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Objective: This study aims to develop a predictive model for the risk of 
major adverse events (MAEs) in type A aortic dissection (AAAD) patients with 
malnutrition after surgery, utilizing machine learning (ML) algorithms.

Methods: We retrospectively collected clinical data from AAAD patients 
with malnutrition who underwent surgical treatment at our center. Through 
least absolute shrinkage and selection operator (LASSO) regression analysis, 
we screened for preoperative and intraoperative characteristic variables. Based 
on the random forest (RF) algorithm, we constructed a ML predictive model, and 
further evaluated and interpreted this model.

Results: Through LASSO regression analysis and univariate analysis, we ultimately 
selected seven feature variables for modeling. After comparing six different ML 
models, we  confirmed that the RF model demonstrated the best predictive 
performance in this dataset. Subsequently, we  constructed a model using 
the RF algorithm to predict the risk of postoperative MAEs in AAAD patients 
with malnutrition. The test set results indicated that this model has excellent 
predictive efficacy and clinical applicability. Finally, we employed the Shapley 
additive explanations (SHAP) method to further interpret the predictions of this 
model.

Conclusion: We have successfully constructed a risk prediction model for 
postoperative MAEs in AAAD patients with malnutrition using the RF algorithm, 
and we have interpreted the model through the SHAP method. This model aids 
clinicians in early identification of high-risk patients for MAEs, thereby potentially 
mitigating adverse clinical outcomes associated with malnutrition.
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Introduction

Aortic dissection (AD) is an extremely dangerous cardiovascular 
emergency, especially type A aortic dissection (AAAD). Without 
prompt surgical intervention, its mortality rate increases by 
approximately 1%–2% per hour, with a mortality rate as high as 50% 
within 48 hours (1–3). Despite significant advancements in surgical 
techniques and life support technologies such as cardiopulmonary 
bypass in recent years, the prognosis of AAAD remains relatively poor 
compared to other cardiovascular diseases (4). Therefore, effectively 
assessing and predicting the risk of postoperative adverse clinical 
events is crucial before making diagnostic and therapeutic decisions 
for AAAD patients.

Malnutrition is a common comorbidity upon admission and also 
a significant adverse prognostic factor for cardiovascular diseases (5, 
6). Research by Shirley suggests a close association between 
malnutrition and mortality in patients with atrial fibrillation (7). 
Similarly, studies by Al-Kassou et al. (8) indicate that malnutrition 
increases the mortality rate following aortic valve surgery. However, 
there is currently limited research on the relationship between 
malnutrition and the prognosis of AAAD. Additionally, there is also 
a lack of a model that can effectively predict the clinical outcomes of 
AAAD patients with concurrent malnutrition following 
surgical treatment.

With the widespread adoption and popularization of artificial 
intelligence technology, its application in the field of biomedicine is 
rapidly advancing. Machine learning (ML), as a specialized form of 
artificial intelligence, has been widely utilized in the diagnosis and 
treatment of various diseases and their prognosis (9, 10). Compared 
to traditional logistic regression prediction models, ML models 
demonstrate greater flexibility and accuracy in handling complex, 
non-linear relationships within data (11–13). This study aims to 
construct a prognosis model based on ML algorithms to predict the 
risk of major adverse events (MAEs) in-hospital for AAAD patients 
with concurrent malnutrition following surgical treatment.

Materials and methods

Study population

This study retrospectively analyzed the clinical data of AAAD 
patients over 18 years old who underwent surgical treatment 
consecutively at our center from January 2018 to January 2022. The 
exclusion criteria were as follows: (1) chronic aortic dissection, (2) 
patients with preoperative comorbidities such as malignant tumors, 
hematologic disease, systemic inflammatory diseases, (3) history of 
previous thoracotomy, (4) significant lack of medical history data. This 
study was approved by the Ethics Committee of Fujian Medical 
University Union Hospital and complied with the Helsinki declaration. 
Informed consent was waived due to the retrospective nature of 
the study.

