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Objective: Dietary factors and nutritional status may be  among the risk 
factors for Chronic Obstructive Pulmonary Disease (COPD). There exists a 
certain correlation between trace elements and COPD. Through Mendelian 
Randomization (MR) analysis, we investigated the causal relationships between 
trace elements, inflammatory proteins, and COPD.

Methods: We employed MR, multivariable MR (MVMR), and two-step MR (TSMR) 
approaches to assess the causal links between 15 trace elements and COPD, 
with 91 inflammatory proteins serving as mediators to further elucidate the 
tripartite causal relationships.

Results: Trace elements such as Folate (OR  =  1.293, 95%CI 1.027–1.628; 
p  =  0.029), Vitamin D (OR  =  1.331, 95%CI 1.071–1.654; p  =  0.010), Vitamin 
B12 (OR  =  1.424, 95%CI 1.108–1.828; p  =  0.006), and Iron (OR  =  0.741, 95%CI 
0.580–0.946; p  =  0.016) demonstrated causal relationships with COPD. No 
causal relationship was observed in reverse MR. After adjusting for BMI, Folate 
(OR  =  1.633, 95%CI 1.098–2.429; p  =  0.015), Iron (OR  =  0.507, 95%CI 0.31–
0.778; p  =  0.001), and Vitamin D (OR  =  1.511, 95%CI 1.029–2.217; p  =  0.034) 
were identified as independent risk factors for COPD, whereas Vitamin B12 
(OR  =  1.118, 95%CI 0.751–1.666; p  =  0.581) was not. Mediation analysis indicated 
that CDCP1 (5.76%) may play a mediating role between Iron and COPD.

Conclusion: Trace elements such as Folate, Vitamin D, Vitamin B12, and Iron 
have causal relationships with COPD. After BMI adjustment, Folate, Vitamin D, 
and Iron emerge as independent risk factors. Furthermore, the inflammatory 
protein CDCP1 may partially mediate the causal relationship between Iron and 
COPD, offering a scientific basis for dietary recommendations that could benefit 
COPD patients. The supplementation of trace elements may be advantageous 
for individuals suffering from COPD.
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1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a 
heterogeneous ailment that is progressively becoming the third leading 
cause of death globally (1). It is primarily characterized by airway 
pathologies (bronchitis, bronchiolitis) and/or alveolar abnormalities 
(emphysema) leading to chronic respiratory symptoms (dyspnea, 
cough, expectoration) and a persistent, progressive limitation of airflow 
(2). Studies have revealed that nearly half of COPD patients experience 
weight loss (3) and diminished appetite (4), often resulting in an intake 
of trace elements significantly below the recommended dietary 
allowances (5). Observational studies have identified that malnutrition 
and weight loss are prevalent among COPD outpatient attendees (6), 
and nutritional supplementation can enhance the quality of life for 
these patients (7). Trace elements play a protective role in lung function, 
potentially decelerating the rate of pulmonary decline (8). They also 
influence the diffusing capacity of the lungs and the strength of the 
respiratory muscles (9). Deficiencies in trace elements are common in 
COPD and may influence the progression of the disease (10). Dietary 
interventions and targeted supplementation of single or multiple trace 
elements could be beneficial for patients with COPD (11).

Dietary factors and nutritional status may be among the risk factors 
for COPD. Alterations in dietary habits can modulate the impact of 
adverse environmental exposures on the lungs (12). For instance, 
excessive consumption of processed red meat has been associated with 
an increased risk of developing COPD (13), whereas a high dietary fiber 
intake is inversely related to the risk of COPD (14). Malnutrition can 
heighten the risk of mortality in patients with COPD (15), underscoring 
the pivotal role that nutrition plays in respiratory diseases (16). Relevant 
studies have identified that diet can influence the development of COPD 
through three primary mechanisms, with the most significant being the 
modulation of inflammation (17). Inflammatory responses are correlated 
with various diseases (18–20), and the intake of trace elements can 
alleviate the inflammatory reactions associated with COPD (21). Metal 
ions such as iron and copper in trace elements are crucial to the presence 
of pulmonary inflammation and oxidative stress in COPD (22), 
potentially leading to diminished activity of macrophages (23). Exposure 
to environments like iron factories increases the risk of COPD (24), 
whereas improving environmental risks can decrease it (25). Inhibiting 
ferroptosis may alleviate emphysema and airway inflammation (26). 
There is a correlation between copper and pulmonary inflammation 
(27). Zinc can mitigate the progression of COPD induced by harmful 
gasses and offers protective benefits to lung tissue (28). There is also a 
correlation between zinc and the pathogenesis of COPD (29). 
Supplementing with vitamins A and K may reduce the risk of emphysema 
(30), with vitamin K potentially improving the condition (31). Carotene 
is correlated with lung function (32) and may enhance pulmonary health 
(33). Vitamin D is associated with respiratory diseases (34), and vitamin 
E can reduce the risk of COPD (35). Thus, trace elements may 
be significant influencing factors for patients with COPD (36).

