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Catechins, a class of phytochemicals found in various fruits and tea leaves, have 
garnered attention for their diverse health-promoting properties, including their 
potential in combating neurodegenerative diseases. Among these catechins, 
(−)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green 
tea, has emerged as a promising therapeutic agent due to its potent antioxidant 
and anti-inflammatory effects. Chronic neuroinflammation and oxidative 
stress are key pathological mechanisms in neurodegenerative diseases such as 
Alzheimer’s disease (AD) and Parkinson’s disease (PD). EGCG has neuroprotective 
efficacy due to scavenging free radicals, reducing oxidative stress and 
attenuating neuroinflammatory processes. This review discusses the molecular 
mechanisms of EGCG’s anti-oxidative stress and chronic neuroinflammation, 
emphasizing its effects on autoimmune responses, neuroimmune system 
interactions, and focusing on the related effects on AD and PD. By elucidating 
EGCG’s mechanisms of action and its impact on neurodegenerative processes, 
this review underscores the potential of EGCG as a therapeutic intervention for 
AD, PD, and possibly other neurodegenerative diseases. Overall, EGCG emerges 
as a promising natural compound for combating chronic neuroinflammation 
and oxidative stress, offering novel avenues for neuroprotective strategies in the 
treatment of neurodegenerative disorders.
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1 Introduction

Catechins, a class of physiologically active phytochemicals, are commonly found in the 
fruits and leaves of various plants, including tea, apricots, cherries, peaches, blackberries, 
strawberries, blueberries, raspberries, and cocoa (1). Research indicates that catechins 
possess numerous health-promoting properties, notably benefiting cardiovascular disease, 
metabolic syndrome, diabetes, cancer, stroke, and neurodegenerative diseases (Figure 1) 
(2–9). As predominant polyphenols in tea, constituting approximately 30% of the dry mass 
of tea leaves, catechins serve as key functional components. Major green tea polyphenols 
encompass (−)-epicatechin (EC), (−)-epicatechin gallate (ECG), (−)-epigallocatechin 
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FIGURE 1

The chemical structures of four common green tea catechins are depicted. Their potential as therapeutic agents for common diseases is discussed. 
Additionally, the absorption and metabolism of green tea catechins are explored, accompanied by diagrams illustrating the absorption process across 
various organs of the body. Molecular formula, molecular weight, number of phenoile OH groups of four common catechins. Comparison of the four 
common catechins in green tea catechin profiles, anti-inflammatory, radical scavengers, and reduced efficiency of lipid peroxidation effects.
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(EGC), and (−)-epigallocatechin gallate (EGCG) (Figure 1) (10, 
11). EGCG, the most abundant among green tea catechins at 60%, 
garners significant interest due to its broad spectrum of benefits 
elucidated in clinical trials, animal studies, and cell culture research 
(12). The molecular weight of EGCG is 442.37. Mechanisms 
underlying EGCG’s multifaceted health effects include antioxidant 
properties, anti-inflammatory activity, interactions with plasma 
membrane proteins, activation of second messenger and signaling 
pathways, modulation of metabolic enzymes, and promotion of 
autophagy (13–15).

Neurodegenerative diseases manifest through the gradual and 
progressive degeneration of nerve cells in defined regions of the 
brain and spinal cord, leading to functional impairment. Prominent 
examples encompass Alzheimer’s disease (AD), Parkinson’s disease 
(PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis 
(ALS) (16–18). Although the specific cellular and molecular 
mechanisms vary across these diseases, common features include 
oxidative stress, mitochondrial dysfunction, DNA damage, protein 
aggregation, and neuroinflammation (18, 19). Notably, chronic 
neuroinflammation and oxidative damage represent shared 
pathological hallmarks among all neurodegenerative diseases (20, 
21). Neuroinflammation serves as a common defense mechanism to 
protect the brain by removing or inhibiting various pathogens (22). 
This inflammatory response plays a crucial role in facilitating tissue 
repair and preserving tissue homeostasis (23). Typically, 
neuroinflammation abates upon successful tissue repair or pathogen 
clearance (22, 24). However, when the inflammatory stimulus 
persists, chronic neuroinflammation ensues (22, 25). Various factors 
contribute to sustained inflammatory responses, including protein 
aggregation, systemic infections, gut microbiota dysbiosis, aging, 
and genetic mutations. Prolonged activation of microglia and 
astrocytes, key players in neuroinflammation, can precipitate 
neurodegenerative diseases (26–28). Furthermore, neurons exhibit 
heightened susceptibility to oxidative damage, attributed to their 
elevated content of unsaturated fatty acids, rendering them 
susceptible to free radical attack and peroxidation. Additionally, 
increased levels of iron in specific brain regions further augment 
neuronal vulnerability to oxidative stress (29). Consequently, 
interventions targeting anti-neuroinflammatory and antioxidant 
pathways hold particular significance in the context of 
neurodegenerative diseases.