Definition and endpoint

The nutritional risk index (NRI) is a commonly used clinical 
nutritional assessment tool. In this study, the patients’ nutritional 

status upon admission was assessed using the NRI (14). The 
calculation of the NRI follows the formula proposed by Buzby: 1.519 
* serum albumin (g/l) + 41.7 * (current body weight [kg]/usual body 
weight [kg]). Usual body weight is replaced by ideal body weight, with 
the formula for calculating ideal body weight in male as follows: 
height (cm) − 100 − ([height (cm) − 150]/4), and for female, the 
formula is: height (cm) − 100 − ([height (cm) − 150]/2.5). When the 
current body weight exceeds the ideal body weight, we set the ratio of 
current body weight to ideal body weight as 1 (14–16). Taking into 
account the application of the NRI in other cardiovascular disease 
studies, we  defined patients with NRI < 97.5 upon admission as 
having malnutrition.

The main endpoint of this study is the occurrence of MAEs 
during hospitalization. According to the consensus statement 
from the international study group for aortic arch surgery on the 
grading criteria for complications after aortic arch surgery (17), 
MAEs include: (1) cardiovascular complications (myocardial 
infarction, malignant arrhythmias, and heart failure requiring 
support with intra-aortic balloon pump), (2) respiratory 
complications [acute lung injury, acute respiratory distress 
syndrome, prolonged mechanical ventilation, reintubation, 
tracheostomy, or respiratory failure requiring extracorporeal 
membrane oxygenation (ECMO) therapy], (3) new-onset acute 
kidney injury [serum creatinine level increased more than three 
times baseline or renal failure requiring continuous renal 
replacement therapy (CRRT)], (4) gastrointestinal bleeding, (5) 
wound complications requiring reoperation for hemostasis or 
further surgical intervention, (6) postoperative death.

Data collection

Clinical data of AAAD patients were collected through the 
hospital’s electronic medical record system, including demographic 
information such as gender, age, and body mass index (BMI), as well 
as past medical history including hypertension, diabetes, and coronary 
artery disease (CAD). Preoperative comorbidities such as chronic 
kidney disease (CKD), aortic valve regurgitation, and pericardial 
effusion were also documented. Preoperative laboratory test results 
including leukocyte, neutrophil, monocyte, lymphocyte, etc. were 
recorded. Intraoperative details such as operation time, 
cardiopulmonary bypass time, and aortic cross-clamp time were 
documented. Postoperative clinical outcomes included ICU stay time, 
mechanical ventilation time, 48 hours thoracic drainage, and 
postoperative complications.

Model training and performance evaluation

All AAAD patients with malnutrition were randomly divided 
into training and test datasets at a ratio of 8:2. The training dataset 
was used for modeling purposes, while the test dataset was utilized 
for model evaluation. In the training set, LASSO regression analysis 
was used to select feature variables related to MAEs from 
preoperative and intraoperative variables. Models were then 
constructed based on algorithms such as eXtreme Gradient 
Boosting (XGBoost), Logistic Regression (LR), Random Forest 
(RF), Multilayer Perceptron (MLP), Support Vector Machine 
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(SVM), and K-Nearest Neighbors (KNN). To prevent overfitting, 
we employed a 10-fold resampling validation by further divided the 
training set into 10 subsets. During each iteration, nine of the 
subsets are used to train the model, while the remaining one subset 
is used for validation. Subsequently, we performed grid search for 
hyperparameter tuning to select the optimal model 
(Supplementary Table S1). In the final evaluation on the training set 
data, the model performance was assessed from three dimensions: 
model discrimination, predictive accuracy, and clinical applicability. 
Model discrimination was quantitatively evaluated through metrics 
such as the area under the ROC curve (AUC), accuracy, sensitivity, 
specificity, positive predictive value, negative predictive value, and 
F1 score. Predictive accuracy was assessed by comparing the 
deviation between predicted probabilities and actual probabilities 
(Supplementary Tables S2, S3). Clinical applicability was judged 
through the decision curve analysis (DCA).

After determining the optimal model, we further validated its 
performance using the test set data. Additionally, we  constructed 
calibration curves, DCA curves, and model learning curves for the 
optimal model. Finally, we utilized the Shapley additive explanations 
(SHAP) method to further explain the clinical significance of 
the model.

Statistical analysis

All data were analyzed using SPSS 24.0, R 4.2.1, and Python 3.7. 
Continuous data were expressed as mean ± standard deviation (SD) 
or median (interquartile range), and analyzed using Student’s t-test 
or Mann–Whitney-U test. Categorical data were presented as 
frequency or percentage (%), and analyzed using chi-square test or 
Fisher’s exact test. Initially, all AAAD patients with combined 
malnutrition were randomly divided into training and test sets at 
an 8:2 ratio. In the training set, clinical feature variables were 
selected through LASSO regression analysis, and models were built 
using six ML algorithms. The best model was selected and its 
performance was validated. Finally, the SHAP method was used to 
explain the model. A two-tailed p < 0.05 was considered 
statistically significant.

