed 903 traits, comprising 171 food intake features, 731 
immune cell features, and one trait related to allergic rhinitis.

Result: We found causal relationships between seven types of food intake and 
allergic rhinitis, as well as between 30 immune cell phenotypes and allergic 
rhinitis. Furthermore, our two-step Mendelian randomization analysis and 
multivariable Mendelian randomization analysis indicate that immune cells do 
not mediate the causal relationship between food intake and allergic rhinitis.

Conclusion: To the best of our knowledge, we  are the first to incorporate a 
large-scale dataset integrating immune cell features, food intake features, and 
allergic rhinitis into Mendelian randomization analysis. Our research findings 
indicate that there are causal relationships between six types of food intake 
and allergic rhinitis, as well as between 30 immune cell phenotypes and allergic 
rhinitis. Additionally, immune cells do not mediate these relationships.

KEYWORDS

Mendelian randomization, allergic rhinitis, B cells, granulocytes, food intake

OPEN ACCESS

EDITED BY

Raj Tiwari,  
New York Medical College, United States

REVIEWED BY

Alexandr Ceasovschih,  
Grigore T. Popa University of Medicine and 
Pharmacy, Romania
Andrew Swift,  
Liverpool University 
Hospitals NHS Foundation Trust,  
United Kingdom

*CORRESPONDENCE

Xin-hua Zhu  
 entzxh2003@163.com

RECEIVED 13 May 2024
ACCEPTED 09 September 2024
PUBLISHED 27 September 2024

CITATION

Zhang Z-q, Li J-y, Bao Y-w, Song Y-Q,  
Song D-x, Wang C and Zhu X-h (2024) 
Immunocytes do not mediate food intake and 
the causal relationship with allergic rhinitis: a 
comprehensive Mendelian randomization.
Front. Nutr. 11:1432283.
doi: 10.3389/fnut.2024.1432283

COPYRIGHT

© 2024 Zhang, Li, Bao, Song, Song, Wang 
and Zhu. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 27 September 2024
DOI 10.3389/fnut.2024.1432283

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2024.1432283&domain=pdf&date_stamp=2024-09-27
https://www.frontiersin.org/articles/10.3389/fnut.2024.1432283/full
https://www.frontiersin.org/articles/10.3389/fnut.2024.1432283/full
https://www.frontiersin.org/articles/10.3389/fnut.2024.1432283/full
https://www.frontiersin.org/articles/10.3389/fnut.2024.1432283/full
https://www.frontiersin.org/articles/10.3389/fnut.2024.1432283/full
mailto:entzxh2003@163.com
https://doi.org/10.3389/fnut.2024.1432283
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2024.1432283


Zhang et al. 10.3389/fnut.2024.1432283

Frontiers in Nutrition 02 frontiersin.org

1 Introduction

Previous studies have established a causal link between food 
intake and allergic rhinitis, as evidenced by the findings reported in 
these studies (1–6). Pathophysiologic changes occurring in the 
organism as a result of food intake involve epithelial barrier 
dysfunction and dysregulation of the immune response (7), it 
ultimately leads to Th1/Th2 dysregulation (8), which affects immune 
cell activity (9) and immune regulation (10) as well as leading to 
changes in interleukins in the body (11), which leads to the 
development of allergic rhinitis. In addition, numerous studies have 
shown that food intake leads to nasal pathophysiological changes in 
patients/mice, such as allergic symptoms, itchy eyes, sneezing, runny 
nose, and sleep disturbances (3, 12–14), which May be caused by 
immunoglobulin E (IgE)-mediated hypersensitivity to incoming 
allergens (15, 16). The relationship between food intake and allergic 
rhinitis has been reported in several clinical studies. Pang et al. (17) 
showed a possible association between seafood intake and allergic 
rhinitis through a retrospective study including (18, 19), in addition 
to Yoshihiro Miyake et al. (20) demonstrated an association between 
β-carotene-containing food intake and allergic rhinitis, and Farchi 
et al. (21) analyzed a study and came to a similar conclusion that nut 
and butter intake was associated with the development of allergic 
rhinitis. More interestingly, previous studies have shown that 
maternal intake of meat or n-6 polyunsaturated fatty acid-rich foods 
during pregnancy May increase the risk of allergic rhinitis in the 
fetus at birth (5, 22). Despite this, the precise mechanism underlying 
this causal relationship, particularly whether immune cells play a 
mediating role, remains enigmatic. Consequently, the primary 
objective of our study was to investigate whether immune cells 
function as mediators in the association between food intake and 
allergic rhinitis.