Although observational studies and systematic reviews have 
established a connection between trace elements, nutritional status 
(37–41), and COPD, suggesting that malnutrition and deficiencies in 
trace elements can adversely affect COPD patients, the precise causal 
relationships and underlying mechanisms remain unclear. Mendelian 
randomization (MR) is a potential method for causal inference, used 
to estimate the causal effects of exposure factors on outcomes while 
controlling for confounding factors and avoiding reverse causation 

(42). Therefore, we aim to utilize MR analysis to elucidate the causal 
relationships between trace elements, inflammatory factors, and 
COPD, thereby providing scientifically sound dietary 
recommendations for COPD patients.

2 Methods

2.1 Study design

This study employs MR analysis, focusing on 15 trace elements, 
including Copper, Calcium, Folate, Iron, Vitamin D, and Vitamin B6, 
as the primary exposures, with COPD as the outcome. To further 
explore the mechanisms underlying the causal relationship between 
trace elements and COPD, we consider 91 inflammatory proteins as 
potential mediators to determine whether these proteins play a 
significant mediating role in the causal pathway between trace 
elements and COPD. This research adheres to the guidelines of the 
Strengthening the Reporting of Observational Studies in Epidemiology 
using Mendelian Randomization (STROBE-MR) Statement (43).

Our MR analysis is structured into three distinct phases. Initially, 
we employ a two-sample MR approach to investigate whether a causal 
relationship exists between trace elements and COPD, and to ascertain 
the presence of any reverse causality, thereby determining the 
feasibility of further mediation analysis. Subsequently, after adjusting 
for BMI, we  conduct MVMR to identify which trace elements 
independently contribute to risk. Lastly, we utilize TSMR to examine 
whether the causal effects are mediated by any of the 91 inflammatory 
proteins, thus performing mediation analysis and elucidating the 
proportion of the mediation effect (Figure 1).

2.2 Data sources

The genetic information for the 15 trace elements is sourced from 
the GWAS database,1 all pertaining to European populations. The data 
for the 91 inflammatory proteins are derived from a 2023 study 
involving 14,824 Europeans (44), cataloged under the identifiers 
GCST90274758 to GCST90274848. The COPD data is obtained from 
the tenth round of analysis by the FinnGen database (45),2 also 
concerning European populations. Additionally, the genetic 
information for BMI is acquired from the GWAS database and is 
likewise representative of European demographics (Table 1).

2.3 Instrumental variable selection

The selection of instrumental variables must satisfy several 
assumptions (46): the instrumental variables should be  closely 
associated with trace elements, independent of confounding factors in 
the exposure-outcome relationship, and must influence COPD solely 
through the trace elements (47). To ensure their relevance (48), 
we conduct an association analysis on the 15 trace elements using a 

1 https://gwas.mrcieu.ac.uk/

2 https://www.finngen.fi/en
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significance threshold of p < 5 × 10−6. Subsequently, we eliminate any 
single nucleotide polymorphisms (SNPs) exhibiting linkage 
disequilibrium by applying criteria of R2 < 0.001 and Kb = 10,000 (49). 
We then calculate the F-statistic for the selected SNPs to exclude weak 
instrumental variables, considering an F-value greater than 10 as 
indicative of the absence of weak instrumental variables (50, 51).