Results

Patient characteristics

In this study, a total of 708 patients with AAAD were included, 
among which 308 patients (43.5%) presented with malnutrition 
upon hospital admission. We compared the postoperative clinical 
outcomes of patients with normal nutrition and malnutrition 
(Table  1), and the results showed that compared to the normal 
nutrition group, the malnutrition group had increased thoracic 
drainage volume within 48  hours postoperatively, prolonged 
mechanical ventilation time, ICU stay, and postoperative hospital 
stay. Additionally, the proportion of patients requiring CRRT, 
ECMO therapy, as well as the occurrence of AKI, permanent 
neurological dysfunction (PND), and low cardiac output syndrome 
(LCOS) increased. The incidence of MAEs during hospitalization 

(28.25% vs. 18.00%) and in-hospital mortality rate (12.99% vs. 
5.28%) were significantly higher (p < 0.05).

Among AAAD patients with malnutrition, 246 patients 
(80%) were randomly assigned to the training set, while 62 
patients (20%) were assigned to the test set. The workflow 
diagram of the study is shown in Figure  1. There were no 
significant differences in demographic data, preoperative 
comorbidities, or intraoperative conditions between the two 
groups (Table 2).

Feature variable selection

Through LASSO regression analysis, preliminary screening of 
feature variables related to postoperative MAEs was conducted. The 
result indicated a minimum mean square error lambda value of 
0.004, including 35 preoperative and intraoperative feature variables 
(Figure 2). Subsequently, in both the training and test sets, univariate 
analysis was further performed to compare preoperative and 
intraoperative conditions between the MAEs group and the 
non-MAEs group (Table 3). Finally, seven feature variables, including 
preoperative NRI, preoperative hypertension, preoperative leukocyte, 
preoperative lymphocyte, preoperative albumin (ALB), preoperative 
D-dimer, and preoperative C-reactive protein (CRP), were 
determined to construct the clinical feature variables for building the 
ML model.

Comparative analysis of multiple models 
and validation of the optimal model

After selecting the required feature variables for modeling, the 
XGBoost, LR, RF, MLP, SVM, and KNN algorithms were employed to 
analyze the training set data, and the discriminative performance of 
the models was evaluated through AUC. The AUC of all models was 
validated through 10-fold resampling-validation. The final results 
show that among all models, the RF model demonstrates the best 
performance both on the training and validation sets (Figure 3). The 
AUC for RF model on the training set is 0.963 [95% Confidence 
Interval (CI): 0.940–0.986], and on the validation set, it is 0.899 (95% 
CI: 0.815–0.982). The Brier score (95% CI) for the RF model in the 
calibration curve is 0.122 (95% CI: 0.108–0.136), indicating good 
calibration. The DCA also illustrates its favorable clinical utility. 
Moreover, the precision-recall curve results indicate that the RF model 
has the highest average precision values on both datasets. Therefore, 
we  conclude that the RF model is the optimal model choice for 
this dataset.

Subsequently, modeling and 10-fold cross-validation were 
conducted on the test dataset using the RF algorithm (Figure 4). The 
results indicate that the average AUC on the training set is 0.999, and 
on the validation set, it is 0.919. Ultimately, the RF model achieves an 
average AUC of 0.975 on the test set with an accuracy of 88.71%. The 
calibration curve results reveal a Brier Score of 0.078 (95%CI: 0.047–
0.119) for the RF model, indicating its good predictive accuracy. 
Furthermore, the DCA results also demonstrate its favorable clinical 
utility. The results of the model learning curve indicate a good fit of 
the RF model on both the training and validation sets.
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FIGURE 1

Model construction methodology and study flowchart.

TABLE 1 Comparison of postoperative outcomes between patients with normal nutrition and malnutrition.