Food intake occurs in the context of environmental stimuli known 
as ambience (23), a complex physiological process necessary for 
survival. This process is influenced by assimilation mechanisms and 
the compatibility of food with a person’s appetite (24). When 
individuals engage in eating, they consider various factors, including 
the timing, type, and quantity of food. Habit, convenience, or 
opportunity often play a role in determining when to eat, rather than 
solely physiological need (25). Additionally, a myriad of external 
factors impact food intake and choices. These factors encompass the 
social and physical environment, including the presence of others, 
sounds, temperatures, odors, colors, time of day, and distractions. 
Notably, the temperature, odor, and color of food itself can have 
distinct effects on food intake and preferences (23). When given a 
choice of choosing foods, individuals typically base their decisions on 
pleasure and past experiences (25). However, contrary to the long-
held belief that eating is a homeostatic behavior in the body, recent 
evidence suggests that it is not solely an automatic response to energy 
deficiency. Instead, food intake can be  viewed as a long-term, 
integrative response aimed at maintaining stored energy levels in 
adipocytes (25). This integrated response involves complex 
interactions between various physiological systems and environmental 
cues. To summarize, food intake is a multifaceted process influenced 
by both internal physiological mechanisms and external 
environmental factors. Understanding these interactions is crucial for 
comprehending eating behaviors and their implications for health and 
well-being.

Allergic rhinitis, a common chronic allergic inflammatory disease, 
typically persists throughout a person’s lifetime (26, 27). It results from 
a type I hypersensitivity reaction in the nasal mucosa upon exposure 
to airborne allergens such as grass pollen, house dust mites, and 
animal dander. The hallmark symptoms of this condition include 
nasal congestion, watery rhinorrhea, pruritus, and paroxysmal 
sneezing (28). Notably, allergic rhinitis is associated with elevated 
immune cell recruitment (29). Previous studies have demonstrated a 
reduced quality of life among patients with allergic rhinitis, 
particularly among adults compared to adolescents (30). 
Epidemiological studies reveal that approximately 20 to 30% of adults 
and up to 40% of children are affected by this condition (31). The 
symptoms of allergic rhinitis can significantly impact a patient’s 
quality of life, causing frequent sleep disturbances and leading to 
impaired performance at work and school (32). Furthermore, this 
condition places a significant health burden on individuals, affecting 
their quality of life and associating with severe comorbidities such as 
asthma (33). Additionally, allergic rhinitis has a considerable impact 
on the healthcare economy, affecting education, productivity, and the 
utilization of healthcare resources (33).

The immune system, a dynamic and integrated network, primarily 
comprises a diverse array of immune cells distributed throughout the 
body. These cells work in concert to maintain tissue homeostasis and 
elicit protective immunity against external threats (34). Originating 
from stem cells in the bone marrow, these immune cells differentiate 
into multiple lineages, including granulocytes, macrophages, dendritic 
cells (DCs), T cells, B cells, and natural killer cells (NK cells) (35). 
They can respond to alterations in the internal and external 
environment, regulating immunity and safeguarding the host from 
pathogens, foreign substances, and malignant tumors (36). However, 
dysregulation of the immune system can result in suppressed or 
hyperactive immune cells, thereby influencing the initiation and 
progression of various diseases (37–39).

Dietary habits have long been identified as a potential 
environmental risk factor for the increasing incidence of autoimmune 
diseases (40, 41). Notably, high salt intake has been demonstrated to 
promote the differentiation of proinflammatory T helper cell 17 
(Th17) (42, 43). Similarly, high glucose intake also drives Th17 cell 
differentiation via the activation of transforming growth factor-β 
(TGF-β) (44). Consequently, the alterations in immune cells induced 
by dietary intake cannot be overlooked.

Recent studies have shown a high correlation between immune 
cells and allergic rhinitis (15, 45). For instance, Fokkens et al. (46) 
demonstrated that Langerhans cells play a crucial role in the nasal 
mucosa of allergic patients during allergic episodes, while Salib et al. 
(47) established a link between allergic rhinitis and mast cells. 
Furthermore, other researchers have shown that eosinophil elevations 
can also trigger allergic rhinitis attacks (48). Notably, allergic rhinitis 
is accompanied by a localized accumulation of activated T-helper cells, 
eosinophils, and neutrophils in the affected organ upon allergen 
exposure (49).