EGCG, a natural polyphenol abundant in green tea, exhibits 
promising neuroprotective properties attributed to its potent 
anti-inflammatory and antioxidant activities (12). Accumulating 
evidence underscores its therapeutic potential in the prevention 
and treatment of neuroinflammatory and neurodegenerative 
disorders (30). EGCG demonstrates notable neuroprotective 
efficacy by modulating signals implicated in autoimmune 
responses, enhancing interplay between the nervous and immune 
systems, and effectively attenuating inflammatory processes. 
Furthermore, EGCG exhibits iron chelation capabilities, 
scavenges free radicals, and exerts significant antioxidant effects, 
as evidenced by pertinent studies (31). Therefore, this review 
comprehensively explores the role of EGCG in various 
neurodegenerative conditions, particularly AD and PD, with a 
focus on elucidating its molecular mechanisms underlying anti-
neuroinflammatory and antioxidant actions.

2 Antioxidant and anti-inflammatory 
effects of EGCG

Multiple investigations have substantiated the beneficial 
impact of green tea on neurodegenerative disorders. For instance, 
Shinichi Kuriyama et al. studied 1,003 elderly individuals aged 
over 70 years to assess the influence of green tea intake on 
cognitive function (32). Their findings revealed that subjects 
consuming more than 100 mL of green tea twice daily exhibited 
reduced susceptibility to neurodegenerative diseases (32). 
Similarly, Hu et  al. conducted a 13-year longitudinal study 
involving nearly 30,000 Finnish adults, demonstrating that 
individuals consistently consuming over 600 mL of green tea daily 
exhibited a diminished risk of developing PD (33). These 
observations underscore the association between green tea 
consumption and a lowered incidence of neurodegenerative  
conditions.

The health-promoting bioactive components of green tea catechins 
include a wide range of isomers, the most representative of which are 
mainly four (EGCG, ECG, EGC and EC), with EGCG accounting for 
the vast majority of green tea research (34, 35). The biological action of 
the molecule will be  determined by its chemical structure. EGCG 
(C22H18O11) is a catechin flavanol, specifically a gallate ester formed by 
the condensation of gallic acid with the (3R)-hydroxyl group of 
(−)-epigallocatechin, labeled A, B, C, and D (Figure  2) (36). The 
pentacosanoyl group esterification on Carbon −3 of the C-ring, along 
with hydroxyl groups on Carbon −3′, −4′, and − 5′ of the B-ring, 
underlie EGCG’s robust antioxidant activity compared to other 
catechins. The D- and B-rings contribute to its reactive oxygen species 
(ROS) neutralizing properties, with the D-ring further enhancing its 
anticancer and anti-inflammatory attributes. EGCG has seven hydroxyl 
groups in its aromatic ring. The location and number of hydroxyl groups 
on the ring determines its biological activity, giving EGCG greater 
antioxidant properties than EGC or EC, as well as water solubility, 
making EGCG highly permeable to the blood–brain barrier (BBB) (37). 
EGCG has been reported to cross the BBB within 0.5 h. Moreover, 
EGCG features two structures—the ortho-3′,4′-dihydroxy moiety and 
the 4-keto, 3-hydroxyl, or 4-keto, and 5-hydroxyl moiety—that can 
chelate metal ions, thereby neutralizing their activity. In essence, 
EGCG’s distinctive chemical structure and composition confer potent 
antioxidant and anti-inflammatory properties, suggesting potential 
benefits in select neurodegenerative disorders (38).

Following oral administration, EGCG undergoes limited 
absorption by the intestines, resulting in minimal entry into the 
bloodstream and tissues (39). The constrained bioavailability of orally 
administered EGCG arises from factors including extreme pH 
conditions, digestive enzymes, and EGCG’s restricted membrane 
permeability within the intestinal wall (9). Within the body, EGCG 
undergoes extensive biotransformation via sulfonation, 
glucuronidation, and methylation reactions (39). Its half-life is 
approximately 3.9 h, with complete metabolism occurring within 24 h 
(40). Furthermore, the biological effects of EGCG are contingent on 
concentration levels. Plasma concentrations ≤10 μM elicit antioxidant, 
anti-inflammatory, and insulin-sensitizing effects. Conversely, plasma 
EGCG levels exceeding 10 μM may induce pro-oxidant activity, 
augmenting autophagy and cell death, and are commonly employed 
in tumor therapy (41).
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2.1 Anti-chronic neuroinflammatory effects 
of EGCG

