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for food named-entity
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1Jožef Stefan International Postgraduate School, Ljubljana, Slovenia, 2Department of Computer
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Introduction:Recognizing and extracting key information from textual data plays
an important role in intelligent systems by maintaining up-to-date knowledge,
reinforcing informed decision-making, question-answering, and more. It is
especially apparent in the food domain, where critical information guides the
decisions of nutritionists and clinicians. The information extraction process
involves two natural language processing tasks named entity recognition—NER
and named entity linking—NEL. With the emergence of large language models
(LLMs), especially ChatGPT, many areas began incorporating its knowledge to
reduce workloads or simplify tasks. In the field of food, however, we noticed an
opportunity to involve ChatGPT in NER and NEL.

Methods: To assess ChatGPT’s capabilities, we have evaluated its two versions,
ChatGPT-3.5 and ChatGPT-4, focusing on their performance across both NER
and NEL tasks, emphasizing food-related data. To benchmark our results in the
food domain, we also investigated its capabilities in a more broadly investigated
biomedical domain. By evaluating its zero-shot capabilities, we were able to
ascertain the strengths and weaknesses of the two versions of ChatGPT.

Results: Despite being able to show promising results in NER compared to
other models. When tasked with linking entities to their identifiers from semantic
models ChatGPT’s e�ectiveness falls drastically.

Discussion: While the integration of ChatGPT holds potential across various
fields, it is crucial to approach its use with caution, particularly in relying on its
responses for critical decisions in food and bio-medicine.

KEYWORDS

ChatGPT, food data, named-entity recognition, named-entity linking, natural language

processing

1 Introduction

Food has always been an important factor in our daily lives. Food can influence our
health, mental health, fitness, and other aspects in conjunction with a person’s well-being
(1), but to understand the intricate relationship between food and healthcare, one needs to
dig deep into the vast amount of scientific literature. As such, extracting food information
from literature is crucial in ensuring that dietary choices are informed by rigorous research,
promoting an accurate understanding of nutritional principles. Evidence-based dietary
recommendations from scientific studies empower individuals to make informed choices,
fostering a healthier lifestyle supported by robust scientific evidence (2). Yet, manual
evaluation of such literature is a daunting task. Additionally, in digital dietary assessment,
information on dietary habits is supplied in plain, unstructured text, and by automating
food information extraction, we can assist clinicians and dietitians in improving a person’s
lifestyle and health. Structuring food information from unstructured text sources such as
digital dietary assessments, recipes, and scientific literature involves two critical tasks in
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FIGURE 1

Food NER example from a recipe text.

natural language processing (NLP): Named Entity Recognition
(NER) (3) and named entity linking (4) (NEL). NER is a subtask of
information extraction that automatically detects and categorizes
entities (one or multiple words) from unstructured text. For
instance, in Figure 1, an example of a recipe is presented, where the
food entities are highlighted in bold and are automatically extracted
by a NER method.

Depending on the methodology, several types of NER methods
exist: dictionary-based, rule-based, corpus-based, active learning-
based, and deep learning-based. Dictionary-based NERs are
dependant on a pre-determined dictionary of the entities of interest
(i.e., in our case, food entities) (5); rule-based NER also uses a pred-
determined dictionary but in conjunction with rules that describe
the characteristics of the entities in the domain of interest (6);
corpus-based NERs are dependant on a corpus used to train a
supervised machine learning model (7); active learning NERs use
semi-supervised learning to train a model and further iteratively
improve it using interactions from a user for new training instances
(8), and deep learning-based NERs use large amounts of annotated
data to train a model using deep neural networks (9). Despite many
methodologies, the robustness and accuracy of a NER method
is dependent on the amount of resources available for a specific
domain.

NEL is the task of linking entities to their unique identifiers
describing concepts in a knowledge base [i.e., in most cases,
to a semantic model/ontology (10, 11)]. An ontology formally
represents knowledge or concepts within a specific domain,
detailing the entities, attributes, relationships, and constraints
relevant to that domain. It serves as a structured framework for
organizing and understanding information, facilitating knowledge
sharing, reasoning, and interoperability between different systems
and applications. Having a unique identifier helps us collect and
comb information for the same entity from multiple sources
(e.g., various scientific articles) even if it has a different textual
representation (i.e. synonyms). This step is necessary to ensure that
the data can interoperate effectively, which is crucial for adhering
to the Findable, Accessible, Interoperable, and Reusable (FAIR)
principles (12). In Figure 2, a NEL example is presented, where the
first discovered entity "cream cheese" from the NER example (see
Figure 1) is linked to the SNOMED-CT (13) ontology.