The aim of our study was to investigate the association between 
food intake-induced allergic rhinitis and immune cell-mediated 
allergic rhinitis, in order to gain a better understanding of the role of 
immune cells in the pathogenesis of food-induced allergic rhinitis. 
However, contrary to our expectations, the results indicated that 
immune cells do not serve as mediators in food intake-induced 
allergic rhinitis.
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2 Methods

2.1 Immunity-wide GWAS data

Summary statistics for each immunophenotype are publicly 
available in the GWAS Catalog, ranging from accession numbers 
GCST90001391 to GCST90002121. These statistics cover a total of 731 
immunophenotypes, including absolute cell counts (n = 118), median 
fluorescence intensity (MFI) reflecting surface antigen levels (n = 389), 
morphological parameters (MP) (n = 32), and relative cell counts 
(n = 192). These features span various developmental stages and cell 
types of immune cells. The original GWAS for immunophenotypes 
utilized data from 3,757 European individuals across non-overlapping 
cohorts. The instrumental variable (IV) significance level for each 
immunophenotype was set at 1 × 10^(−5). We pruned these SNPs 
using a linkage disequilibrium (LD) r2 threshold of <0.1 within a 
500 kb distance.

2.2 Food intake GWAS data

Summary statistics for each food intake phenotype can be accessed 
publicly in the GWAS Catalog. The significance level for each 
instrumental variable (IV) was set at 1 × 10^(−5). We pruned these 
SNPs using a linkage disequilibrium (LD) r2 threshold of <0.001 
within a 10,000 kb distance. The GWAS ID corresponding to each of 
the 171 food intake phenotypes can be  found in 
Supplementary Table S1.

2.3 Allergic Rhinitis GWAS data

The Allergic Rhinitis GWAS data were sourced from the 
public GWAS Catalog, with the GWAS ID being ebi-a-
GCST90018792. We  pruned these SNPs using a linkage 
disequilibrium (LD) r2 threshold of <0.001 within a 
10,000 kb distance.

2.4 Statistical analysis

MR analyzes the causal relationship between food intake and AR 
and explores whether immune cells act as mediators to mediate this 
process. In the absence of horizontal pleiotropy, the inverse variance 
weighting (IVW) method can be  the main method for analyzing 
causality in TSMR analyses (50). Prior to this, we  implemented 
Cochrane’s Q test to assess heterogeneity between IVs. If heterogeneity 
was detected (p < 0.05), a random-effects IVW model could provide 
more conservative estimates; otherwise, a fixed-effects IVW model 
would be used (51). Other MR analysis methods, including weighted 
median estimator (WM) and MR-Egger regression (52), can 
complement the IVW approach and provide wider confidence intervals 
(53). These three MR methods for causal inference have their own 
modeling assumptions. The IVW method is applicable in the absence of 
horizontal multinomiality (50); the WM method assumes that less than 
50% of IVs are horizontally multinomial (54); and MR-Egger regression 
assumes that more than 50% of IVs are affected by horizontal 
multinomiality (52).

We considered a possible causal relationship between food intake 
and allergic rhinitis if the results of the MR analysis were nominally 
significant (p < 0.05) (55). Results were considered reliable if a 
significant causal relationship between food intake and outcome was 
determined by two or more MR methods (56).

The existence of horizontal pleiotropy May challenge the second 
MR hypothesis; therefore, we adopted various methods to monitor 
possible horizontal pleiotropy. Specifically, the p-value of the 
MR-Egger intercept test and MR pleiotropy residual sum and outlier 
(MR-PRESSO) global test can be  used to assess the existence of 
horizontal pleiotropy, and p < 0.05 was considered statistically 
significant (56, 57). The MR-PRESSO outlier test can adjust horizontal 
pleiotropy by detecting and removing outliers (58), and the number 
of distributions in the MR-PRESSO analysis was set to 1,000 (59).

Additionally, we conducted a leave-one-out sensitivity analysis of 
the identified significant results to determine whether the causal 
relationship of the MR analysis was caused by a single SNP (60). Finally, 
a reverse MR analysis was performed between allergic rhinitis and the 
identified significant food intake using positive MR analysis to examine 
whether a reverse causal association existed. The reverse MR procedure 
was the same as that for the above MR analysis. TSMR analyses were 
performed using the ‘MR’ (version 0.5.6) in R software (version 4.2.1).

