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Introduction: Cannabidiol (CBD) has a variety of pharmacological effects 
including antiepileptic, antispasmodic, anxiolytic and anti-inflammatory among 
other pharmacological effects. However, since CBD is a terpene-phenolic 
compound, its clinical application is limited by its poor water solubility, low 
stability, and low bioavailability.

Methods: In this study, we used several strategies to address the above problems.
Hydrochloric acid was used to modify zein to improve the molecular flexibility. 
Flexible zein nanoparticles (FZP-CBD) loaded with CBD was prepared to improve 
the stability and bioavailability of CBD. The parameters were evaluated in terms 
of morphology, particle size (PS), polydispersity index (PDI), zeta potential (ZP), 
entrapment efficiency (EE%), loading capacity (LC%), and storage stability. 
Simulated gastrointestinal fluid release experiment and bioavailability assay 
were applied in the evaluation.

Results: The simulated gastrointestinal fluid experiment showed that the release 
rates of FZP-CBD and natural zein nanoparticles (NZP-CBD) loaded with CBD 
were 3.57% and 89.88%, respectively, after digestion with gastric fluid for 2 h, 
92.12% and 92.56%, respectively, after intestinal fluid digestion for 2 h. Compared 
with NZP-CBD, the Cmax of FZP-CBD at 3 different doses of CBD was increased 
by 1.7, 1.3 and 1.5 times respectively, and AUC0-t was increased by 1.4, 1.1 and 
1.7 times respectively, bioavailability (F) was increased by 135.9%, 114.9%, 169.6% 
respectively.

Discussion: The experimental results showed that FZP-CBD could protect most 
of the CBD from being released in the stomach, and then control its release 
in the intestines, promote the absorption of CBD in the small intestine, and 
increase the bioavailability of CBD. Therefore, FZP-CBD could improve the 
utilization value of CBD and provide a new idea for the application of CBD in 
medicine and pharmacy.
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1 Introduction

Cannabidiol (CBD) is one of the main extracts of Cannabis sativa L., an annual herb of 
the family Moraceae. Currently, more than 130 cannabinoids have been isolated from dried 
plants and fresh cannabis leaves. Among them, the tetrahydrocannabinol (THC) and CBD 
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contents are the highest. While THC is hallucinogenic, CBD is a 
non-addictive component because it can antagonize the psychoactivity 
triggered by THC agonism at cannabinoid receptor I (CB1R). CBD 
has antiepileptic, antispasmodic, anxiolytic and anti-inflammatory 
effects among other pharmacological effects (1, 2). However, CBD is 
a terpene phenolic compound. It is highly lipophilic (logP = 6.3) with 
a low solubility in water of 0.02–0.06 μg•mL−1 at room temperature 
(3). Currently approved CBD drugs are mostly ethanol or oil-based 
(4), such as Epidiolex® (a pure CBD oral solution suspended in sesame 
seed oil and ethanol) and Sativex® (a CBD and Delta-9-
tetrahydrocannabinol (THC, 1:1) oromucosal spray suspended in 
anhydrous ethanol and propylene glycol) (5, 6) which were approved 
by the United States (US) Food and Drug Administration and the 
European Medicine Agency, respectively. However, highly lipophilic 
drugs delivered orally tends to precipitate in the gastrointestinal (GI) 
tract and are difficult to be completely solubilized. This is the main 
reason for its low bioavailability (7). Some studies have shown that the 
oral bioavailability of CBD oil in human trials is about 6% (8–10). 
CBD is mainly absorbed in the upper part of the small intestine (11). 
CBD has poor water solubility and stability, and it may be inactivated 
due to degradation, especially under acid, oxygen, high temperature, 
light radiation and other conditions, thus significantly reducing its 
bioavailability and utilization value (12). To improve the bioavailability 
and therapeutic efficacy of CBD, our study aims to develop a safe 
dosage form for the delivery of CBD that not only reduces metabolic 
degradation but also improves its solubility.