With the emerging development of generative artificial
intelligence (AI) (14), particularly large language models (LLMs)
[e.g., ChatGPT (15) LLaMA (16) Mistral (17), Gemini (18)], they

offer a lot of potential in diverse NLP tasks, including NER
and NEL.

Our contribution: This article delves into a zero-shot
evaluation of the capabilities of ChatGPT-3.5 and ChatGPT-4 in
the tasks of food NER and NEL, which are crucial for synthesizing
data from diverse unstructured sources like academic literature and
text in lay language. We explore ChatGPT’s abilities, especially its
capacity to perform these tasks without prior training (i.e., zero-
shot evaluation), by curating a generalized prompt with which
ChatGPT is capable of performing both tasks. Our primary goal
is the evaluation of the task of food NER for which we utilized
two food corpora. Next, we evaluate it on the task of food NEL by
linking the recognized food entities to a unique identifier from the
SNOMED-CT ontology or the FOODON ontology (19). Further,
we perform a secondary evaluation of both models on the task of
NER on biomedical domain entities and the task of NEL by linking
them to the NCBI (20) ontology and MeSH ontology to compare
how resource availability and entity types influence ChatGPT’s
performance on NER and NEL tasks.

2 Related work

In the domain of food NER and NEL, a lot of work has
been done in the last decade to address the lack of annotated
resources and NLP methodologies. Before the introduction of the
FoodBase annotated corpora (21), most research focused on rule-
based NER methods such as drNER (22) for knowledge extraction
of evidence-based dietary recommendations and FoodIE (23)
which is a rule-based NER method for food information extraction
from recipes. Additionally, StandFood (24) has introduced a
classification approach focusing on the lexical similarity of food
entities that can be used for NEL of food entities to the FoodEx2
database provided by the European Food Safety Authority (EFSA).
Following the introduction of FoodBase, further research using ML
techniques has been introduced. In 2020 (25) released BuTTER,
the first bidirectional LSTM for food NER utilizing the FoodBase
annotated corpus to identify food entities. In the following year,
FoodNER (26) was released as a fine-tuned bidirectional encoder
representation from transformers model for food NER and NEL
which can extract and annotate food entities in five different tasks
and distinguish food entities on the level of food groups. To
visualize and help food experts with the subject of different food
standards and interoperability, FoodViz (27) has been developed,
which is a web-based framework used to visualize and annotate
food entities with semantic tags. Recent studies have also shown
results on using deep learning architecture for food NER from
recipes (28) and enhancing NER in agriculture by using LLMs (29).

In contrast to the food domain, the biomedical domain has
experienced significant advancements over the past two decades,
attributed to the large amounts of resources available. This
development is predominantly focused on various biomedical
entities, including genotypes, phenotypes, diseases, treatments, and
drugs. To further advance NLP in this domain, multiple workshops
have been organized, notably BioNLP (30), BioCreative (31), i2b2
(32), etc, each emphasizing biomedical data and excluding food
entities. Additionally, multiple ontologies have been developed
for the biomedical domain, SNOMED-CT, MeSH (33), Disease
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FIGURE 2

NEL example, where “cream cheese” is linked to the SNOMED-CT ontology.

ontology (34), UMLS (35), which facilitate the organization and
classification of biomedical entities. These advancements in the
field have influenced the evolution of ML models with the most
recent iteration of Bert (36), BioBert (37) and BioClinicalBERT
(38), three examples of successful models in the field of biomedical
NLP.With the introduction of LLMs, such as ChatGPT, researchers
began testing its capabilities in the biomedical domain. Studies
are focusing on improving LLMs for clinical NER via prompt
engineering (39) and fine-tuning ChatGPT on biomedical NLP
tasks instead of its zero-shot evaluation (40, 41). In addition, it
has been highlighted that ChatGPT is effective in similar clinical
NER tasks (42), even in zero-shot settings, despite trailing behind
specialized models like BioClinicalBERT.

3 Materials and methods

Our study focuses on evaluating ChatGPT’s capabilities in NER
and NEL across two pivotal domains, food and biomedical. To
achieve this, we utilize specially curated datasets. For the food
domain, we used gold standard datasets from the European Food
Safety Authority-funded project, encompassing a wide range of
food-related data from scientific articles and food consumption
data. While for the biomedical domain, we used chemical, disease
and species corpora.