Valuables Normal nutrition group
(n =  400)

Malnutrition group
(n =  308)

P-value

Hospital stay (day) 18.60[16.00,22.00] 19.00[17.00,22.00] 0.015

ICU stay (day) 5.00[4.00,7.00] 6.00[5.00,8.00] <0.001

Thoracic drainage (mL/48 h) 780.00[570.00,1050.00] 800.00[610.00,1230.00] 0.031

Mechanical ventilation time (h) 54.00[29.00,73.00] 63.00[37.00,81.00] 0.002

Need CRRT, (n, %) 44(11.00) 64(20.78) <0.001

Need ECMO, (n, %) 2(0.50) 8(2.60) 0.019

AKI (n, %) 64(16.00) 81(26.30) <0.001

PND (n, %) 16(4.00) 29(9.42) 0.003

LCOS (n, %) 5(1.25) 19(6.17) <0.001

GB (n, %) 17(4.25) 14(4.55) 0.849

Sepsis (n, %) 5(1.25) 2(0.65) 0.423

Secondary intubation (n, %) 29(7.25) 24(7.79) 0.786

Tracheotomy (n, %) 18(4.50) 21(6.82) 0.180

Secondary thoracotomy (n, %) 1(0.25) 3(0.97) 0.203

In-hospital mortality (%) 21(5.25) 40(12.99) <0.001

MAEs (n, %) 72(18.00) 87(28.25) 0.001

CRRT, continuous renal replacement therapy; ECMO, extracorporeal membrane oxygenation; AKI, acute kidney injury; PND, permanent neurological dysfunction; LCOS, low cardiac output 
syndrome; GB, gastrointestinal bleeding; MAEs, major adverse events. Bold indicates statistically significant differences.
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TABLE 2 Baseline characteristics of enrolled patients.

Valuables Training set
(n =  246)

Test set
(n =  62)

P-value

Demographical data

Age, (years) 57.00[46.00,65.00] 54.00[48.00,63.00] 0.943

Gender, (male) 149(60.57) 38(61.29) 0.917

Body mass index, (kg/m2) 23.91 ± 4.12 23.66 ± 3.71 0.666

NRI 89.40[84.09,94.26] 88.64[84.99,95.62] 0.388

Risk factors and comorbidities

Smoking, n (%) 110(44.72) 24(38.71) 0.394

Alcohol, n (%) 38(15.45) 9(14.52) 0.855

Hypertension, n (%) 158(64.23) 43(69.35) 0.449

Diabetes, n (%) 9(3.66) 1(1.61) 0.417

Previous CAD, n (%) 1(0.41) 0 1.000

Previous CVD, n (%) 9(3.66) 2(3.23) 0.870

Previous CKD, n (%) 5(2.03) 0 0.569

Marfan Syndrome, n (%) 8(3.25) 1(1.61) 0.493

Pericardial effusion (Medium or above), n (%) 24(9.76) 5(8.06) 0.684

Aortic valve regurgitation (Medium or above), n (%) 52(21.14) 13(20.97) 0.977

Preoperative laboratory results

Leukocyte, (×10ˆ9/L) 12.15[9.77,15.36] 11.55[9.26,15.49] 0.432

Neutrophil, (×10ˆ9/L) 10.44[7.84,13.42] 9.97[7.39,13.22] 0.418

Monocyte, (×10ˆ9/L) 0.66[0.46,0.96] 0.69[0.35,0.92] 0.432

Lymphocyte, (×10ˆ9/L) 0.83[0.54,1.15] 0.84[0.53,1.21] 0.850

HB, (g/L) 130.00[117.00,142.00] 127.00[118.00,141.00] 0.682

PLT, (×10ˆ9/L) 175.00[141.00,214.00] 176.00[140.00,206.00] 0.928

ALB, (g/L) 32.10[28.90,35.00] 31.80[28.80,35.50] 0.743

Creatinine, (μmol/L) 85.00[66.00,117.00] 80.00[63.70,106.00] 0.448

BUN, (mmol/L) 6.40[5.21,8.50] 5.93[4.70,7.29] 0.108

D-dimer, (μg/mL) 13.02[6.70,20.00] 8.46[4.75,18.86] 0.129

BNP, (pg/mL) 340.00[150.00,844.00] 258.00[113.00,601.00] 0.255

Troponin-I, (μg/L) 0.01[0.00,0.09] 0.01[0.00,0.05] 0.389

CRP (mg/L) 10.40[4.58,38.23] 11.52[7.05,43.94] 0.196

Intraoperative conditions

Ascending aorta replacement, n (%) 244(99.19) 62(100.00) 1.000

Root surgery 0.597

  Untreated 58(23.58) 17(27.42)

  Reconstruction of sinus of valsalva 117(47.56) 31(50.00)

  Bentall 62(25.20) 14(22.58)