3 Results

3.1 Causal effect between food intake and 
allergic rhinitis

We evaluated whether 171 types of food intake 
(Supplementary Table S1) are causally related to allergic rhinitis. 
We primarily utilized the IVW method, and the results indicated 
causal associations between allergic rhinitis and 7 types of food intake. 
Cottage cheese intake was found to be causally associated with allergic 
rhinitis (odds ratio [OR] = 3.08, 95% confidence interval [CI] = 1.23–
7.71, p-value <0.05). Cake intake showed a causal association with 
allergic rhinitis (odds ratio [OR] = 0.66, 95% confidence interval 
[CI] = 0.44–0.99, p-value <0.05). Cheesecake intake demonstrated a 
causal association with allergic rhinitis (odds ratio [OR] = 2.12, 95% 
confidence interval [CI] = 1.09–4.14, p-value <0.05). Beer/cider intake 
was causally associated with allergic rhinitis (odds ratio [OR] = 1.34, 
95% confidence interval [CI] = 1.10–1.62, p-value <0.05). Turnip/
swede intake showed a causal association with allergic rhinitis (odds 
ratio [OR] = 1.93, 95% confidence interval [CI] = 1.24–2.98, p-value 
<0.05). Coffee intake was causally associated with allergic rhinitis 
(odds ratio [OR] = 0.73, 95% confidence interval [CI] = 0.54–0.98, 
p-value <0.05). Crispbread intake demonstrated a causal association 
with allergic rhinitis (odds ratio [OR] = 1.19, 95% confidence interval 
[CI] = 1.01–1.40, p-value <0.05) (Figure 1). Horizontal pleiotropy was 
assessed using the MR Egger method. The p-values for the MR-Egger 
regression intercepts were all greater than 0.05, indicating no evidence 
of horizontal pleiotropy (Supplementary Table S2). Heterogeneity tests 
were conducted using both the Inverse Variance Weighted and MR 
Egger methods, with p-values exceeding 0.05 for the other 6 types of 
food intake, besides coffee intake, suggesting no heterogeneity present 
(Supplementary Table S3). The LOO analysis revealed a consistent 
trend for all SNPs included in our analysis, and scatter plots further 
demonstrated the robustness of our study results 
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(Supplementary Figure S1). Subsequently, we  performed reverse 
Mendelian randomization analysis with allergic rhinitis as the 
exposure and food intake as the outcome (Supplementary Table S4). 
The results indicated no causal relationships (p-values >0.05) between 
them. Therefore, our analysis concludes that the causal relationships 
between the 6 types of food intake and allergic rhinitis remain reliable.

3.2 Causal effect between 
immunophenotypes and allergic rhinitis

To investigate whether immune cell phenotypes have a causal 
relationship with allergic rhinitis, we  conducted a two-sample 
Mendelian randomization analysis with 731 immune cell phenotypes 
as exposures and allergic rhinitis as the outcome. The results revealed 
that 30 immune cell phenotypes were causally associated with allergic 
rhinitis (p-value <0.05) (Supplementary Table S5). Subsequently, 
we performed reverse Mendelian randomization analysis to further 
validate our findings, which showed non-significant results (p-value 
>0.05) (Supplementary Table S6).

3.3 Causal relationship between food 
intake and allergic rhinitis mediated by 
immune phenotypes

To further investigate whether immune cells mediate the causal 
relationship between food intake and allergic rhinitis, we conducted 
Mendelian randomization analysis with 30 immune cell features that 
were causally associated with allergic rhinitis as outcomes and food 
intake as exposures. Cottage cheese intake and memory B cells (odds 
ratio [OR] = 5.93, 95% confidence interval [CI] = 1.41–24.83, p-value 
<0.001). Cottage cheese intake and regulatory T cells (odds ratio 
[OR] = 0.02, 95% confidence interval [CI] = 0.0006–0.59, p-value 
<0.001). Cake intake and granulocytes (odds ratio [OR] = 2.09, 95% 
confidence interval [CI] = 1.03–4.25, p-value <0.001) (Figure  2). 
We conducted heterogeneity tests and horizontal pleiotropy tests, with 
all resulting p-values being greater than 0.05. This indicates the absence 
of heterogeneity and horizontal pleiotropy (Supplementary Tables S7, S8).

We observed that the causal relationship between cottage 
cheese intake and memory B cells, as well as between memory B 

cells and allergic rhinitis, had different directions (Figure  2; 
Supplementary Table S5). Similarly, the causal relationship 
between cake intake and granulocytes, and between granulocytes 
and allergic rhinitis, exhibited different directions. Furthermore, 
we conducted multivariable Mendelian randomization analysis, 
which further corroborated that immune cells do not serve as 
intermediaries in mediating the causal relationship between food 
intake and allergic rhinitis (Figure 3).

4 Discussion

To our knowledge, we  are the first to explore the causal 
relationships between immune phenotypes and allergic rhinitis, as 
well as between food intake and allergic rhinitis. We also investigated 
the potential mediating effects. For the first time, we incorporated 
over 900 traits into Mendelian randomization analyses. Furthermore, 
we  identified seven types of food intake and 30 immune cell 
phenotypes that have causal relationships with allergic rhinitis. 
However, immune cells do not act as mediators in the causal 
relationship between food intake and allergic rhinitis.