Neuroinflammation serves as a protective mechanism within the 
nervous or central nervous system (CNS) against various threats 
including infections, toxic metabolites, autoimmunity, and traumatic 

brain injury, with the aim of eliminating harmful substances and 
damaged tissues (42). This process entails the activation of glial cells, 
which serve as neuroprotective agents by removing endogenous and 
exogenous substances while safeguarding themselves from ROS (43). 
Notably, microglia, as ubiquitous innate immune cells in the CNS, are 
pivotal contributors to neuroinflammation, participating in both 

FIGURE 2

A schematic representation elucidates the role of EGCG in neuroprotection. The diagram illustrates how EGCG exerts antioxidant, anti-inflammatory, 
and anti-apoptotic effects via various molecular mechanisms, thereby conferring protection against neurodegenerative diseases.
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anti-inflammatory and pro-inflammatory responses (44). The anti-
neuroinflammatory properties of EGCG primarily involve the 
inhibition of microglial activation and the modulation of 
pro-inflammatory cytokine expression (45). The pro-inflammatory or 
neuroprotective functions of microglia are contingent upon their 
activation status (46). Pathogens or cellular debris induce heightened 
expression of pro-inflammatory cytokines such as IFNs and LPS, 
prompting microglial activation from a resting state (47). Activated 
microglia upregulate pro-inflammatory mediators including IL-1β, 
IL-23, TNF-α, IL-6, NO, and SOC3 via NF-κB and STAT1 pathways 
(48). In neuroinflammation, activated microglia sustain the release of 
pro-inflammatory cytokines, perpetuating chronic inflammation and 
generating cytotoxic molecules such as ROS and RNS (49). Extensive 
scientific evidence underscores the role of persistent inflammation in 
promoting neurodegenerative disorders. Conversely, neuroprotective 
microglia activated by IL-13, IL-10, and IL-4 secrete various factors 
associated with neuroprotection and tissue repair, including TGF-β, 
Chi3l3, Arginase 1, Ym1, IGF-1, and Fzd1 (48).

The effects of EGCG on microglia encompass: (1) Modulation of 
microglial activation under inflammatory conditions, primarily 
within the M1/M2 spectrum (50). M1 microglia release neurotoxic 
and inflammatory factors such as IL-6, IL-1β, and TNF-α, contributing 
to neuronal damage and death, while M2 microglia secrete 
neurotrophic factors including BDNF, IL-4, and IL-10, fostering 
neuronal growth and protection (51). EGCG downregulates M1 
markers (IL-6, TNF-α, and IL-1β) and upregulates M2 markers (IL-10 
and NQO1) in microglia, thereby modulating the M1/M2 ratio and 
mitigating neurotoxicity and neuronal damage arising from microglial 
hyperactivity (13). (2) EGCG induces M1 polarization via various 
signaling pathways including TLR4/NF-κB, JAK2/STAT3, TLR2, 
TLR4, JNK/P38, thereby suppressing the activation of inflammatory 
vesicles and reducing microglial inflammation and neurotoxicity (13). 
(3) Voltage-gated proton channels play a pivotal role in microglial 
NADPH oxidase-dependent ROS generation (52). EGCG impedes 
proton channel function in microglia without affecting channel gating 
processes. This inhibition of proton channels constitutes a significant 
mechanism through which EGCG suppresses microglial activation 
and neurotoxicity (53). (4) Neuronal injury or neuroinflammation 
triggers microglial activation, leading to NO production. NO reacts 
with cysteine thiols, resulting in protein S-nitrosylation, which 
regulates various cell signaling and protein activities, including protein 
misfolding and mitochondrial apoptosis. EGCG attenuates protein 
S-nitrosylation in activated microglia (54). In summary, EGCG 
mitigates excessive inflammatory responses and neurotoxicity induced 
by inflammation by inhibiting inducible NO synthase activity, 
reducing oxidative stress levels, and modulating the M1/M2 ratio 
in microglia.

2.2 Antioxidant effects of EGCG

EGCG, a significant natural antioxidant, demonstrates efficacy in 
neutralizing ROS like hydrogen peroxide, superoxide anions, and 
hydroxyl radicals (55). Its antioxidant properties stem from the 
polyhydroxyl structure and gallic acid moiety, which facilitate free 
radical scavenging, while the presence of phenolic moieties can lead 
to quinone generation via oxidative sensitivity (56). EGCG exerts 
antioxidant effects through diverse mechanisms, including hydrogen 

atom transfer (HAT), electron transfer, and catalytic metal chelation 
(Figure 2) (57). ROS are metabolically generated by organelles such as 
mitochondria, peroxisomes, and the endoplasmic reticulum (58). 
Normally, the antioxidant system efficiently eliminates ROS. However, 
oxidative stress prompts a shift in signaling pathways, fostering 
inflammation via pathways like NF-κB, PKC, MAPK, Nrf-2, and 
PI3K/Akt (59). EGCG mitigates oxidative stress by modulating these 
pathways (38, 60).