Nanodelivery system is a technology to deliver drugs or other 
biomolecules to specific cells or tissues through a carrier called 
nanoparticles. Mucoadhesion of nanoparticles depends on the 
presence of mucoadhesive polymers. Once properly selected, the 
efficiency of adhesion and interaction with cells may improve due to 
their size and large specific surface area. They can also improve the 
poor solubility of hydrophobic drugs, low bioavailability and short 
half-life (13–15), thereby demonstrating significant promise in 
increasing the oral bioavailability of highly lipophilic compounds (12). 
Nanoparticles are small colloidal particles with three dimensions in 
nanomaterials. Protein particles are ubiquitous in the field of drug 
delivery. They have intrinsic bioactivity, biocompatibility, 
biodegradability and colloidal properties, including self-assembly 
behavior, structural reorganization, intermolecular and intramolecular 
hydrophobic and hydrogen bonding interactions (16). Nanoparticles 
can be absorbed in organisms by two routes. The first is to be directly 
taken up by small intestinal epithelial cells via inducing endocytosis 
(14). For example, the presence of lactoferrin receptors in intestinal 
epithelial cells can help lactoferrin nanoparticles containing Garcinia 
cambogia to cross the epithelial cells into the blood vessels (17). To 
achieve endocytosis, the nanoparticles must be small in size and their 
surface properties must be carefully designed to facilitate cell entry 
(18, 19). Larger particles or particles with highly dense cationic 
surfaces may induce the formation of pores on membranes and result 
in cytotoxicity (18). Another way of absorption is that the 
nanoparticles can be  digested by digestive enzymes in the 
gastrointestinal tract, which frees the active substance and transports 
it into the blood circulation. The active substance is absorbed through 
two main transport mechanisms, active and passive transport in the 
small intestine (13).

Zein is an important storage protein in corn (20). It contains more 
than half of its amino acids in a nonpolar form, lacks charged amino 
acids, and is low in polar amino acids. As a result, it is not soluble in 

pure water and anhydrous alcoholic media. However, it can 
be  dissolved into 50–95% aqueous ethanol solutions (21). Zein is 
subject to reduced solubility due to decreased ethanol concentration 
and increased solvent polarity, which causes a change in protein 
conformation in the process, resulting in aggregation of the molecules, 
a process known as self-assembly of zein (21). Zein can be induced to 
self-assemble into different nanostructures such as nanoparticles, 
micelles, fibers and membranes by adjusting the polarity of the 
medium (22). The anti-solvent method is one of the commonly used 
methods for the preparation of zein nanoparticles. In this method, 
zein undergoes self-assembly and aggregates into nanoparticles to 
evade highly polar environments when the polarity of the medium 
changes from weak to strong (23). Zein nanoparticles have been used 
as nanocarrier materials in the aspects of encapsulation efficiency, 
stability and drug release (22, 24–26). However, due to the strong 
hydrophobicity and rigid structure of zein, the nanoparticles formed 
by natural zein are poorly adapted to the environment. Therefore, they 
are not perfect for drug delivery. To improve the colloidal stability of 
zein particles or to regulate the drug release rate, many researchers 
have attempted to improve the EE% or control the drug release by 
introducing other polymers or using acid to modify zein nanoparticles 
(27, 28), and subsequently improving the ability of zein nanoparticles 
to transport small molecule drugs. For example, Dai et al. improved 
the entrapment efficiency (EE%) and stability of zein nanoparticles to 
hydrophobic drugs by adding rhamnose (29). Van Ballegooie et al. 
modified zein with polyethylene glycol (PEG) to improve its stability 
(30). Ahammed et al. used glutamine-transaminase (TG) modified 
gelatin-zein complex loaded with green tea polyphenols (TP) to 
control the release of phenolic compounds (31). In this experiment, 
we prepared nanoparticles to properly encapsulate and transport CBD 
by enhancing the flexibility of zein, facilitating its delivery of CBD to 
the small intestine for release and absorption. This approach can 
improve the utilization efficiency of CBD to a certain extent.