4.1 Cottage cheese intake and allergic 
rhinitis

In our study, we found an association between the intake of cottage 
cheese and the development of allergic rhinitis. This finding aligns with 
T Mulch’s study, which demonstrated that many food allergies manifest 
as allergic rhinitis, with cheese being one of the most common 
allergens (61). Furthermore, Cevızcı’s et al. (62) research indicated the 
presence of mites and cheese mites in cheese, which can trigger allergic 
rhinitis upon consumption. Cheese is an IgE-like antibody (63) that 
binds to high-affinity IgE receptors on mast cells and basophils, 
thereby mediating the development of allergic rhinitis (64).

4.2 Cake intake and allergic rhinitis

Interestingly, while cake intake has been shown to have a 
protective effect against the development of allergic rhinitis, herbal 

FIGURE 1

Using Inverse variance weighted methods to analyze the causal association between food intake and allergic rhinitis.
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cake specifically has been found to improve symptoms in patients with 
moderate to severe persistent allergic rhinitis (65).

4.3 Cheesecake intake and allergic rhinitis

Our results indicated that cheesecake intake also led to the 
development of allergic rhinitis. This May be  attributed to the 
lysozyme contained in cheese, which is a potential food allergen that 
can sensitize individuals to develop allergic rhinitis upon consumption 
(66). Moreover, mites present in cheesecake (62) are a significant 
allergen for allergic rhinitis (67, 68).

4.4 Beer/cider intake and allergic rhinitis

Our analysis of five alcoholic drinks (Supplementary Table S1) 
showed that Beer / cider intake May play an important role in the 
development of allergic rhinitis (Figure 1). The existing evidence 
suggests that beer can cause allergic rhinitis in many people (69) 
and Alvarez-Cuesta et al. (70) noted that ingredients that can cause 
allergic diseases were detected in cider-bars, which are consistent 
with our findings. Notably, the occurrence of allergic rhinitis due 
to beer/cider ingestion May not be  caused by the alcohol 

component but mediated by additional chemicals (polyphenols) in 
alcoholic beverages, which May be supported by the fact that our 
analysis of other similar alcohol products did not show positive 
results similar to those of beer/cider. Studies have shown that red 
wine, barley and hops contain polyphenols that inhibit COX-1 
enzyme (71), Westergren et  al. (72) showed that COX-1 is 
expressed in nasal mucosal epithelial cells in patients with allergic 
rhinitis (seasonal and perennial), suggesting that beer May 
be involved in the pathogenesis of allergic rhinitis by influencing 
COX-1 levels through polyphenols. However, this conclusion May 
be  preliminary, as studies have shown that changes in COX-1 
levels resulting from the ingestion of alcoholic beverages are 
predominantly found in red wine, beer and white wine (71). This 
May be partly due to the fact that different alcoholic drinks possess 
different fermentation methods, combined with factors such as 
raw materials, barrels and environment, which influence the 
nascent microflora and associated phenolics (73). On the other 
hand, from a statistical perspective, the sample size of our included 
data May not be enough to show the statistical efficacy of other 
alcoholic drinks. Therefore, more clinical studies with large center 
samples and high-throughput sequencing results May be needed 
to more carefully discuss the association of alcoholic drinks with 
allergic rhinitis, especially the contribution of red wine and 
white wine.

FIGURE 2

Using Inverse variance weighted methods to analyze the causal association between food intake and immunophenotype.

FIGURE 3

Multivariable Mendelian randomization analysis with food intake and immunophenotype as exposures and allergic rhinitis as the outcome.
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4.5 Turnip/swede intake and allergic rhinitis

Intake of turnip/swede has also been implicated in increasing the 
risk of allergic rhinitis. A 2008 study identified turnip as one of the 
most common allergens causing allergic rhinitis (74). Similarly, 
findings by Rhee et al. (75) showed that higher daily intake of carrots 
was associated with an increased risk of allergic rhinitis. Furthermore, 
a previous pathology report described a case where a patient with a 
history of persistent allergic rhinitis experienced anaphylaxis after 
consuming carrots (76). The 2S albumin allergen in turnip is highly 
cross-reactive, and it mediates allergic disease through IgE 
antibodies (77).

4.6 Coffee intake and allergic rhinitis

Coffee intake was also shown to be a protective factor against 
allergic rhinitis in our findings. Previous studies have shown that 
polyphenols present in coffee have anti-inflammatory and anti-allergic 
effects (78). In addition, recent studies have reported that coffee 
attenuates food allergen-induced airway hyperresponsiveness and 
systemic allergic responses in mice, with potent immunomodulatory 
and anti-inflammatory effects (79).