2.4 Statistical analysis

We employed five methods to assess causality: Inverse Variance 
Weighted (IVW), MR-Egger, Weighted Median, Simple Mode, and 
Weighted Mode, with IVW serving as the primary method (47, 52). 
A p-value less than 0.05 indicates a causal relationship (53), while the 
other four methods serve as supplementary approaches (54). To 
evaluate the robustness of our results, we  conducted sensitivity 
analysis using the “leave-one-out” technique (55). Additionally, 
we  employed Cochran’s Q test, MR-Egger intercept test, and 
MR-PRESSO to test for pleiotropy and heterogeneity (56, 57), with a 
p-value greater than 0.05 indicating the absence of both (58, 59). 
Using the TSMR approach, we first calculated the total effect (β0) of 
trace elements on COPD, the effect of trace elements on inflammatory 
proteins (β1), and the effect of inflammatory proteins on COPD (β2). 
The mediating effect was computed as β1*β2, and the direct effect as 
the total effect minus the mediating effect. The proportion mediated 
was calculated as (β1 × β2)/β0 (60). All analyses were conducted using 
the R language (version 4.3.3). The specific package employed was 
TwoSampleMR (version 0.6.0).

3 Results

3.1 Causal relationship between 15 trace 
elements and COPD

Through the judicious selection of instrumental variables, 
we  conducted an associative analysis, eliminated linkage 
disequilibrium and weak instrumental variables, and identified 188 
SNPs across 15 trace elements, with the smallest F-statistic being 20.86 

FIGURE 1

Research ideas.

TABLE 1 Genetic information data sources.

Name Number Samples SNP

Copper ieu-a-1073 2,603 2,543,646

Calcium ukb-b-8951 64,979 9,851,867

Carotene ukb-b-16202 64,979 9,851,867

Folate ukb-b-11349 64,979 9,851,867

Iron ukb-b-20447 64,979 9,851,867

Magnesium ukb-b-7372 64,979 9,851,867

Potassium ukb-b-17881 64,979 9,851,867

Selenium ieu-a-1077 2,603 2,543,617

Vitamin A ukb-b-9596 460,351 9,851,867

Vitamin B12 ukb-b-19524 64,979 9,851,867

Vitamin B6 ukb-b-7864 64,979 9,851,867

Vitamin C ukb-b-19390 64,979 9,851,867

Vitamin D ukb-b-18593 64,979 9,851,867

Vitamin E ukb-b-6888 64,979 9,851,867

Zinc ieu-a-1079 2,603 2,543,646

COPD finngen_R10_J10_COPD 358,369 1,048,576

BMI ieu-a-1089 120,286 8,654,252
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FIGURE 2

Circle plots of the five Mendelian randomization methods (p  <  0.05) (A); Forest plot of MR Analysis of trace elements and COPD (B); MR scatter plot of 
trace elements and COPD (C); Result of leave-one-out sensitivity analysis of trace elements and COPD (D).

and the largest 84.68. Univariate MR analysis supports a causal 
relationship between trace elements such as Folate, Vitamin D, 
Vitamin B12, and Iron, and COPD. The results of the IVW analysis 
indicate a positive correlation between Folate (OR = 1.293, 95% CI 
1.027–1.628; p = 0.029), Vitamin D (OR = 1.331, 95% CI 1.071–1.654; 
p = 0.010), and Vitamin B12 (OR = 1.424, 95% CI 1.108–1.828; 
p = 0.006) with COPD, while Iron shows a negative correlation 
(OR = 0.741, 95% CI 0.580–0.946; p = 0.016). Concurrently, reverse 
MR analysis revealed no reverse causality between Folate, Vitamin D, 
Vitamin B12, and Iron with COPD (p > 0.05).

To evaluate the robustness of our analytical results, we employed 
Cochran’s Q test, the MR-Egger intercept test, and MR-PRESSO to 

examine pleiotropy and heterogeneity. No evidence of pleiotropy or 
heterogeneity was detected (p > 0.05). The leave-one-out analysis 
indicated that the exclusion of any single SNP would not significantly 
affect the estimation of causal relationships, suggesting that the results 
of the MR analysis are robust (Table 2; Figure 2).

3.2 Multivariate MR analysis

According to the results of the univariate MR analysis, a causal 
relationship exists between Folate, Vitamin D, Vitamin B12, and Iron 
with COPD. By adjusting for the influence of Body Mass Index (BMI), 

TABLE 2 MR and sensitivity analyses of trace elements and COPD.