In this study, flexible zein was obtained by acid modification of 
zein and flexible zein nanoparticles (FZP-CBD) and natural zein 
nanoparticles (NZP-CBD) loaded with CBD were prepared. 
We Studied their morphology, particle size (PS), polydispersity index 
(PDI), Zeta potential (ZP), EE%, loading capacity (LC%), storage 
stability, and in vitro simulated gastrointestinal fluid release. The oral 
bioavailability of the two was also explored for comparison by in vivo 
pharmacokinetic experiments in rats. This study improves the value 
of CBD utilization and broadens the scope of zein application.

2 Materials and methods

2.1 Materials and instruments

Agilent 6,410 QQQ LC–MS analysis system, consisting of an 
Agilent 1,290 liquid chromatograph and Agilent 6,410 QQQ triple 
quadrupole mass spectrometry detector, Masshunter workstation 
was obtained from Agilent Technologies. Hettich Mikro 220R 
benchtop cryogenic high-speed centrifuge was obtained from 
Hettich. Gene G560E vortex mixer was obtained from Scientific 
Industries. Milli-Q Integral 3 integrated ultrapure water system was 
obtained from Merck KGaA. Sartorius SQP QUINTIX65-1CN 
one-millionth electronic balance was obtained from Sartorius. 
DK-98-II electrothermal thermostatic water bath was obtained 
from Tianjin Test Instrument Co., Ltd. PH meter was obtained from 
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Sartorius. V-850 rotary evaporator was obtained from 
BUCHI. Hitachi S-4800 field emission scanning electron 
microscope was obtained from Hitachi. LC-250 Nanoparticle Size 
and Zeta Potential Analyzer was obtained from Microtrac. 
SW-CJ-2FD Cell Incubator was obtained from Thermo 
Fisher Scientific.

Zein was obtained from Yuan Ye Biotechnology Co., Ltd. 
Cannabidiol (CBD) was obtained from Heilongjiang Zhongsheng 
Bio-technology Co., Ltd. (−)-Cannabidiol-d9 (internal standard) was 
obtained from Shanghai Saiers Biochemical Technology Co., Ltd. 
Methanol for chromatography, Acetonitrile for chromatography and 
Formic acid for chromatography were obtained from Dikma. 
Anhydrous ethanol (analytically pure) and hydrochloric acid 
(analytically pure) were obtained from Sinopharm Chemical Reagent 
Co., Ltd. Sodium hydroxide (analytically pure) was obtained from 
Beijing Chemical Industry Co., Ltd. Potassium Dihydrogen Phosphate, 
pepsin and trypsin were obtained from Source Leaf Biotechnology 
Co., Ltd. and Ultra-pure water (self-made).

Rat adrenal pheochromocytoma cell lines (PC12 cells) were 
obtained from the Cell Resource Center, Shanghai Academy of 
Biological Sciences, Chinese Academy of Sciences.

There were 36 Sprague Dawley (SD) rats aged 7–8 weeks (half 
male and half female), weighing 220–300 g purchased from Beijing 
Huafukang Bio-technology Co., Ltd. NO. 110322230100338248. All 
rats were fed in SPF level animal room. All animal experiments were 
approved by the animal ethics committee of Experimental Research 
Center, China Academy of Chinese Medical Sciences 
(ERCCACMS21-2211-01).

2.2 Methods

2.2.1 Preparation of nanoparticles
Zein alcohol solution loaded with CBD: zein was fully dispersed 

in 90% ethanol to obtain 25 mg•mL−1 of zein ethanol solution. The 
solution was equally divided into two groups. One group was left 
untreated and the other was adjusted to pH 2.0 with HCl and then 
heated by condensation reflux in a water bath at 70°C for 10 h to 
obtain a flexible zein alcohol solution. NaOH solution was used to 
adjust the pH of the flexible zein alcohol solution to 7.0. Both groups 
of solutions were divided into three equal portions, then different 
amounts of CBD were added, respectively, to obtain zein alcohol 
solution containing CBD with low, medium and high concentrations 
(4.10 and 16 mg•mL−1).