Moreover, studies have indicated that EGCG exerts a direct 
antioxidant effect by chelating free transition metals such as iron and 
copper (61). EGCG functions as a free radical scavenger, acting 
through two mechanisms: HAT and single electron transfer reaction 
(SET), in relation to its one-electron reduction potential (62). 
Additionally, EGCG enhances the activity of phase II enzymes and 
detoxification enzymes, including catalase, glutathione peroxidase 
(GPX), superoxide dismutase (SOD), and glutathione S-transferase 
(63). The regulation of these enzymes is primarily governed by Nrf2, 
which binds to cis-acting regulatory elements to initiate the gene 
expression of antioxidant enzymes (64). Furthermore, EGCG 
attenuates excessive levels of NO generated by inducible nitric oxide 
synthase (iNOS) (65). NO plays a crucial role in various physiological 
processes at appropriate concentrations. However, under oxidative 
stress, NO can act as a pro-inflammatory mediator, generating reactive 
nitrogen species (RNS) such as peroxynitrite (66). Studies have 
demonstrated that EGCG inhibits iNOS activity, thereby enhancing 
the bioavailability of NO levels (67). Additionally, EGCG effectively 
suppresses the activity of xanthine oxidase, an enzyme involved in 
purine catabolism and uric acid formation, thereby mitigating the 
associated increase in ROS (68). Moreover, EGCG inhibits the 
expression of cyclooxygenase-2 (COX-2), an enzyme crucial for fatty 
acid metabolism that is upregulated during inflammation, particularly 
in activated macrophages (69).

3 Neuroprotective role of EGCG in the 
context of neurodegenerative 
diseases

Neurodegenerative disease is a common and growing cause of 
mortality and morbidity worldwide (70), with 152 million people 
expected to receive the effects of the disease by 2060 (71), including 
AD, PD, HD, ALS, and prion diseases (72). Among various forms of 
dementia, AD exhibits the highest prevalence, accounting for 62%, 
followed by PD (73). The pathology of AD is characterized by the 
accumulation of extracellular amyloid β (Aβ) plaques and the 
formation of intracellular neurofibrillary tangles composed of 
hyperphosphorylated tau protein (38). Clinical manifestations 
encompass memory loss, cognitive impairment, personality changes, 
and in severe cases, hallucinations and seizures (74). PD onset is 
marked by progressive degeneration of dopaminergic neurons within 
the substantia nigra, leading to diminished levels of striatal dopamine 
and its metabolites in the adult brain (75). Clinical features include 
motor dysfunction, bradykinesia, tremors, gait and balance 
disturbances, cognitive decline, and disorientation (76). ALS, 
commonly known as Lou Gehrig’s disease, represents an adult-onset 
progressive neurodegenerative disorder characterized by selective 
motor neuron degeneration (77). This degeneration progressively 
affects both upper and lower motor neurons within the brain and 
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spinal cord. The etiology of ALS remains largely elusive in the majority 
of cases, with fewer than 10% attributed to specific genetic mutations 
involving genes such as SOD1, C9orf72, TDP43, and FUS (78). HD 
arises from an unstable polyglutamine repeat expansion within the 
first exon of the IT-15 gene, which encodes the 350 kDa huntingtin 
protein (79). The aggregation propensity of huntingtin fibers 
contributes to the progressive degeneration of cortical and striatal 
neurons, alongside the formation of neuronal inclusions containing 
aggregated huntingtin. Clinical manifestations encompass movement 
disorders and psychiatric symptoms including chorea, coordination 
deficits, depression, psychosis, and obsessive-compulsive disorder (80).