3.1 Food NER datasets

Our evaluation of the food domain utilizes two corpora
from an EFSA-funded project, CAFETERIA. The first corpus
is the CafeteriaSA corpus (43), comprised of 500 scientific
abstracts, each annotated with food entities leading to a total

of 6,407 annotations. These annotations include entities’ unique
identifiers from various semantic resources, including the Hansard
taxonomy (44), FoodOn, and SNOMED-CT terminology. This
corpus lays the foundation for extracting and comprehending
food information from scientific texts. The second corpus is the
CafeteriaFCD corpus (45), which extends the FoodBase corpus,
annotating food consumption data (i.e. recipes) with unique
identifiers from external resources such as Hansard taxonomy,
FoodOn ontology, SNOMED-CT terminology, and the FoodEx2
(46) classification system. The CafeteriaFCD corpora is comprised
of 1,000 recipes, each annotated with food entities, leading to a total
of 7,429 annotations.

3.2 Biomedical NER and NEL datasets

Our evaluation in the biomedical domain incorporates three
distinct corpora from two sources. The BioCreative V challenge
(47) and the Linnaeus gold standard corpus (48). The BioCreative
V Challenge is the fifth iteration of the Critical Assessment of
Information Extraction Systems in Biology challenge. The event
evaluates text mining and information extraction systems applied
to the biological domain. One of the sub-tasks in the fifth edition of
the challenge has been the evaluation of NER methodologies in the
context of chemical entities and disease entities within life science
literature with each entity linked (NEL) to its MeSH identifier.
These two corpora have been further involved in our experiments.
In addition, the Linnaeus corpus serves as a gold standard for
species entity recognition, offering a comprehensive collection of
annotations for species names within biomedical research texts. In
contrast to the BioCreative V Challenge, the Linnaeus corpus uses
the NCBI identifiers for the NEL task.
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3.3 GPT models

In the exploration of ChatGPT’s NER and NEL capabilities
across the food and biomedical domains, our study employs two
advanced iterations of the Generative Pre-trained Transformer
models: ChatGPT-3.5 (49) and ChatGPT-4 (50). Each model
iteration brings unique strengths to our experimental setup,
allowing for an understanding of the evolution and applicability
of these AI technologies in handling domain-specific entity
recognition and linking tasks.

ChatGPT-3.5 represents an intermediate advancement in
OpenAI’s lineup of language models. Notably, it has been
instrumental in setting benchmarks for language comprehension,
context understanding, and the generation of human-like text
based on the vast knowledge it has been trained on. Its
application in our study serves as an evaluation of its capabilities,
especially in processing and analyzing complex domain-specific
text, providing critical insights into the limitations and strengths
of AI-driven NER and NEL in the context of scientific and food
consumption literature and as a benchmark for improvements in
subsequent models.

ChatGPT-4, the subsequent iteration, builds upon the
foundational successes of its predecessors, offering enhanced
understanding and generation capabilities that promise significant
advancements in AI’s role within NER and NEL tasks. With a
broader knowledge base and improved contextual awareness,
ChatGPT-4 is designed to surpass the limitations observed in
earlier models, providing more accurate entity recognition and
linking across the specialized datasets utilized in our study. The
introduction of ChatGPT-4 into our experimental workflow
allows for a direct comparison of performance metrics with
its predecessor in highlighting the progress made in language
modeling and its practical implications for food and biomedical
NER and NEL tasks.

4 Results

In Figure 3, our experimental flowchart is presented and
modeled based on the approach in (51). The design of the prompt
plays an important role in receiving suitable responses from
ChatGPT. As such, we have created a general prompt to serve as
a NER and NEL tool while incorporating essential elements such as
contextual background, a clear task directive, and a specific output
format constraint. In the following Table 1, we see an example of
our prompt for each domain, which we used to extract and link
entities.

The responses generated from the prompts proved to be
sufficiently detailed for subsequent post-processing and analysis.
To assess the performance we utilized the F1 score, a well-
established metric combining precision and recall. The F1 metric
is used to show the reliability of a model by calculating a score
between 0 and 1. A score higher than 0.9 indicates excellent
performance. A score between 0.8 and 0.9 is considered good,
while a score between 0.5 and 0.8 is average. An F1 score below
0.5 is considered poor performance. The F1 score calculation
(Equation 1) is calculated using precision (Equation 2) and recall
(Equation 3). TP means true positive or correctly found entities,

FP means false positive or entities that have been found but are
incorrect, and FN means false negative, entities that have not been
found.