FZP-CBD and NZP-CBD: FZP-CBD and NZP-CBD were 
prepared by rapid anti-solvent precipitation method, in which the zein 
alcohol solution loaded with CBD was rapidly poured into ultrapure 
water at a volume ratio of 1:4 while stirring with 40°C. The ethanol 
was removed by rotary evaporation, and then ultrapure water was 
added to replenish the volume of the ethanol that had been lost. 
NZP-CBD and FZP-CBD loaded with varying amounts of CBD were 
obtained. They were stored in colloidal solution form at 4°C in the 
refrigerator for future use.

2.2.2 Morphology
The microscopic morphology of NZP-CBD and FZP-CBD was 

observed using scanning electron microscopy (SEM) at an operating 
voltage of 5 kV and a magnification of 45,000×. A small amount of 

freshly prepared samples was applied to silicon wafers, which were 
naturally dried and then sprayed with gold, imaged 
and photographed.

2.2.3 PS, PDI, and ZP
The average PS and PDI of NZP-CBD and FZP-CBD were 

measured by the dynamic light scattering (DLS) method by using the 
Nano-ZS nanolaser, and the potential at the nanoparticle shear plane, 
denoted as the ZP, was measured using the above instrument.

2.2.4 EE% and LC%
High-performance liquid chromatography (HPLC) was used to 

determine the EE% and LC% of the nanoparticles.

2.2.4.1 Establishment of HPLC methods
The chromatographic conditions were as follows: 

chromatographic column Diamonsil C18 (2) (250 mm × 4.6 mm, 
5 μm); mobile phase methanol–water (87:13, v/v); flow rate 
1.0 mL•min−1; detection wavelength 220 nm; and column 
temperature 25°C.

The EE% and LC% of FZP-CBD and NZP-CBD were calculated 
using the following Equations (1) and (2):

 
EE

C
C C

system

system free
%( ) =

+
×100

 
(1)

 
LC

W
W
system

total
%( ) = ×100

 
(2)

Csystem and Cfree are the concentrations of encapsulated CBD and 
free CBD in the colloidal system, respectively. Wsystem and Wtotal are the 
mass of the encapsulated CBD and the total mass of the nanoparticles 
in the colloidal system, respectively.

2.2.4.2 Free CBD extraction
We took 100 μL of different concentrations of NZP-CBD and 

FZP-CBD and added 300 μL of petroleum ether to extract three times. 
Then it was redissolved by adding 1 mL of acetonitrile after nitrogen 
blowing, vortexed for 30 s, and injected the sample.

2.2.4.3 Encapsulated CBD extraction
After drying under nitrogen, the nanoparticles were extracted 

with 900 μL acetonitrile, vortexed for 2 min at 16,000 r•min−1, 4°C, 
centrifuged for 10 min, 100 μL supernatant was mixed with 900 μL 
acetonitrile, vortexed for 30 s, and injected into the column.

2.2.5 Storage stability
The prepared NZP-CBD and FZP-CBD were stored at 4°C under 

light-avoidance conditions, and the degradation of CBD was measured 
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at day 0, 3, 7, 14, and 21. The storage stability of NZP-CBD and 
FZP-CBD was expressed by the Leaching Rate and it was calculated 
using the following Equation (3).

 
Leaching Rate

W
W W

free

system free
 =

+
×100

 
(3)

where Wsystem and Wfree are the mass of encapsulated CBD and the 
mass of degraded CBD in the colloidal system, respectively.

2.2.6 Simulated gastrointestinal fluid release
Ten milliliter of prepared NZP-CBD and FZP-CBD suspensions 

were mixed with 10 mL of simulated gastric fluid (SGF) containing 
10 mg•mL−1 pepsin at pH 2 and then incubated for 2 h (samples were 
collected at 0, 0.5, 1, 1.5, 2 h) in a shaker at 37°C with shaking at a 
speed of 100 rpm. After 2 h of digestion, the pH was adjusted to 7.5 
using NaOH solution to inactivate the enzyme. Subsequently, 10 mL 
digestion mixture was poured into the 10 mL of simulated intestinal 
fluid (SIF, dissolving pancreatin (10 mg•mL−1) in phosphate buffer at 
pH 6.8.) and incubated for 2 h (samples were collected at 0, 0.5, 1, 1.5, 
2 h) under the same conditions and then terminated by rapid cooling 
in ice. The CBD was determined by HPLC and its digestion was 
expressed by Release Rate (Eq. 4).