4.7 Crispbread intake and allergic rhinitis

Our findings also identified crispbread intake as a risk factor for 
allergic rhinitis. This is due to the presence of aqueous extracts of flour 
in crispbread, which have been shown to cause the development of 
allergic rhinitis (80). Both baking powder and flour extracts 
consistently induce neutrophilic inflammation in a non-Toll-like 
receptor 4-dependent manner, resulting in allergic sensitization (81). 
Similarly, Moscato’s et al. (82) study demonstrated that flour allergens 
frequently contribute to the development of rhinitis and May 
exacerbate allergic airway inflammation. Similarly, Mbatchou 
Ngahane’s et  al. (83) study concluded that allergy to flour is 
independently associated with allergic rhinitis symptoms.

4.8 Immune cells do not play a mediating 
role in the food intake-AR association

We also examined the causal relationship between immune cells 
and allergic rhinitis, revealing that a lower Plasma Blast-Plasma Cell 
% lymphocyte ratio is associated with a reduced risk of developing 
allergic rhinitis. Similarly, a lower Absolute Count of CD25+ 
CD45RA+ CD4 non-regulatory T cells is also associated with a 
reduced risk. Furthermore, cxcr3 chemokines secreted by T cells play 
a crucial role in allergic rhinitis (84), particularly by disrupting the 
Th1/Th2 balance (85). Notably, CXCR3 expression in T cells is 
reduced in allergic rhinitis patients at the onset of the disease (85). 
Additionally, Naive CD8+ T cell Absolute Count and Naive CD8+ T 
cell %CD8+ T cell are protective factors against allergic rhinitis. 
Previous research has demonstrated that CD8 Tregs can mitigate or 
suppress the inflammatory response in allergic rhinitis (86, 87). 
Furthermore, several T cell subsets and their Absolute Counts, such 
as Terminally Differentiated CD4-CD8- T cell %T cell, CD28+ 

CD45RA+ CD8dim T cell %CD8dim T cell, Terminally 
Differentiated CD4-CD8  - T cell Absolute Count, and CD28+ 
CD45RA+ CD8+ T cell Absolute Count, are also protective against 
allergic rhinitis. Our findings also indicate that certain CD molecules 
expressed on cells, including CD20 on CD20- CD38- B cells, CD27 
on CD24+ CD27+ B cells, CD27 on T cells, CD27 on IgD+ CD38- 
unswitched memory B cells, CD27 on unswitched memory B cells, 
CD27 on switched memory B cells, CD3 on HLA DR+ CD4+ T cells, 
CD25 on CD39+ resting CD4 regulatory T cells, CD33 on CD33+ 
HLA DR+ CD14dim, CD33 on CD33dim HLA DR+ CD11b-, CD33 
on Granulocytic Myeloid-Derived Suppressor Cells, CD39 on 
CD39+ activated CD4 regulatory T cells, CD4 on secreting CD4 
regulatory T cells, CD4 on activated & secreting CD4 regulatory T 
cells, CD45RA on resting CD4 regulatory T cells, and CD45RA on 
CD39+ resting CD4 regulatory T cells, among others, can delay the 
onset of allergic rhinitis. For instance, a study conducted by Shiteng 
Duan in 2019 demonstrated that CD33 recruitment can attenuate 
IgE-mediated allergic reactions and desensitize mast cells to 
allergens (88), thereby slowing down the progression of allergic 
rhinitis. Another study revealed that adhesion facilitates the 
differentiation of allergic rhinitis CD4IL4 T cells through ICAM1 
and E-Selectin (89), leading to the production of the anti-
inflammatory factor IL4. Additionally, cell surface protein molecules 
like HVEM expressed on naive CD8+ T cells also serve as protective 
factors against allergic rhinitis. A previous investigation showed that 
the HVEM-NFκB pathway can effectively suppress airway smooth 
muscle (ASM) proliferation and inflammatory responses by 
modulating LIGHT (also known as TNFSF14, which mediates 
signaling that can lead to various inflammatory diseases and airway 
remodeling) (90).