F1 score =
2 ∗ Precision ∗ Recall

Precision+ Recall
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

4.1 Food NER and NEL evaluation

To enhance accuracy and minimize ChatGPT’s generation of
erroneous information in the food domain, we define our initial
prompt to align with the specific requirements of the Cafeteria
corpora. An example of the text used with the prompt is seen with
the response received from ChatGPT-4 in Table 2.

After analyzing the responses, we noticed instances where
ChatGPT identified food entities as partial matches, omitting
prefixes or suffixes. For example, instead of recognizing
PROVOLONE CHEESE in its entirety, ChatGPT identified
only CHEESE. Initially categorized as false positives, these partial
matches made us reconsider our evaluation criteria. Consequently,
we explored whether acknowledging partial matches as correct
could enhance the model’s performance assessment, shifting from
viewing them strictly as errors to potential positives.

4.2 NER

In the NER task, ChatGPT demonstrated good performance
across both culinary recipes (CafeteriaFCD) and scientific articles
(CafeteriaSA). Figure 4 illustrates the quantity of precisely
identified food entities, with an entity deemed accurate only
if identified with 100% correctness (not a partial match).
The labels FOODON/SNOMED-CT indicate text documents
annotated using FOODON or SNOMED-CT identifiers, whereas
SA/FCD represents scientific articles or food consumption
data. Observations reveal that ChatGPT-3.5 and ChatGPT-
4 exhibit greater proficiency in identifying food entities
within food consumption data (CafeteriaFCD) than scientific
articles (CafeteriaSA).

Moreover, there is a marginally higher performance level
in ChatGPT-4 relative to ChatGPT-3.5, which aligns with
expectations considering its status as an enhancedmodel. However,
the performance gap between the two versions is surprisingly
narrow. Upon reviewing the F1 scores presented in Table 3, it
becomes evident that ChatGPT-4 slightly outperforms ChatGPT-
3.5 in the accuracy of food entity identification, particularly in
culinary recipes over scientific texts. Furthermore, the disparity
in performance between ChatGPT-3.5 and ChatGPT-4 is more
evident in the context of scientific articles than in food recipes,
underscoring the improvements in the latest model’s capabilities.
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FIGURE 3

Pipeline for ChatGPT evaluation.

TABLE 1 Prompts used to evaluate ChatGPT-3.5 and ChatGPT-4 on di�erent domains.

Domain Prompt

Food domain Extract only food entities and find their correct FOODON/SNOMED-CT ids, display the result only in this format

name_of_FOOD|FOODON_id/SNOMEDCT_id without headers and nothing else. Text is:

Chemical domain Extract only chemical entities and find their correct MeSH ids, display the result only in this format name_of_Chemical|MeSH_id without headers and

nothing else. Text is:

Disease domain Extract only disease entities and find their correct MeSH ids, display the result only in this format name_of_Disease|MeSH_id without headers and nothing

else. Text is:

Species domain Extract only species entities and find their correct NCBI ids, display the result only in this format name_of_Species|NCBI_id without headers and nothing

else. Text is:

TABLE 2 ChatGPT-4 response for food entities.

Example text “Mix the cream cheese, beef, olives, onion, and Worcestershire sauce together in a bowl until evenly blended.”

Domain ChatGPT-4 response

Food “cream cheese|762563006 beef|767623000 olives|72286700 3 onion|769846004 Worcestershire
sauce|771471005”

In comparison, if we add partial matches to our evaluation,
the performance of both models rises, which illustrates that
although ChatGPT demonstrates proficiency in food domain
NER tasks, its inability to detect prefixes and suffixes, critical
elements that significantly impact food identification, may lead to
confusion when determining the precise type or brand of food.
If we compare our findings with FoodNER and SciFoodNER
(52), taking into consideration that both models are fine-
tuned to different domain-specific data, FoodNER on food
consumption data and SciFoodNER on scientific articles, we
notice that both ChatGPT-3.5 and ChatGPT-4 fall behind. In
comparison to FoodNER, the F1 score of ChatGPT-4 partials
on FOODON FCD came the closest with a difference of
0.104, while in contrast to SciFoodNER, ChatGPT-4 partials on
FOODON SA came the closest with a more significant difference
of 0.201.