 
Release Rate W

W
 = ×1

0

100

 
(4)

Where W1 is the amount of CBD released and W0 is the amount 
of CBD wrapped at 0 h.

2.2.7 In vitro biocompatibility
To investigate the biocompatibility of FZP-CBD, the experiments 

used PC12 cells as a cell model. The cytotoxicity was detected by 
CCK8. Logarithmic growing PC12 cells were inoculated into 96-well 
cell culture plates at a density of 8 × 104 cells•mL−1 per well, and 
cultured in a 5% CO2 cell incubator at 37°C. When the cell density 
reached to 60%, different concentrations of CBD solution and 
FZP-CBD (0, 1, 2.5, 5, 10, 15, 20, 25 μM) were added to PC12 cells 
after being completely diluted with DMEM medium to continue the 
incubation for 24 h. Then 10% CCK8 staining solution was added to 
each well and continued culturing for 1.5 h. Absorbance (OD value) 
at 490 nm wavelength was measured by BioTek Synergy H1 Hybrid 
multimode microplate reader. Taking the blank nanoparticles without 
CBD as a reference, the experiment was repeated 3 times, and cell 
viability was calculated using the following Equation (5).

 
Viability A A

A A
%( ) = −

−
×1

0 1

100

 
(5)

Where A is the OD value of the cells in the sample wells, A0 is the 
OD value of the cells in the blank group, and A1 is the OD value of the 
blank wells.

2.2.8 In vivo bioavailability
36 SD rats were divided into six groups. NZP-CBD and FZP-CBD 

in 3 doses of 20, 50 and 100 mg·kg−1, respectively, were administrated 
intragastric in each group. Blood samples were collected from the 

oculi chorioideae vein at 0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 24, and 48 h 
after the administration. Blood samples were centrifuged at 
3,000 rpm·min−1 for 10 min at 4°C. The supernatant was stored at 
−80°C for measurement.

Supernatant (20 μL) was added to 60 μL of methanol and 
centrifuged at 12,000 rpm•min−1 for 10 min at 4°C. The supernatant 
was extracted and analyzed by LC–MS. The pharmacokinetic 
parameters, including half-life (T1/2), peak time (Tmax), peak 
concentration (Cmax), area under the curve (AUC), and mean residence 
time (MRT) were statistically analyzed by Winnonlin 8.1.

Chromatographic conditions: column: Waters Atlantis T3 
(100 mm × 2.1 mm, 3 μm), mobile phases: A is 0.1% formic acid-water, 
B is 0.1% formic acid-acetonitrile, gradient elution, 0.0–4.5 min, 85% 
B, 4.5–5.0 min, 85–100% B, column temperature 30°C, flow rate 
0.3 mL•min−1, injection volume 1 μL.

Mass spectrometry conditions: electrospray ionization source 
(ESI), multiple reaction monitoring (MRM), positive ion mode 
detection, CBD ion pair 315.3 → 259.3, isotopic internal standard 
(−)-Cannabidiol-d9 ion pair 324 → 268.2, collision energy CBD is 
15 V, the internal standard is 20 V, fragment 110 V for CBD and 170 V 
for the internal standard, atomizing gas pressure 15 psi, ion source 
temperature 300°C, and atomizing gas flow rate 12 L•min−1.

3 Results and discussion

3.1 Morphology

Dong (32) and Mattice and Marangoni (33) found that the 
percentage of the α-helical structure of zein decreased and 
intermolecular β-folding increased after being treated with 
aqueous acetic acid. This may be due to the change of α-helix to 
β-folding and irregularly curled structures in the protein, resulting 
in the protein becoming loose and disordered, which makes the 
protein structure flexible (34). The distribution of nanoparticles 
formed by natural zein is more dense and ordered, forming a 
reticular structure. In contrast, the nanoparticles formed by 
flexible zein are sparse and disordered, indicating the flexibility of 
this part of the protein structure (Figure 1). This facilitates the 
binding of zein to CBD and improves the storage stability of 
the drug.