However, on the contrary, we have also identified some risk cell 
factors for allergic rhinitis. For example, Transitional B cell lymphocyte 
has been associated with an increased risk of allergic rhinitis. The 
primary role of B cells in allergy is the production of IgE, an antibody 
isoform that triggers an immediate hypersensitivity reaction via a 
mediator released by mast cells and basophils (91). In other words, B 
lymphocytes can produce allergen-specific IgE antibodies that mediate 
allergic rhinitis (92). The results also showed that Granulocyte 
Absolute Count is one of the risk factors for allergic rhinitis. It has 
been shown that granulocyte-macrophage colony-stimulating factor 
(GM-CSF) is a potent pro-inflammatory cytokine, which acts as an 
eosinophil colony-stimulating factor involved in the onset of allergic 
rhinitis (93). In addition, some surface molecules have been validated 
to promote allergic rhinitis flare-ups, such as CD19 on IgD- CD27- B 
cell, CD25 on IgD+ CD38- B cell. CD19 is a B-cell specific cell surface 
molecule belonging to the immunoglobulin superfamily, which is 
expressed exclusively on B cells. It plays a key role in both B cell 
activation and autoimmunity (94). Furthermore, B cells expressing 
CD19 and CD25 can spontaneously secrete IgA, IgG, and IgM 
subclasses and exhibit enhanced migratory capabilities (95). 
Additionally, these cells secrete elevated levels of pro-inflammatory 
cytokines, including IL-6 and INF-γ, and are more effective at 
presenting alloantigens to CD4 T cells (96). Additionally, CD14 on 
CD14+ CD16+ monocytes further contributes to the development of 
allergic rhinitis. Previous research has demonstrated that CD14+ 
monocytes directly participate in attracting other immune cells to 
produce pro-inflammatory chemokines and are rapidly recruited to 
the site of attack (97).
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Our study found that food intake contributes to the development 
of allergic rhinitis, especially ultra-processed/dairy foods (Figure 1), 
and this association does not appear to be  directly mediated by 
immune cells as we routinely understand. Excessive intake of ultra-
processed/dairy foods increases intestinal permeability, leading to 
intrinsic mucosal damage and impairment of the epithelial barrier (98, 
99). Studies have shown that the food emulsifier glyceryl monolaurate 
has been shown to impair intestinal barrier function, leading to 
dysbiosis of the intestinal flora. Similar findings have been found with 
emulsifiers such as carboxymethyl cellulose (CMC), which perhaps 
increases the chance of bacterial invasion and colonization by 
damaging the epithelial barrier of the gut (99, 100). In addition, high 
levels of ultra-processed food consumption have also been shown to 
negatively affect the composition and specific functions of the gut 
microbiome through changes in gut microbial taxa (101, 102). 
Dysbiosis of the intestinal flora, on the one hand, will cause the 
bacteria colonizing the intestinal tract to stimulate the human immune 
system with ligands such as lipopolysaccharides, flagellin and fatty 
acids, which will activate the immune system and lead to the activation 
of naïve T-cells and the production of Th1, Th2, and Th17 (103), which 
will in turn affect the mast cells and other cells, which will produce 
degranulation changes that will lead to an increase in the production 
of IgE, thus leading to the onset and progression of allergic rhinitis 
(104, 105). On the other hand Watts (106) and Zhu et al. (107) by 
comparing the composition of the gut flora of AR patients with that of 
the normal population in an analytical study confirmed that the 
diversity of the gut microbiota was significantly reduced in patients 
with AR, with an increase in the abundance of pathogenic bacteria 
such as Anaplasma phylum, and a decrease in the levels of Clostridium 
and Aspergillus species, and a similar finding was found in the study 
by liu et al. (108). More importantly, intestinal epithelial cells play a 
crucial role in intestinal immunity as mediators linking the human 
immune system and colonizing bacteria (109). Immune cells such as 
dendritic cells and Tregs in the lamina propria of intestinal epithelial 
cells react with bacteria colonizing the gut (109, 110). When dysbiosis 
occurs in the gut causing disruption of the epithelial barrier, bacteria 
promote the secretion of anti-inflammatory IL-10 by macrophages, 
decrease mTOR kinase activity and increase the production of 
antimicrobial peptides (111, 112). Dendritic cells can ingest invading 
bacteria and undergo further antigen presentation, recruiting 
cytokines to maintain the function of Tregs further affecting IL-4 and 
IFN-γ levels (113). All of these contribute to the onset and development 
of upper airway inflammation by regulating the Th1/Th2 balance 
(114), and we therefore speculate that perhaps food intake-induced 
allergic rhinitis May be attributable to dysbiosis of the intestinal flora. 
We  expect that future studies will give more consideration to the 
mediating role of gut flora in food intake-related allergic rhinitis.

Although our findings May be  preliminary, the association 
between food intake and allergic rhinitis May be clear, attributable to 
the fact that we rigorously screened DNA fragments to represent traits 
that May not have changed during DNA replication since we were 
born (115). I recommend that allergic rhinitis patients and clinicians 
make the necessary assessments and refer to our suggestions in their 
daily dietary management and clinical practice. Firstly, clinicians 
managing patients with allergic rhinitis should try to minimize 
controlling their intake of cottage cheese, cheesecake, beer/cider, 
turnip/swede, and crispbread, and May allow them to consume cake 
(no cheese) or coffee to as surrogate for palatability. Furthermore, the 