  Wheat 7(2.85) 0

  David 2(0.81) 0

CABG, (n, %) 9(3.66) 3(4.84) 0.668

Mitral surgery, (n, %) 1(0.41) 1(1.61) 0.291

TVP, (n, %) 6(2.44) 0 0.467

Operation time, (min) 256.00[225.00,290.00] 260.00[225.00,320.00] 0.343

(Continued)
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Model explanation and clinical significance 
analysis

To further elucidate the clinical significance of this model, 
we  explained the prediction process and results of the RF model 
through the SHAP method. Based on the concept of the Shapley value 
in cooperative game theory, we quantify the contribution of each 
feature to the model’s output and calculate the SHAp value for each 
feature variable to assess the impact of each feature on a single 
prediction made by the model.

Figure 5 presents the SHAP summary plot and the ranking of 
feature variables based on their impact on MAEs. Additionally, 
we further elucidate the model through two different samples from the 
test dataset: one where the model predicts no postoperative MAEs, and 

indeed, no MAEs occur f(x) = 0, and another where the model predicts 
postoperative MAEs, and MAEs actually occur f(x) = 0.91.

Discussion

Malnutrition, as a common comorbidity upon admission, 
increases the risk of complications during hospitalization and is a 
key factor affecting the prognosis of many diseases (18, 19). There 
are several scoring systems used clinically to assess the nutritional 
status of hospitalized patients, such as the controlling nutritional 
status score and the prognostic nutritional index (20, 21). Among 
them, the NRI serves as a simple and effective scoring indicator. 
It primarily evaluates patients’ nutritional status based on serum 

TABLE 2 (Continued)

Valuables Training set
(n =  246)

Test set
(n =  62)

P-value

CPB time, (min) 155.00[137.00,184.00] 169.00[138.00,192.00] 0.255

ACC time, (min) 101.00[86.00,130.00] 102.00[90.00,134.00] 0.413

DHCA time, (min) 12.00[12.00,13.00] 13.00[12.00,13.00] 0.998

Plasma transfusion volume, (mL) 200.00[200.00,400.00] 200.00[200.00,350.00] 0.538

RBC transfusion volume, (U) 4.00[0.00,4.00] 3.00[0.00,4.00] 0.099

Platelet transfusion volume, (U) 1.00[0.80,10.00] 4.00[1.00,8.00] 0.660

NRI, nutritional risk index; CAD, coronary artery disease; CVD, cerebrovascular disease; CKD, chronic kidney disease; HB, hemoglobin; PLT, platelet; ALB, albumin; BUN, blood urea 
nitrogen; BNP, B-type natriuretic peptide; CRP, C-reactive protein; CABG, coronary artery bypass grafting; TVP, tricuspid valvuloplasty; CPB, cardiopulmonary bypass; ACC, aortic cross 
clamp; DHCA, deep hypothermic circulatory arrest; RBC, red blood cell.

FIGURE 2

Feature variable selection based on the LASSO regression analysis. (A) Plot of the LASSO coefficient profiles. (B) Tuning parameter selection cross-
validation error curve. (LASSO, least absolute shrinkage and selection operator).
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TABLE 3 Comparison of preoperative and intraoperative conditions between the MAEs group and the non-MAEs group in different datasets.

Valuables Training set (n =  246) Test set (n =  62)

Non-MAEs group
(n =  179)

MAEs group
(n =  67)

P-value Non-MAEs 
group

(n =  42)

MAEs group
(n =  20)

P-value

Demographical data

Age, (years) 57.00[47.00,65.00] 56.00[45.00,64.00] 0.442 55.29 ± 11.92 57.60 ± 10.63 0.470

Gender, (male) 105(58.66) 44(65.67) 0.316 25(59.52) 13(65.00) 0.679

Body mass index, (kg/m2) 23.79 ± 3.99 24.21 ± 4.42 0.480 23.24[20.90,25.62] 23.59[21.37,26.26] 0.970