3.2 PS, PDI, and ZP

The PS, PDI and ZP of NZP-CBD and FZP-CBD were shown in 
Figure 2. The results suggested that the larger PS of FZP-CBD may 
be  the reason for the increased LC%. The PDI of FZP-CBD and 
NZP-CBD at low, medium and high concentrations were 0.12, 0.15, 
and 0.20 and 0.17, 0.17, and 0.23, respectively. This may be because 
FZP-CBD could prevent protein aggregation through electrostatic 
interactions (35), resulting in a more uniform distribution of proteins 
in solution with smaller PDI.

As shown in Figure 2C, due to deamidation, the amide group is 
converted to a carboxyl group, and the FZP-CBD’s ZP became negative 
after ionization, which was between −52 and −45 mV. The NZP-CBD’s 
ZP was between 34 and 38 mV due to the ionization of amide groups. 
The value of ZP is related to the stability of colloidal dispersion, with 
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the absolute value representing the degree of stability (36). The greater 
the absolute value, the better the stability. The absolute value of 
FZP-CBD was significantly larger than that of NZP-CBD (p < 0.01), 
indicating that FZP-CBD is employed to enhance the dispersibility of 
proteins by substituting the amino group in amide residues with a 
carboxyl group (37), thereby increasing electrostatic repulsion to 
prevent the aggregation of particles and thus has higher stability 
(32, 35).

3.3 EE% and LC%

The CBD entrapped inside of the nanoparticles was determined 
using newly prepared colloidal solutions of NZP-CBD and FZP-CBD at 
low, medium and high concentrations (Supplementary Table S2). There 
were some differences between NZP-CBD and FZP-CBD. The EE% and 
LC% of CBD in NZP-CBD were 72.89, 62.11, 79.27, and 29.30%, 36.86, 
53.63% for low, medium and high concentrations, respectively, while that 
of FZP-CBD was 92.23, 86.14, 85.43 and 34.68%, 48.86, 56.94% for low, 
medium and high concentrations, respectively. The deamidation reaction 
which was performed by acid modification converts amide groups to 
carboxyl groups, and destroys the helical structure, thus resulting in 
increased β-folding and decreased.

α-helix (32). This may induce the gradual unfolding and 
disordering of zein’s tertiary structure and increase the protein’s 
interfacial adsorption capacity (38). Thereby it is conducive to the 
adsorption and binding of zein and CBD. Therefore, the EE% and 
LC% of FZP-CBD were higher than that of NZP-CBD, and the EE% 
and LC% of CBD could be improved by FZP-CBD.

3.4 Storage stability

The prepared NZP-CBD and FZP-CBD were stored at 4°C and 
protected from light. The degradation of CBD was measured on day 
0, 3, 7, 14, and 21. Based on the leakage of CBD from nanoparticles in 
the medium after storage for 21 days, the storage stability was 
characterized by the leaching rate (as shown in Equation 3). The 
leaching rate of CBD in FZP-CBD was significantly lower than that of 
CBD in NZP-CBD throughout the storage period (p < 0.01) (Figure 3). 
It indicates that FZP-CBD improved the storage stability of CBD. This 
may be related to the ZP. Abdelbary et al. (39) concluded that the ZP 
was stable at around ±30 mV. The greater the absolute value, the better 
the stability. As can be  seen in Figure  2C, the absolute value of 
FZP-CBD was significantly greater than that of NZP-CBD (p < 0.01), 
indicating that FZP-CBD has better storage stability.

FIGURE 1

Micromorphology (magnification of 45,000×) of FZP-CBD (A) and NZP-CBD (B) loaded with CBD.