Exposure Method snp Beta Se p Pleiotropy test Heterogeneity test

MR-
PRESSO

MR-Egger 
intercept

IVW Q MR-Egger 
Q

Folate IVW 12 0.257 0.117 0.029 0.412 −0.012 (p = 0.247) 12.522 (p = 0.326) 10.879 (p = 0.367)

Vitamin D IVW 13 0.286 0.111 0.010 0.974 0.011 (p = 0.510) 4.625 (p = 0.969) 4.161 (p = 0.965)

Vitamin B12 IVW 8 0.353 0.128 0.006 0.536 0.002 (p = 0.885) 6.161 (p = 0.521) 6.137 (p = 0.408)

Iron IVW 11 −0.300 0.125 0.016 0.924 0.001 (p = 0.908) 4.497 (p = 0.922) 4.482 (p = 0.877)
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we conducted a MVMR analysis with these four trace elements and 
BMI. We discovered that the causal relationships with COPD persist 
for Folate (OR = 1.633, 95% CI 1.098–2.429; p = 0.015), Iron 
(OR = 0.507, 95% CI 0.31–0.778; p = 0.001), and Vitamin D 
(OR = 1.511, 95% CI 1.029–2.217; p = 0.034), indicating that Folate, 
Vitamin D, and Iron are independent risk factors for COPD. However, 
Vitamin B12 (OR = 1.118, 95% CI 0.751–1.666; p = 0.581) is not an 
independent risk factor for COPD (Table 3).

3.3 TSMR and mediation analyses

We conducted a TSMR analysis, selecting 91 inflammatory 
proteins as instrumental variables. After analyzing associations, 
removing linkage disequilibrium, and excluding weak instrumental 
variables, we obtained 2,973 SNPs with the smallest F-statistic being 
19.51 and the largest 1472.73. The univariate MR analysis of these 91 
inflammatory proteins with COPD revealed positive causal 
relationships for CXCL10 (OR = 1.093, 95% CI 1.034–1.155; p = 0.001), 
EN-RAGE (OR = 1.117, 95% CI 1.041–1.198; p = 0.002), CD6 
(OR = 1.064, 95% CI 1.022–1.107; p = 0.002), STAMPB (OR = 1.104, 
95% CI 1.012–1.205; p = 0.025), and CXCL6 (OR = 1.062, 95% CI 
1.015–1.112; p = 0.008). Conversely, negative causal relationships were 
observed for CD40 (OR = 0.948, 95% CI 0.903–0.997; p = 0.038) and 
CDCP1 (OR = 0.940, 95% CI 0.899–0.982; p = 0.006). Tests for 
pleiotropy and heterogeneity were conducted (p > 0.05), with 
consistent OR directions, and the leave-one-out analysis confirmed 
the robustness of the MR results (Table 4).

In further MR analyses of four trace elements and inflammatory 
proteins, we found positive correlations between Iron and CDCP1 
(OR = 1.321, 95% CI 1.026–1.702; p = 0.031), as well as Iron and 

CXCL10 (OR = 1.389, 95% CI 1.070–1.803; p = 0.013). Conversely, 
negative correlations were observed between Folate and EN-RAGE 
(OR = 0.750, 95% CI 0.583–0.964; p = 0.025), and between Vitamin D 
(OR = 0.724, 95% CI 0.563–0.930; p = 0.011) and EN-RAGE (Table 5).

In our final mediation analysis, we elucidated the causal effect 
proportions of four trace elements on COPD, mediated by seven 
inflammatory proteins. It was discovered that only CDCP1 mediated 
the impact of iron on COPD, with a mediation effect of −0.282, a direct 
effect of −0.017, and a mediation proportion of 5.76%. Regrettably, the 
other mediation effects were not established (Figure 3).

4 Discussion

This study provides genetic evidence supporting the causal 
relationships between trace elements such as Folate, Vitamin D, 
Vitamin B12, and Iron, and COPD in univariate MR analysis. After 
adjusting for BMI, further MVMR analysis revealed that Folate, 
Vitamin D, and Iron are independent risk factors for COPD. Finally, 
through TSMR and mediation analysis, CDCP1 is suggested to 
partially mediate the causal relationship between Iron and COPD. Our 
findings offer insights into dietary management and trace element 
supplementation for patients with COPD.

Malnutrition and trace element deficiencies are integral components 
of the rehabilitation process for patients with COPD, exhibiting a 
profound connection (61). Compared to healthy controls, COPD 
patients exhibit significantly reduced levels of Folate, presenting a novel 
therapeutic target for the treatment of COPD (62). Folate possesses 
antioxidative properties (63) and the capability to ameliorate 
endoplasmic reticulum stress (64), correlating positively with pulmonary 
function in COPD patients (65), thereby enhancing lung function (66) 

TABLE 3 MVMR and sensitivity analysis of trace elements and COPD.