NRI 91.66[86.97,94.87] 84.03[78.31,86.66] <0.001 93.50[87.73,96.07] 86.36[83.47,88.03] 0.011

Risk factors and comorbidities

Smoking, n (%) 81(45.25) 29(43.28) 0.782 14(33.33) 10(50.00) 0.208

Alcohol, n (%) 26(14.53) 12(17.91) 0.513 4(9.52) 5(25.00) 0.106

Hypertension, n (%) 123(68.72) 35(52.24) 0.016 28(66.67) 15(75.00) 0.506

Diabetes, n (%) 7(3.91) 2(2.99) 0.731 0(0.00) 1(5.00) 0.323

Previous CAD, n (%) 1(0.56) 0 1.000 0 0 1.000

Previous CVD, n (%) 6(3.35) 3(4.48) 0.675 2(4.76) 0 1.000

Previous CKD, n (%) 3(1.68) 2(2.99) 0.517 0 0 1.000

Marfan Syndrome, n (%) 6(3.35) 2(2.99) 0.885 1(2.38) 0 1.000

Pericardial effusion (medium or 

above), n (%)
18(10.06) 6(8.96) 0.796 4(9.52) 1(5.00) 0.541

Aortic valve regurgitation (medium 

or above), n (%)
40(22.35) 12(17.91) 0.448 8(19.05) 5(25.00) 0.590

Preoperative laboratory results

Leukocyte, (×10ˆ9/L) 11.66[9.39,14.55] 13.99[11.23,17.58] <0.001 11.49 ± 3.25 13.97 ± 4.39 0.017

Neutrophil, (×10ˆ9/L) 10.17[7.64,13.23] 10.93[8.18,13.92] 0.130 9.71 ± 3.30 11.50 ± 4.20 0.078

Monocyte, (×10ˆ9/L) 0.64[0.45,0.90] 0.74[0.48,1.09] 0.068 0.75[0.38,0.97] 0.43[0.33,0.72] 0.124

Lymphocyte, (×10ˆ9/L) 0.85[0.60,1.15] 0.69[0.43,1.16] 0.026 1.06 ± 0.50 0.62 ± 0.37 0.001

HB, (g/L) 130.00[117.00,144.00] 129.00[115.00,137.00] 0.111 128.98 ± 17.01 126.15 ± 21.26 0.582

PLT, (×10ˆ9/L) 178.00[140.00,217.00] 170.00[142.00,209.00] 0.859 166.00[140.00,225.00] 186.00[138.00,202.00] 0.695

ALB, (g/L) 34.00[31.10,35.80] 28.30[26.10,30.20] <0.001 35.00[30.40,36.10] 29.90[27.50,30.50] <0.001

Creatinine, (μmol/L) 85.00[66.00,113.00] 79.00[67.00,147.00] 0.780 71.00[52.80,104.00] 96.00[80.00,119.00] 0.039

BUN, (mmol/L) 6.30[5.20,8.00] 6.88[5.30,9.80] 0.173 5.80[4.70,7.30] 6.40[5.30,6.90] 0.583

D-dimer, (μg/mL) 11.35[4.34,19.90] 17.30[9.85,20.00] <0.001 5.97[3.71,12.21] 19.60[10.00,20.00] <0.001

BNP, (pg/mL) 288.00[135.00,834.00] 439.00[175.00,1047.00] 0.078 199.00[110.00,601.00] 306.00[189.00,527.00] 0.470

Troponin-I, (μg/L) 0.01[0.00,0.09] 0.02[0.01,0.13] 0.071 0.01[0.00,0.03] 0.02[0.01,0.17] 0.074

CRP (mg/L) 10.29[3.12,29.40] 17.40[6.80,76.30] 0.002 14.15[6.47,38.10] 11.52[7.80,48.80] 0.792

Intraoperative conditions

Ascending aorta replacement, n (%) 177(98.88) 67(100.00) 1.000 42(100.00) 20(100.00) 1.000

Root surgery 0.713 0.933

  Untreated 45(25.14) 13(19.40) 12(28.57) 5(25.00)

  Reconstruction of sinus of 

valsalva
84(46.93) 33(49.25) 21(50.00) 10(50.00)

  Bentall 45(25.14) 17(25.37) 9(21.43) 5(25.00)

  Wheat 4(2.23) 3(4.48) 0 0

  David 1(0.56) 1(1.49) 0 0

(Continued)
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albumin, actual body weight, and ideal body weight. Initially 
developed as a risk scoring tool to assess the nutritional status of 
elderly hospitalized patients and the incidence of malnutrition-
related complications and mortality, NRI has gained popularity in 
recent years due to its simplicity, universality, and strong 
prognostic value across different surgical patient populations (14). 
However, there is currently no research specifically applying the 
NRI in patients with AAAD. Therefore, we  referred to the 
application of NRI in other cardiovascular diseases. Patients with 
an NRI < 97.5 upon admission were diagnosed as having 
malnutrition (22).