diet of patients with allergic rhinitis should follow certain guidelines 
to ensure adequate nutrition and diversify the dietary structure. For 
dairy products such as cheese, hydrolyzed formula products can 
be used to slow down the allergic reaction (116). For foods containing 
dietary polyphenols (e.g., cocoa, coffee, tea, etc.) can be combined 
when in the daily diet to prevent allergies (117). In addition, patients 
can consume fish at least twice a week (118), and previous studies have 
shown that regular use of fish reduces the risk of allergic rhinitis (1, 
4). What’s more, patients can increase their intake of green leafy 
vegetables. Previous studies have shown that regular and regular 
intake of consumption of green leafy vegetables significantly reduces 
the risk of developing allergic airway diseases such as asthma (119–
121). As for alcoholic beverages, I would suggest that they should 
be avoided as much as possible, even though our study only showed a 
correlation between beer/cider and allergic rhinitis, yet it is indeed an 
indisputable fact that alcoholic beverages can cause nasal symptoms 
and airway symptoms in most of the population (122–124). Finally, in 
order to accurately assess the patient’s immune function to improve 
the diagnostic accuracy of food intake-induced AR. For AR induced 
by food intake, a thorough dietary investigation in the history May 
be essential for the diagnosis, which not only greatly improves our 
diagnostic accuracy, but also provides an effective aid in the treatment 
of the patient by cutting off the intake of suspected allergenic foods. 
Additionally, the 2023 International Consensus Statement on Allergy 
and Rhinology (125) suggests that serum allergen-specific 
immunoglobulin E and skin prick testing May be considered as a first-
line diagnostic option and is recommended as a grade B (the highest 
grade). However, careful history taking combined with serum 
allergen-specific immunoglobulin E May be a better choice if finances 
permit, because serum testing is more accurate, results are more 
interpretable, and can strongly assist the clinician in blocking 
suspected allergens and selecting medications (125).

Nowadays, it is difficult to change the environment or other 
lifestyles, but diets remain modifiable and dietary modifications can 
be used to prevent or control allergic diseases. Dietary diversity is a 
useful indicator to describe total dietary intake. Dietary diversity 
(focusing on healthy foods) during pregnancy and infancy has been 
reported to reduce allergic outcomes in offspring (5, 126, 127). 
Allergen diversity and food group diversity, such as fruits and 
vegetables in infancy, May also reduce food allergies in children (6). 
Therefore, especially at present, a large number of randomized 
controlled studies and evidence-based medical studies are needed to 
provide more evidence to confirm the association between both food 
intake and allergic rhinitis from a clinical perspective. Our findings 
suggest that attention should be paid to controlling cheese, cheese, 
starch, and alcohol intake in patients with allergic diseases in a 
practical clinical setting. In addition, there is a need to harmonize 
research methods and define dietary diversity in the future in order to 
explore potential mechanisms for studying the relationship between 
food intake and allergy. Our current and previous Mendelian 
randomization studies of food intake May not have been very precise 
in classifying food intake, perhaps due to the uploading of 
classification ranges from high-throughput sequencing results in 
public databases, and in the future it May be possible to refine and 
rigorize the results of these studies by using high-throughput 
sequencing results that are more precisely classified. To fully explore 
the concept of dietary diversity in the field of immunonutrition, 
we need to (1) identify gaps in knowledge regarding the impact of 
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nutrition on allergic outcomes, (2) study the overall diet that supports 
the mechanism, and (3) support education, training, and research in 
this rapidly growing field.

Our study has certain limitations. Firstly, our research samples are 
exclusively derived from individuals of European descent and May not 
be representative of other ethnicities. Secondly, during data collection, 
we were unable to comprehensively capture all immune cell traits and 
food intake traits. Our study only analyzed results based on over 900 
traits. In addition, our categorization of food intake types was not 
refined enough to cover certain food intake types.

In summary, our analysis results offer new insights into dietary 
interventions for patients with allergic rhinitis. We provide methods 
and prospects for altering dietary compositions to prevent and treat 
allergic rhinitis patients. Furthermore, we offer a new perspective on 
immune cell characteristics as potential disease biomarkers for allergic 
rhinitis patients.

5 Conclusion

This study provides a comprehensive assessment of the 
relationship between food intake and allergic rhinitis and the 
mediating role played by immune cells in it, using Mendelian 
randomisation. Firstly, we found causal relationships between food 
intake and allergic rhinitis and demonstrated that this relationship is 
not actually mediated by immune cells. Secondly, our findings 
contribute to new protocols for clinical dietary management of allergic 
rhinitis patients and provide a reference point for the diagnosis of 
patients with food allergy-induced allergic rhinitis. Finally, our 
findings provide new perspectives and ideas for dietary interventions 
for patients with allergic rhinitis, which May be effective in improving 
patient prognosis and suggesting new directions for future research.
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