Exposure Outcome Beta Se p OR 95%CI Q Egger 
intercept

Ple Het

Folate COPD 0.491 0.202 0.015 1.633 1.098–2.429 41.396 −0.001 0.649 0.497

Vitamin D 0.418 0.195 0.034 1.511 1.029–2.217

Vitamin B12 0.112 0.203 0.581 1.118 0.751–1.666

Iron −0.678 0.218 0.001 0.507 0.331–0.778

BMI −0.023 0.059 0.692 0.976 0.869–1.097

Ple, Pleiotropy Test; Het, Heterogeneity Test.

TABLE 4 MR and sensitivity analyses of inflammatory proteins and COPD.

Exposure Method snp Beta Se p Pleiotropy Test Heterogeneity Test

MR-
PRESSO

MR-Egger 
intercept

IVW Q MR-Egger Q

CXCL10 IVW 33 0.089 0.028 0.001 0.650 −0.001 (p = 0.759) 28.273 (p = 0.655) 29.177 (p = 0.611)

EN-RAGE IVW 23 0.111 0.036 0.002 0.288 −0.009 (p = 0.228) 26.450 (p = 0.232) 24.643 (p = 0.262)

CD6 IVW 25 0.062 0.020 0.002 0.764 −0.001 (p = 0.729) 20.113 (p = 0.690) 19.990 (p = 0.642)

CD40 IVW 23 −0.052 0.025 0.038 0.286 0.006 (p = 0.232) 20.664 (p = 0.224) 24.876 (p = 0.252)

CDCP1 IVW 36 −0.062 0.022 0.006 0.442 0.001 (p = 0.703) 36.182 (p = 0.413) 36.025 (p = 0.373)

STAMPB IVW 20 0.099 0.045 0.025 0.282 −0.005 (p = 0.643) 22.473 (p = 0.261) 22.199 (p = 0.223)

CXCL6 IVW 22 0.061 0.023 0.008 0.604 0.004 (p = 0.367) 20.111 (p = 0.514) 19.261 (p = 0.504)
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FIGURE 3

Forest plots of trace elements iron, CDCP1 and COPD (A); CDCP1 mediates causal relationship between trace element iron and COPD (red is a risk 
factor, green is a protective factor) (B).

and alleviating respiratory distress (67). A reduction in Folate intake may 
lead to restricted airflow (68), whereas increasing Folate intake could 
potentially benefit pulmonary function (69). Folate may confer protective 
effects against acute lung injury by mitigating inflammatory responses 
(70). Serum Folate levels are positively correlated with lung function in 
elderly males (71) and are also associated with pulmonary function in 
children with asthma (72). However, supplementation with Folate does 
not influence changes in FEV1 (67), nor has a significant correlation 
been observed between serum Folate levels and lung function in females 
(65). These results present contradictions, and our MR analysis serves as 
a complement to observational studies and systematic reviews. Vitamin 

D plays a crucial role in both innate and adaptive immunity (73) and acts 
as a significant regulator in defending against pulmonary infectionss 
(74). It may also contribute to reducing mortality from respiratory 
diseases. Additionally (75), supplementation with Vitamin D alone can 
enhance lung function (5). Prospective studies have identified a 
correlation between lower Vitamin D levels and accelerated decline in 
lung function (76). Systematic reviews have concluded that Vitamin D 
supplementation can reduce the risk of respiratory infections (34) and 
enhance resistance to such infections (77). In COPD patients, the 
response to Vitamin D supplementation is diminished compared to 
healthy controls (78), and supplementation does not affect the muscular 

TABLE 5 MR and sensitivity analysis of trace elements and inflammatory proteins.

Exposure Outcome Method snp Beta Se p Pleiotropy test Heterogeneity test

MR-
PRESSO

MR-Egger 
intercept

IVW Q MR-Egger 
Q

Folate EN-RAGE IVW 13 −0.287 0.128 0.025 0.436 0.001 (p = 0.954) 12.387 (p = 0.415) 12.384 (p = 0.335)

Vitamin D EN-RAGE IVW 13 −0.322 0.127 0.011 0.936 −0.002 (p = 0.882) 5.738 (p = 0.928) 5.715 (p = 0.891)

Iron CDCP1 IVW 12 0.278 0.129 0.031 0.697 −0.012 (p = 0.394) 8.208 (p = 0.694) 7.418 (p = 0.685)