By comparing postoperative outcomes between the normal 
nutrition group and the malnutrition group of patients with AAAD, 
we found that patients who had malnutrition experienced significantly 
prolonged mechanical ventilation time, ICU stay, total hospital days, 
and increased incidence of serious complications. Their short-term 
postoperative prognosis was poorer. Therefore, there is an urgent need 
for a reliable and effective predictive model to stratify the early risk 
and assess the prognosis of AAAD patients with malnutrition, aiming 
to improve the adverse postoperative outcomes caused 
by malnutrition.

This study represents the first application of artificial intelligence 
in prognostic prediction for AAAD patients with malnutrition. 
We attempted to establish six ML models and evaluated their efficacy 
in terms of model discrimination, accuracy, and clinical applicability. 
Ultimately, we  successfully developed a ML model capable of 
predicting the risk of MAEs following surgery in AAAD patients with 
malnutrition. Compared to traditional logistic regression models, ML 
has greater flexibility, generalization ability, and accuracy in predictive 
model construction. As one of the most common ML algorithms, the 
RF algorithm has the advantage of higher accuracy, stronger resistance 
to overfitting, ease of interpretation, and suitability for large-scale 
data. Moreover, RF demonstrates robustness against missing data and 
outliers and provides assessments of the importance of each feature 
variable, aiding in understanding their contributions to the model’s 
operation (23, 24).

To further interpret this predictive model, we utilized the SHAP 
method to generate feature density scatter plots and feature 
importance ranking plots based on SHAP values. We described the 
contributions of the included feature variables to postoperative MAEs 
and the actual predictive results in the test dataset, enhancing the 
interpretability of the model.

The feature importance ranking results indicate that 
preoperative ALB, NRI, and D-dimer are the top three feature 
variables in the RF model. ALB, as a crucial plasma protein, plays a 
vital role in maintaining normal plasma oncotic pressure and 
balancing fluid within and outside blood vessels. Additionally, it 
holds significant value in reflecting long-term nutritional status. 
Hutter et  al. (25) have reported a strong correlation between 
preoperative ALB levels and postoperative complications in male 
surgical patients. The relationship between preoperative low ALB 
levels and postoperative mortality has also been widely recognized 
in general surgical patients (26). In contrast, in malnourished 
patients, low albumin tends to be more likely to lead to decreased 
immune function and organ insufficiency, which increases the risk 
of postoperative MAEs.

The NRI, as an indicator of nutritional risk, not only takes 
into account serum albumin levels but also considers the patient’s 
weight body changes. According to research by Jabbour et al. (27), 
when both serum albumin levels and weight body alteration occur 
simultaneously, their impact on postoperative outcomes surpasses 
that of age, which is known to be a strong predictor of prognosis. 
A lower NRI indicates a higher risk of malnutrition and, 
consequently, a greater risk of adverse postoperative outcomes. 
Therefore, the NRI is also identified as a crucial factor 
influencing prognosis.

D-dimer is commonly regarded as a reliable indicator of 
coagulation and fibrinolysis, given that the systemic inflammatory 
storm induced by AAAD persistently activates both endogenous 
coagulation and fibrinolysis. Consequently, D-dimer levels in the 
serum of AAAD patients are significantly elevated. Its prognostic 
value in different types of aortic dissection has been widely 

TABLE 3 (Continued)

Valuables Training set (n =  246) Test set (n =  62)

Non-MAEs group
(n =  179)

MAEs group
(n =  67)

P-value Non-MAEs 
group

(n =  42)

MAEs group
(n =  20)

P-value

CABG, (n, %) 9(5.03) 0 0.119 3(7.14) 0 0.545

Mitral surgery, (n, %) 0 1(1.49) 0.272 1(2.38) 0 1.000

TVP, (n, %) 4(2.23) 2(2.99) 0.734 0 0 1.000

Operation time, (min) 257.00[223.00,290.00] 253.00[233.00,291.00] 0.867 260.00[220.00,325.00] 271.00[240.00,320.00] 0.451

CPB time, (min) 155.00[136.00,182.00] 162.00[140.00,187.00] 0.169 156.00[135.00,190.00] 174.00[158.00,206.00] 0.089

ACC time, (min) 100.00[85.00,127.00] 104.00[86.00,140.00] 0.402 95.00[88.00,134.00] 116.00[102.00,134.00] 0.195