FIGURE 2

PS (A), PDI (B), and ZP (C) of NZP-CBD and FZP-CBD. *p  <  0.05, **p  <  0.01 compared to NZP-CBD (x  ±  s, n  =  3).
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3.5 Simulated gastrointestinal fluid release

The controlled release of CBD in the human gastrointestinal tract 
can play an important role in improving its bioavailability. In this 
study, the freshly prepared FZP-CBD and NZP-CBD were digested 
in SGF for 2 h and then transferred to SIF for further digestion for 
2 h. The digestion was expressed in terms of the release rate. After 
digestion in SGF for 2 h, the release rates of FZP-CBD and NZP-CBD 
were 3.57 and 89.88%, respectively, which indicated that FZP-CBD 
had a protective effect on CBD in SGF. After digestion in SIF for 2 h, 
the release rates of CBD in FZP-CBD and NZP-CBD were 92.12 and 
92.56%, respectively (Figure 4), indicating that both nanoparticles 
could fully release CBD in SIF, which may be due to the presence of 
pancreatin in the SIF (40). The results showed that FZP-CBD could 
protect most of the CBD from being released in the stomach, and 
then control its release in the intestines and promote the absorption 
of CBD in the small intestine, thus improving the 
bioavailability of CBD.

Pepsin causes structural changes in proteins by shearing the 
peptide bonds of hydrophobic amino acids. Meanwhile, deamidation 
decreases the hydrophobic amino acids and increases the hydrophilic 
amino acid content in protein molecules to protect proteins from 
destruction (32). Hurtado-López and Murdan (41) studied zein 
nanoparticles and showed that pepsin was able to digest α-zein 
monomers. The zein obtained via acid modification had decreased 
α-helix content and increased the β-fold content (33) so it was not easy 
to be digested by pepsin. CBD was encapsulated in the hydrophobic 
core of flexible zein, which was not easily destroyed by pepsin in SGF, 
and therefore only a small amount of CBD was released. When zein 
was transferred to the SIF, trypsin degraded the protein structure of 
flexible zein and CBD was released (22). This indicated that flexible 
zein could effectively avoid CBD leakage in gastric fluid. Due to the 
presence of pancreatin in the SIF (29, 41), FZP-CBD showed a sudden 
release effect during intestinal digestion. This results in the rapid 
decomposition of zein, which promotes the release and absorption of 
CBD and improves its bioavailability.

3.6 In vitro biocompatibility

Using PC12 cells as in vitro cell lines, the cytotoxicity of CBD 
dispersion and FZP-CBD was studied by CCK8. CBD-Dispersion and 
FZP-CBD increased the viability of PC12 cells within the 
concentration range of 1–20 μM. However, when the concentration 
went beyond 20 μM and reached 25 μM, the cell viability of both 
CBD-Dispersion and FZP-CBD decreased and resulted in cytotoxicity 
(Figure 5). Therefore, within the safe concentration range, FZP-CBD 
does not produce toxicity to cells, indicating that flexible zein has 
good biocompatibility.

3.7 In vivo bioavailability

The pharmacokinetic differences of NZP-CBD and FZP-CBD in 
the serum of rats were observed and explored after a single 
intragastric administration. Compared with NZP-CBD, FZP-CBD 
improved CBD bioavailability (Figure  6). Cmax of FZP-CBD at 3 
different doses of CBD was increased by 1.7, 1.3, and 1.5 times 

FIGURE 3

Storage stability of NZP-CBD and FZP-CBD. **p  <  0.01 compared to 
NZP-CBD (x  ±  s, n  =  3).

FIGURE 4

Release rates of NZP-CBD and FZP-CBD. 0–2  h was SGF, and 2–4  h 
was SIF.

FIGURE 5

Cell viability of CBD-dispersion and FZP-CBD.
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respectively, and AUC0-t was increased by 1.4, 1.1, and 1.7 times 
respectively, bioavailability (F) was increased by 135.9, 114.9, 169.6%, 
respectively (Supplementary Table S3). Since CBD is a highly 
lipophilic drug, it is mainly absorbed in the small intestine. The 
results of the simulated gastrointestinal release experiments showed 
that FZP-CBD could protect most of the CBD from being released in 
the stomach, and then control its release in the intestine. Therefore, 
FZP-CBD could promote the absorption of CBD in the small 
intestine and improve CBD bioavailability.