While the pathological and clinical presentations of 
neurodegenerative diseases vary, they share common features 
including specific pathological alterations within distinct brain regions 
and the degeneration of various neuronal subtypes. Key factors 
contributing to neurodegenerative processes encompass the 
dysregulation of pro-apoptotic proteins, oxidative stress damage, 
immune-mediated inflammation, mitochondrial dysfunction, and 
reduced expression of trophic factors (81–83). Here we focus on the 
crosstalk between EGCG and neurodegenerative diseases in terms of 
EGCG anti-neuroinflammation and oxidative stress. 
Neuroinflammation and oxidative stress are intertwined, as 
inflammation amplifies ROS production while ROS, in turn, 
exacerbate inflammation (84). ROS can directly activate the NF-kB 
transcription factor pathway, promoting the synthesis of inflammatory 
cytokines (85). Given the multifactorial nature of neurodegenerative 
pathologies, the emergence of novel therapeutic strategies is 
imperative. The antioxidant properties and neuroprotective effects of 
EGCG have garnered significant attention from researchers 
worldwide, positioning it as a promising treatment for neurological 
disorders and a cytoprotective agent. In this section, we delve into the 
role of EGCG in mitigating oxidative stress and chronic 
neuroinflammation in two prevalent neurodegenerative diseases: 
AD and PD.

3.1 Alzheimer’s disease

Neurodegenerative disease affects an estimated 24 million 
individuals globally, with AD being the most prevalent disease (86). 
In developed Western nations, individuals aged over 85 exhibit an AD 
prevalence ranging from 24 to 33%, a figure that escalates with 
advancing age (87). Given the global aging demographic, AD is poised 
to become a substantial public health concern over the next two 
decades and has been identified as a research priority (86). The 
pathogenic mechanisms underlying AD encompass microglia-
induced inflammation, elevated intracellular calcium levels, disruption 
of antioxidant defense systems, cholinergic dysfunction, overactivation 
of glutamate receptors, and amplification of the inflammatory 
response (88). Despite the availability of various medications for 
managing AD, a definitive treatment remains elusive (89), 
underscoring the pressing need for research into novel therapeutic 
approaches and adjunctive therapies. Optimal antioxidant levels in the 
body have been associated with cognitive preservation, and several 
studies have demonstrated the neuroprotective effects of catechins, 
highlighting their potential as adjunctive therapy in select 
neurodegenerative diseases. These effects rely on the anti-
inflammatory and antioxidant properties of catechins (90). Moreover, 

multiple studies have established a correlation between tea 
consumption, reduced risk of severe cognitive impairment, and a 
lower prevalence of AD.

3.1.1 Observational epidemiologic study of green 
tea consumption and risk of AD

Moeko Noguchi-Shinohara et al. conducted a 2-year follow-up 
survey of 490 subjects over 60 years of age with cognitive performance 
and blood tests. Even after correcting for potential confounders, 
drinking green tea was found to significantly reduce the chance of 
cognitive deterioration (91). In a questionnaire-based study of 1,003 
Japanese participants aged 70 or older, Shinichi Kuriyama et  al. 
discovered a correlation between higher green tea drinking and a 
lower prevalence of cognitive impairment (32). A brief analysis of tea 
consumption and prevalence of AD in different country regions by 
Fernando et al. revealed that countries with higher intake of tea, such 
as Japan, China, and India, had lower prevalence of AD, whereas 
European and American countries with lower intake of tea had higher 
prevalence of AD (92). Although epidemiological data favorably show 
a negative relationship between drinking tea and the preponderance 
of AD in that part of the country, any correlation between tea 
consumption and AD prevalence should be evaluated with caution 
because the effects of racial differences, dietary preferences, and 
lifestyle cannot be excluded (92). Yang Yuhuan et al. conducted a 
questionnaire survey to gauge the cognitive function of seniors 
60 years of age and older in the Huangshi community in order to 
better understand the prevalence of mild cognitive impairment (MCI) 
and its influencing factors (93). The survey data were tested by 
chi-square test and it was concluded that the prevalence of MCI was 
lower in occasional tea drinkers, which may be related to the caffeine 
and catechins contained in tea, caffeine can reduce the level of Aβ in 
the brain, which is beneficial for improving cognitive function, while 
catechins have strong antioxidant capacity, but the study did not prove 
the relationship between tea drinking and AD prevalence. Wang, Ziqi 
et al. performed the Mini-Mental State Examination (MMSE) for the 
assessment of cognitive function in 870 people aged 90 years or older, 
and cardinality testing of the collected data revealed that the mild 
cognitive index was significantly different from normal in those who 
regularly consumed animal oils and legumes (94). In contrast, no 
significant differences were found for the other 10 foods, including tea, 
in both the unadjusted and adjusted models (94). Numerous studies 
have demonstrated the potential of tea consumption to mitigate 
cognitive decline in older adults; however, experimental evidence 
supporting its efficacy in AD is lacking (95). Controlled studies 
examining AD cases have not yielded significant findings regarding 
tea consumption, thus limiting the inference of beneficial effects of 
green tea catechins solely based on AD pathogenesis and in vitro 
studies (96). Despite this, the observed efficacy of green tea in AD 
surpasses initial expectations, warranting further investigation into 
the specific role of catechins in AD patients.