4.3 NEL

For the NEL task, we assessed the performance of both
models in accurately associating food entities with their respective
SNOMED-CT or FOODON identifiers. Each identifier is a unique
code corresponding to a specific food entity. For example,
CHEESE is represented with a FOODON identifier of 00001013
and with a SNOMED-CT identifier of 102264005. According to
the results, the outcome fell short of our expectations. Apart
from ChatGPT-4 successfully linking only two correct identifiers
within the FOODON CafeteriaFCD corpus, neither model could
associate any food entity with its corresponding identifier. Given
these results, calculating the F1 score for this task was deemed
unnecessary. Alternatively to ChatGPT’s performance, FoodNER
models achieved a macro F1 score between 0.733 and 0.789 on food
consumption data, while SciFoodNER models achieved a median
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FIGURE 4

Comparison between ChatGPT-3.5 and ChatGPT-4 in finding correct food entities.

TABLE 3 F1 scores for ChatGPT-3.5 and ChatGPT-4 for food domain (NER task).

Model FOODON SA SNOMED-CT SA FOODON FCD SNOMED-CT FCD

ChatGPT-3.5 0.404 0.363 0.619 0.520

ChatGPT-3.5 partials 0.539 0.463 0.786 0.708

ChatGPT-4 0.533 0.490 0.668 0.562

ChatGPT-4 partials 0.699 0.604 0.839 0.749

macro F1 score of around 0.42. Illustrating the difficulty of NEL in
the domain of food.

4.4 Biomedical NER and NEL evaluation

To compare our findings within the food domain, we have
extended our analysis to a more established area of study, the
biomedical domain. Our examination in this domain drew upon
three previously mentioned corpora, two from the BioCreative V
challenge and one from the Linnaeus corpus. We adapted our
prompt for each corpus bymodifying the original to suit the specific
corpus focus. For the chemical and disease entities corpora, which
use MeSH identifiers, the prompt has been tailored to extract the
relevant entities and their corresponding MeSH IDs. For instance
in Table 4, we see responses from ChatGPT-4 for the example text.

For the Linnaeus dataset, which catalogs species entities using
NCBI identifiers, we used a prompt designed for extracting species
entities and their accurate NCBI IDs. An example of the response
and text is seen in Table 5.

4.5 NER

For the NER task, the performance outcomes of both ChatGPT-
3.5 and ChatGPT-4 are depicted in Figure 5. This figure indicates

that the models perform better in identifying chemical and disease
entities while struggling with species entities. This disparity could
be attributed to the narrower scope of chemical and disease
terminology instead of the broad and varied taxonomy of species.
The observation shows the challenge in species entity recognition,
reflected in both models’ performance metrics.

The F1 scores in Table 6 display the same pattern. The task of
identifying chemical and disease entities proved to be easier, while
recognizing species posed a more significant challenge. Adding
to this, our findings from the food domain, the incorporation of
partial matches significantly enhanced the performance of both
models across the chemical and disease datasets and, to a lesser
extent, for the species dataset. In addition, the results correspond to
those reported in articles (51, 53) with a little margin of difference.

4.6 NEL

In our analysis of the NEL task within the biomedical domain,
we have evaluated the performance of both ChatGPT-3.5 and
ChatGPT-4 in mapping chemical, disease, and species entities to
their respectiveMeSH orNCBI identifiers, paralleling our approach
in the food domain. The outcomes, as depicted in Figure 6,
revealed a marked superiority of ChatGPT-4 over ChatGPT-
3.5. Furthermore, accurately linking disease and chemical entities
proved challenging for both models, demonstrating the complexity
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TABLE 4 ChatGPT-4 response for chemical and disease entities.

Example text “Famotidine is a histamine H2-receptor antagonist used in inpatient settings for prevention of stress ulcers and is showing increasing popularity because
of its low cost”

Domain ChatGPT-4 response

Disease “stress ulcers|D004487”

Chemical “Famotidine|D005242 Histamine H2-Receptor Antagonists| D006632 Stress Ulcers|D013379”

TABLE 5 ChatGPT-4 response for species entities.

Example text “including the ribosomal protein S3 from Escherichia coli (1), Mer1p from S.cerevisiae, a meiosis-specific splicing factor (1), MEX-3 from Caenorhabditis
elegans, presumably involved in mRNA localization during development (2)”

Domain ChatGPT-4 response

Species “Escherichia coli|562 Caenorhabditis elegans|6239”

FIGURE 5

Comparison between ChatGPT-3.5 and ChatGPT-4 in finding biomedical entities.

of named entity linking despite the well-documented and
recognized datasets.