4 Discussion

Currently, nano-delivery systems have been applied to CBD, 
including polymeric and lipid-based nanoparticles (lipid 
nanocapsules) (LNCs) (42), nanostructured lipid carriers (NLCs) 
(43, 44), nanoemulsions (NEs) (45) and self-emulsifying drug 
delivery systems (SEDDS) (46). These methods could improve the 
solubility and oral bioavailability of CBD to a certain extent, but 
there may be some problems in practical application. For example, 
lipid nanoparticulate drug delivery systems can improve drug 
stability. However, the high water content in the drug formulation 
may reduce the drug loading. In addition, the drug can easily leak 
due to lipid crystallization during storage (12). SEDDS is one of the 
most widely used encapsulation techniques of CBD with good 
stability and high oral bioavailability, but it contains high 
concentrations of surfactants which can potentially irritate the 
gastrointestinal tract (46).

In this experiment, we prepared zein nanoparticles to properly 
encapsulate and transport CBD. Encapsulating insoluble CBD in 
nanoparticles allows CBD to be  well dispersed in water, which 
increases its solubility in the gastrointestinal tract and improves the 
passive transport of CBD across the epithelial cells of the small 
intestinal villi (47, 48). Nanoparticles can be absorbed by epithelial 
cells through endocytosis, and PS is the most important physical 
property that determines the endocytosis pathway (49). The 
preparation of nanoparticles in this study has a small size, which is 
more likely to be endocytosed by epithelial cells (50).

Furthermore, acid-modified zein was used to undergo a 
deamidation reaction, which improved the molecular flexibility. 
FZP-CBD could effectively improve the bioavailability of CBD and it 
has a more homogeneous particle size dispersion and higher ZP, EE%, 
LC% and stability compared with NZP-CBD. CBD possesses high 
lipophilicity. CBD can precipitate in the gastrointestinal (GI) tract 
when delivered orally in solution. The main reason for its low 
bioavailability is that it forms a precipitate in the stomach that is 
difficult to dissolve completely. Promisingly, acid modification 
decreased α-helix content and increased β-fold content in flexible zein 
thereby making it difficult to be digested by pepsin (33). In flexible 
zein, CBD was encapsulated in the hydrophobic core. Due to the 
resistance of flexible zein to pepsin, CBD exposure to gastric juice can 
be  effectively prevented. When FZP-CBD reached the intestinal 
digestion stage, a burst release was observed potentially due to the 
presence of trypsin in the SIF (29). This enabled flexible zein to 
be rapidly decomposed which facilitated the release and absorption 
of CBD. The experimental results showed that FZP-CBD could 

FIGURE 6

Serum concentration-time curves of NZP-CBD and FZP-CBD.
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protect most of the CBD from being released in the stomach, and 
then control its release in the intestines and promote the absorption 
of CBD in the small intestine, thus improving the 
bioavailability of CBD.

In conclusion, FZP-CBD provides a way to increase bioavailability 
by increasing the solubilization of CBD in the aqueous environment 
of the GI tract. The improvement in CBD bioactivity is not only due 
to the rapid decomposition in the intestine but also due to the delayed 
release: a combination of protection from gastric fluid and burst 
release in the intestine. This allows more CBD to cross the inter-
villous spaces at the intestinal brush border and move into 
blood circulation.

5 Conclusion

In this study, the FZP-CBD could control the release of CBD in 
the intestinal tract and promote its absorption in the small intestine. 
It could improve the bioavailability of CBD. Therefore, this study can 
improve the utilization value of CBD and broaden the application 
scope of zein. Flexible zein can be used as a potential carrier of the 
highly lipophilic drug CBD, which provides a new idea to achieve the 
controlled release of highly lipophilic drugs in the intestine and the 
application of CBD in pharmaceutics.
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