3.1.2 Experimental studies and mechanisms of AD
Given that Aβ aggregation is recognized as a pivotal factor in the 

pathogenesis of AD and its impact on the human nervous system, 
Mahsa Amirpour et al. investigated the neuroprotective potential of 
green tea in a streptozotocin (STZ)-induced AD model. Their study 
examined the effects of green tea on cognitive decline, inflammation, 
and oxidative stress (97). The findings demonstrated that the active 
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compounds present in green tea could mitigate cognitive impairment 
and ameliorate learning and memory deficits associated with STZ 
injection (81). Furthermore, green tea may reduce the risk of AD 
through antioxidative and anti-inflammatory pathways, thus 
positioning it as a potential preventive intervention (90) (Table 1).

Tingting Chen et al. used mice as a model to demonstrate that the 
polyphenolic compounds EGC and ECG effectively alleviated Aβ40 
aggregation and protofibrillar toxicity by chelating Cu2+ and Zn2+ and 
reduced ROS production, thereby mitigating Cu2+-Aβ40 and Zn2+-
Aβ40induced neuronal toxicity (111). The results showed that tea 
polyphenols had significant beneficial effects on different aspects of 
AD pathology (112). Among them, catechin ECG had the most 
significant effect due to the therapeutic effect of ECG through the 
BBB, reducing Aβ plaques in the brains of APP/PS1 mice and thus 
protecting neurons from damage (111). Therefore, the potential of 
catechins to prevent or improve AD symptoms was laterally 
demonstrated (111). Lee JW et al. found that EGCG reduced Aβ1-42-
induced memory dysfunction by altering the secretion of α-secretase, 
in addition to EGCG inhibiting Aβ1-42-induced apoptosis (113). 
These findings imply that EGCG may be a useful tool for delaying the 
start or progression of AD (Figure 3).

3.1.3 EGCG anti-neuroinflammatory activity in AD
Neuroinflammation as a pathogenesis of AD has been confirmed 

by numerous studies. It has been found that cerebrospinal fluid levels 
of pro-inflammatory factors such as IL-1β, IL-6, and TNF-α are high 
in AD patients and increase with disease progression (114, 115). In 
addition, microglia, which play an important role in chronic 
neuroinflammation, are also involved in this process. Microglia resist 
the onset and progression of AD by degrading Aβ and tau. However, 
Aβ in turn activates microglia through TLRs to release 
pro-neuroinflammatory mediators. In the early stages of AD 
development, neuroprotective phenotypic microglia appear around 
Aβ plaques (116, 117). However, in late AD pathogenesis, elevated 
expression of proinflammatory factors will result in the emergence of 
microglia with a proinflammatory phenotype and a decrease in their 
phagocytic activity (118, 119). Pro-inflammatory microglia drive tau 
proliferation and toxicity by promoting neuroinflammation, such as 
activation of NLRP3 inflammasomes or induction of NF-kB signaling 
(23). Defective microglial autophagy leads to dysregulation of lipid 
metabolism, which increases the pathology of tau within neurons 
further exacerbating AD (23).

Numerous studies have shown that EGCG treatment of AD is 
associated with chronic neuroinflammation induced by microglia of 
anti-inflammatory phenotype (105). Wei et  al. conducted in vitro 
experiments demonstrating that EGCG effectively suppressed the 
expression of TNFα, IL-1β, IL-6, and iNOS while concurrently 
restoring intracellular antioxidant levels, including Nrf2 and HO-1. 
These actions counteracted the pro-inflammatory effects of microglia 
(120). Furthermore, EGCG inhibited the secretion of 
pro-inflammatory factors from Aβ-induced pro-inflammatory 
microglia phenotypes and attenuated microglial neurotoxicity (121). 
Importantly, EGCG also mitigated Aβ-induced cytotoxicity by 
attenuating ROS-mediated NF-κB activation and MAPK signaling 
pathways, including JNK and p38 signaling (121). In vitro 
investigations have demonstrated that Aβ deposition significantly 
diminishes following intraperitoneal injection of EGCG at a dose of 
20 mg/kg or oral administration of EGCG at 50 mg/kg in drinking 

water (109, 122). Similarly, Li et al. observed a substantial reduction 
in Aβ deposition in the frontal cortex (60%) and hippocampus (52%) 
following oral administration of EGCG at a dose of 20 mg/kg/day for 
3 months in an AD mouse model (123). Furthermore, recent findings 
by Lee et al. revealed that EGCG attenuated LPS-induced memory 
impairment and neuronal apoptosis, concomitant with a reduction in 
the expression of inflammatory cytokines TNF-α, IL-1β, and IL-6 
(105). These results align with in vitro observations, suggesting that 
EGCG holds promise as a therapeutic agent for neuroinflammation-
associated AD.