DHCA time, (min) 12.00[12.00,13.00] 13.00[12.00,13.00] 0.358 13.00[12.00,13.00] 12.00[12.00,13.00] 0.346

Plasma transfusion volume, (mL) 250.00[200.00,400.00] 200.00[200.00,400.00] 0.634 200.00[0.00,349.50] 250.00[200.00,400.00] 0.379

RBC transfusion volume, (U) 4.00[0.00,4.00] 4.00[0.00,4.00] 0.384 4.00[0.00,4.00] 3.00[0.00,4.00] 0.987

NRI, nutritional risk index; CAD, coronary artery disease; CVD, cerebrovascular disease; CKD, chronic kidney disease; HB, hemoglobin; PLT, platelet; ALB, albumin; BUN, blood urea 
nitrogen; BNP, B-type natriuretic peptide; CRP, C-reactive protein; CABG, coronary artery bypass grafting; TVP, tricuspid valvuloplasty; CPB, cardiopulmonary bypass; ACC, aortic cross 
clamp; DHCA, deep hypothermic circulatory arrest; RBC, red blood cell.
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FIGURE 3

The comprehensive analysis of six machine learning models. (A) The ROC curve and AUC of the training set. (B) The ROC curve and AUC of the 
validation set. (C) The calibration curve plot of six models. (D) The DCA curve of the validation set. (E) The PR curve of the training set. (F) The PR curve 
of the validation set (ROC, receiver operating characteristic; AUC, area under the curve; DCA, decision curve analysis; PR, precision recall).
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FIGURE 4

The comprehensive analysis of Random Forest model. (A) The ROC curve and AUC of the training set. (B) The ROC curve and AUC of the validation 
set. (C) The ROC curve and AUC of the test set. (D) The calibration curve plot of the Random Forest model. (E) The DCA curve of the Random Forest 
model. (F) Random Forest model learning curve (ROC, receiver operating characteristic; AUC, area under the curve; DCA, decision curve analysis).

acknowledged (28). The elevation of D-dimer levels is closely 
associated with the extensive formation of false lumen in preoperative 
dissection, and high D-dimer levels often indicate a more severe 
condition and a higher risk of postoperative complications. Thus, it 
serves as an effective predictive variable for postoperative MAEs.

Other predictive model features, including leukocyte, 
lymphocytes, and CRP, signify the significant association between 
inflammatory responses and immune activation with the prognostic 
outcomes in malnourished patients. Nutrition influences all 
physiological processes, including those related to immune system 
development and function (29). Chronic inflammation present in 
malnourished individuals can weaken the organ’s resilience against 
disease stress (30). Thereby making immune-inflammatory blood cells 
and biomarkers relevant predictors for potential 
postoperative complications.

In conclusion, we have successfully developed a ML model based 
on the RF algorithm, which effectively predicts the risk of 
postoperative MAEs in AAAD patients with malnutrition. This model 
has demonstrated impressive predictive performance in both 
validation and testing sets. Through this model, clinicians can early 
identify high-risk patients with malnutrition among AAAD patients, 
facilitating risk stratification and decision-making. This, in turn, can 
help reduce the adverse clinical outcomes associated with malnutrition 
and improve patients’ short-term prognosis.

Limitations

This study still has the following limitations. Firstly, being a 
single-center retrospective study, it inherently carries some biases. 
Secondly, the data for the training and test sets are from different 
periods of the same center, thus lacking external data from multiple 
centers to further validate the model’s efficacy and clinical utility. 
Therefore, further multicenter, large-sample randomized clinical 
trials are still needed to corroborate our research findings. Finally, 
due to the lack of unified diagnostic criteria for malnutrition, 
different nutritional scoring systems diagnose malnutrition at vastly 
different rates. Although this study selected the widely used NRI as 
the evaluation basis, further integration with other types of 
nutritional scoring systems is still necessary to improve the 
assessment of prognosis risk for AAAD surgical patients 
with malnutrition.

Conclusion

This study, for the first time, successfully developed and 
validated a predictive model based on ML algorithms for 
predicting the risk of postoperative MAEs in AAAD patients with 
malnutrition. The model demonstrated excellent predictive 
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performance and clinical applicability. It can provide clinicians 
with a reliable basis for assessing the postoperative outcomes of 
AAAD patients with malnutrition, facilitating early risk 
stratification and decision-making.
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