Iron CXCL10 IVW 12 0.328 0.133 0.013 0.575 −0.005 (p = 0.688) 9.596 (p = 0.566) 9.426 (p = 0.492)
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response to resistance training in COPD patients treated with Vitamin 
D3 (79). While some studies suggest that Vitamin D supplementation 
does not reduce the exacerbation rate of COPD (80), it is inversely related 
to inflammatory signaling in COPD (81). A deficiency in Vitamin D 
receptors may increase pulmonary inflammation (82), and Vitamin D 
may inhibit COPD-related pulmonary emphysema by maintaining the 
homeostasis and functionality of alveolar macrophages (83). Despite 
some contradictions in research concerning Vitamin D and COPD (84), 
our analyses using MR and MVMR have established a causal relationship 
between Vitamin D and COPD.

Vitamin B12, as a supplement in the rehabilitation of COPD 
patients, can regulate the secretion of NT-proBNP (85), exerting a 
positive effect on patients with advanced COPD (86). However, the 
intake of Vitamin B12 is not associated with the risk of frailty in 
COPD. After adjusting for BMI, our multivariate MR analysis 
indicates that Vitamin B12 is not an independent risk factor for 
COPD (87). Iron regulation is significantly associated with 
respiratory diseases (88). Dysregulation of iron homeostasis is a 
critical mechanism in lung injury (89). Iron-induced cell death can 
lead to airway remodeling and emphysema (90), exacerbating 
inflammation and oxidative stress (91). Targeting iron-induced cell 
death may ameliorate respiratory diseases (92) and alleviate the 
progression of COPD (93). Iron is related to the genetic susceptibility 
of COPD (94, 95), and COPD patients may experience non-anemic 
iron deficiency (96), which is associated with inflammatory 
responses (97), skeletal muscle disorders (98), hypoxemia, and 
reduced exercise tolerance (99). Clinical studies have shown that iron 
supplementation can improve the exercise endurance and quality of 
life of COPD patients (100, 101). Non-anemic iron deficiency can 
impair the response of COPD patients to pulmonary rehabilitation, 
resulting in lower aerobic capacity (102). Iron deficiency is linked to 
more severe pulmonary vascular diseases (103). Dysregulation of 
iron homeostasis in the lungs and cellular iron accumulation are 
factors in the development of COPD (104). Ferroptosis, an iron-
dependent form of cell death, plays a role in the pathogenesis of 
COPD (105) and can ameliorate cigarette smoke-induced 
inflammation and emphysema (106). CXCL10 is a potential 
biomarker for impaired lung development (107), capable of 
modulating pulmonary inflammation (108) and the lung 
microenvironment (109). There is a correlation between EN-RAGE 
and COPD (110). CD6 serves as a therapeutic target in cancer 
immunotherapy (111), while CD40 is associated with the severity of 
COPD and the degree of pulmonary function alteration (112). 
Additionally, a correlation exists between CXCL6 and mortality in 
IPF (113). CDCP1, which may be  involved in cell adhesion and 
matrix binding, could serve as a biomarker for lung cancer detection 
(114) and is somewhat associated with COVID-19 (115). Our 
research suggests that iron may mediate the effects on COPD 
through its influence on the inflammatory protein CDCP1, 
necessitating further exploration of the relationship between 
inflammatory responses, trace elements, and COPD.

This study, through MR analysis, investigates the causal 
relationships between trace elements, inflammatory proteins, and 
COPD, aiming to provide scientifically sound dietary recommendations 
for COPD patients and further suggest that supplementation with trace 
elements may be  beneficial for COPD. This research has certain 
limitations; primarily, the study population is confined to Europeans, 
which may restrict the generalizability of the findings. Secondly, there 
is a need for a deeper exploration of the mechanisms linking trace 

elements, inflammatory proteins, and COPD, as the mediating effects 
observed were not significant, necessitating further.

5 Conclusion

In conclusion, our research demonstrates a causal relationship 
between genetically predicted trace elements such as Folate, Vitamin 
D, Vitamin B12, and Iron, and COPD. After adjusting for BMI, Folate, 
Vitamin D, and Iron emerge as independent risk factors for 
COPD. Furthermore, the inflammatory protein CDCP1 may play a 
partial mediating role in the causal relationship between Iron and 
COPD. Our findings can better inform scientifically sound dietary 
recommendations for patients, suggesting that supplementation with 
trace elements may be beneficial for those suffering from COPD.
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