3.1.4 EGCG antioxidant activity in AD
The brain is particularly vulnerable to oxidative damage due to its 

high content of easily oxidizable lipids, elevated oxygen consumption 
rates, and limited antioxidant defense mechanisms. Age-related 
increases in brain oxidation contribute to the recognized risk of AD 
(124). Under normal physiological conditions, SOD catalyzes the 
conversion of superoxide anions to hydrogen peroxide, thereby 
safeguarding cells against free radical assault. However, in the presence 
of elevated levels of certain metal ions such as Fe and Cu, SOD can 
convert hydrogen peroxide to the more hazardous hydroxyl radical 
(125). Notably, AD patients exhibit heightened SOD activity, 
diminished glutamine synthetase activity, and elevated lipid 
peroxidation, collectively resulting in heightened oxidative stress and 
accumulation of free radicals. Free radicals inflict damage upon 
biofilms, disrupting the intracellular milieu and precipitating cellular 
senescence and demise (126). Peroxidation of impaired lipids results 
in ribonucleic acid inactivation, prompting DNA and RNA cross-
linking and instigating DNA mutations (127). Decomposition of 
peroxidized lipids yields aldehydes, such as acrolein, which react with 
phosphoric acid and proteins to generate lipofuscin (128). 
Accumulation of lipofuscin in the brain contributes to cognitive 
impairment (129). Furthermore, mitochondrial dysfunction and 
oxidative stress in AD patients are intricately intertwined, with 
evidence indicating mutual exacerbation, culminating in AD 
pathogenesis (130).

Numerous studies have delineated the involvement of increased 
oxidative stress in AD pathogenesis, and highlighted the potential of 
EGCG’s antioxidant properties in mitigating this process (131, 132). 
Abdul M. Haque et al. observed that long-term administration of 
green tea catechins to AD model mice significantly ameliorated 
cognitive impairment, accompanied by reduced ROS levels and 
enhanced antioxidant capacity in the hippocampus and cortex (133). 
Similarly, Regina Biasibetti et al. investigated the effects of oral EGCG 
administration (10 mg/kg/day) for 1 month in a rat model of 
dementia, revealing cognitive deficits reversal and notable reductions 
in ROS levels and NO production (110). Catechins exert their 
antioxidative effects by scavenging free radicals and chelating metal 
ions such as Fe and Cu, thereby reducing ROS production. This dual 
action mitigates oxidative stress in both peripheral and brain tissues, 
thereby inhibiting further deterioration of cognitive deficits-
associated behaviors (134). Mitochondrial dysfunction enhances ROS 
generation via the NADPH oxidase pathway (135). EGCG reinstates 
mitochondrial respiration rate, ATP levels, ROS levels, and membrane 
potential (102). Its antioxidant properties scavenge ROS production 
and safeguard against mitochondrial damage (136). Furthermore, 
EGCG treatment mitigates neuronal apoptosis triggered by 
endoplasmic reticulum stress subsequent to Aβ exposure. The 
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TABLE 1 Specific benefits and mechanisms of action of EGCG in AD.

Animal model EGCG administration Outcome measures Neuroprotective 
mechanisms

Publication

Aβ 25-35-induced AD rat model. EGCG (100, 250 or 600 mg/kg/d) by gavage 

for 9 weeks.

Decreased Tau hyperphosphorylation in the hippocampus; inhibited BACE1 expression and 

activity as well as Aβ1-42 expression; increased Ach by reducing AchE activity.

Antioxidative stress. (98)

APP/PS1 transgenic mice (AD 

model).

EGCG (50 mg/kg) by gavage for 4 months. Reduced cognitive deficits in AD model mice; improved brain dendritic integrity and 

synaptic protein expression levels; inhibited microglia activation and reduced pro-

inflammatory cytokines (IL-1β); reduced β-amyloid (Aβ) plaques in the hippocampus.

Anti-inflammatory; 

neuroprotective; anti-

amyloidogenic.

(99)

SAMR1 and SAMP8 mice. EGCG (5 or 15 mg/kg/d) by gavage for 

60 days.

Alleviates deterioration of cognitive function; reduced brain NEP levels and decreased 

accumulation of Aβ.

N/A (100)

APP/PS1 mice. EGCG (40 mg/kg/d) orally for 3 months. Reduces synaptic deficits; reduces neuroinflammation and Aβ plaque accumulation; enhances 

learning ability and spatial memory.

N/A (101)

APP/PS1 mice. EGCG-containing (10 mg/mL) drinking water 

for 5.5 months.