The F1 scores in the accompanying Table 7 confirm ChatGPT-
4 enhanced proficiency in linking entities across all categories
compared to ChatGPT-3.5. Additionally, ChatGPT-4 exhibits a
notable advancement in identifying chemical and disease entities.
However, the overall performance, particularly in species entity
linking, remains sub-optimal, highlighting areas for future model
refinement and research focus.

5 Discussion

We observe that in food NER, ChatGPT models perform
comparably to FoodNER and BuTTER, which are fine-tuned on
specific datasets. This suggests that GPT models can be applied to
food NER tasks but incur financial costs. Conversely, developing
specialized food NER models like FoodNER and BuTTER involves

TABLE 6 F1 scores for ChatGPT-3.5 and ChatGPT-4 for the biomedical

domain (NER task).

Model Chemical Disease Species

ChatGPT-3.5 0.578 0.404 0.016

ChatGPT-3.5 partials 0.646 0.535 0.021

ChatGPT-4 0.698 0.514 0.021

ChatGPT-4 partials 0.772 0.692 0.023

extensive manual data annotation, leading to a time-consuming
process. In addition, ChatGPT models are not effective for food
NEL without fine-tuning.

The tasks of NER and NEL are essential for making data
interoperable, which is especially apparent in the food domain and
is a crucial part of accomplishing FAIR principles. Additionally,
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FIGURE 6

Comparison between ChatGPT-3.5 and ChatGPT-4 in linking biomedical entities to identifiers.

TABLE 7 F1 scores for ChatGPT-3.5 and ChatGPT-4 for biomedical

domain (NEL task).

Model Chemical Disease Species

ChatGPT-3.5 0.065 0.113 0.008

ChatGPT-4 0.233 0.233 0.0139

these tasks open up the ability to link food data to biomedical
data, where data normalization is necessary and can be achieved
by performing the tasks presented in this study. By facilitating
the linkage of food data to biomedical data, these tasks empower
professionals to make well-informed decisions regarding patient
care, dietary recommendations, and overall health management.
The normalization of data achieved through NER and NEL offers
valuable insights that can directly impact clinical and nutritional
assessments, fosteringmore precise and personalized interventions.
While ChatGPT-4 yields promising results in the task of NER, its
shortcomings in the task of NEL leavemuch room for improvement
before becoming a reliable method for accomplishing both tasks.

6 Conclusion

In our study, we evaluated the performance of ChatGPT
versions 3.5 and 4 on NER and NEL tasks within food and
biomedical domains. After testing multiple prompt designs,
we found a general prompt that was the most effective and
least costly in retrieving results from both ChatGPT-3.5 and
ChatGPT-4. ChatGPT-4 showed a slight edge over ChatGPT-
3.5, especially in identifying entities in food consumption data

(FCD) versus scientific articles (SA). Incorporating partial matches
significantly improved both models’ performance, suggesting
a refined approach to entity recognition. Unfortunately, the
performance of ChatGPT on NEL in the food domain highlights
ChatGPT’s lack of information for this particular task. In the
biomedical domain, similar performance trends were observed,
with ChatGPT-4 outperforming ChatGPT-3.5 in mapping entities
to MeSH or NCBI identifiers. Despite yielding better results
in linking disease and chemical entities, NEL proves a difficult
challenge for both models. Additionally, ChatGPT’s performance
in species entity recognition from the Linnaeus dataset aligns
closer to the results from the food domain. The comparison
to specialized models discussed in related literature for the
biomedical domain (54) and for the food domain (25) indicates
specializedmodels’ superiority in specificNER tasks. Yet, compared
to models not trained with the same dataset or out-of-corpus
(OOC), ChatGPT’s performance aligns more closely, showcasing
its potential adaptability (i.e., fine-tuning), which should be
considered for future work.
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43. Cenikj G, Valenčič E, Ispirova G, Ogrinc M, Stojanov R, Korošec P, et al.
CafeteriaSA corpus: scientific abstracts annotated across different food semantic
resources. Database. (2022) 2022:baac107. doi: 10.1093/database/baac107

44. Alexander M, Davies M, Dallachy F. The Hansard Corpus 1803-2005. The
University of Glasgow, Scotland (2015).

45. Ispirova G, Cenikj G, Ogrinc M. Valenčič E, Stojanov R, Korošec P, et al.
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