Restoration of mitochondrial respiration rate, MMP, ROS production, and ATP levels; 

reduction in toxic levels of brain Aβ.

Antioxidant; reduces 

mitochondrial dysfunction.

(102)

APP/PS1 mice EGCG (30 mg/kg/d) by gavage for 90 days. Reduced brain parenchyma and cerebrovascular Aβ deposition; increased expression of 

nonamyloidogenic soluble APP-α and α-secretase candidate proteins, as well as decreased 

expression of amyloidogenic soluble APP-β and β-secretase proteins; alleviated synaptic 

toxicity, neuroinflammation and oxidative stress.

Anti-neuroinflammatory; 

antioxidant stress.

(103)

Aβ injection induces AD rat model. Intraperitoneal injections of EGCG (10 mg / 

kg) were administered for 3 weeks (every 

other day).

Reduces Aβ accumulation; restores motor coordination and memory. N/A (104)

LPS-induced neuroinflammation and 

memory impairment in mice.

EGCG (1.5 mg/kg or 3 mg/kg) was 

administered orally for 3 weeks.

Prevented memory damage and neuronal apoptosis; inhibited elevated Aβ levels and APP 

and β-site APP cleavage enzyme 1 expression; prevented astrocyte activation; decreased levels 

of cytokines (TNF-α, IL-1β, GM-CSF, ICAM-1, and IL-16); reduced iNOS and COX-2 

expression.

Anti-neuroinflammatory; 

antioxidant stress.

(105)

SAMP8 mice EGCG (5 or 15 mg/kg/d) orally for 8 weeks. Improves spatial learning ability and memory impairment; reduces levels of Aβ1-42 and 

BACE-1; prevents hyperphosphorylation of tau.

N/A (106)

APP/PS1 mice EGCG (2 mg/kg/d) orally for 4 weeks. Improved cognitive impairment; reduced Aβ and APP expression and inhibited neuronal 

apoptosis; activation of TrkA signaling and inhibition of p75NTR signaling.

Adjust the TrkA/p75NTR signal 

balance.

(107)

APP/PS1 mice EGCG (2 or 6 mg/kg/d) orally for 4 weeks. Improves learning and memory deficits; decreases hippocampal levels of IRS-1pS636 and 

Aβ42; inhibits TNF-α/JNK signaling; increases Akt and glycogen synthase kinase-3β 

phosphorylation in the hippocampus.

Attenuates central insulin 

resistance.

(108)

Tg APPsw transgenic mice Intraperitoneal injection of EGCG (20 mg / 

kg/d) for 60 days.

Promotes APP for nonamyloidogenic processing; reduces cerebral amyloidosis. N/A (109)

STZ-induced AD mouse model. EGCG (10 mg/kg/d) by gavage for 4 weeks. Reduces cognitive impairment; reverses AChE activity, GPX activity, NO metabolites, and 

ROS levels.

Antioxidant stress. (110)
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inflammatory response to neuronal injury induced by various stimuli 
culminates in the release of pro-inflammatory cytokines and 
cytotoxins, further exacerbating oxidative stress (137). Numerous 
studies have demonstrated EGCG’s protective effects against 
lipopolysaccharide-induced memory impairment and inflammatory 
responses (105, 138). Through mechanisms associated with protein 
kinase C (PKC), which facilitates the generation of nontoxic soluble 
peptide APPβ (sAPPβ) and cell survival, catechins may exert an 
influence on AD (139, 140). Levites et  al. reported that EGCG 

(1–5 μM) enhances sAPPβ production from PC12 and human 
neuroblastoma cells (141).

3.2 Parkinson’s disease

PD follows AD as the second most prevalent neurodegenerative 
disorder affecting middle-aged and elderly individuals. While PD is 
uncommon before the age of 50, its incidence escalates markedly with 

FIGURE 3

The multifactorial pathophysiology of Alzheimer’s disease is depicted in an illustration. Furthermore, epigallocatechin-3-gallate is highlighted as a 
potential therapeutic intervention for AD, attributed to its ability to counteract oxidative stress and chronic neuroinflammation.
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advancing age, peaking between 70 and 85 years, afflicting 7 to 10 
million individuals worldwide (142, 143). Pathologically, PD is 
characterized by the degeneration and loss of dopaminergic neurons 
within the substantia nigra pars compacta, accompanied by the 
formation of eosinophilic inclusion bodies known as Lewy bodies 
within the residual neurons. These alterations disrupt the balance 
between dopamine and cholinergic neurotransmitters, culminating in 
aberrant motor function within the basal ganglia. The resultant motor 
and non-motor symptoms include postural reflex deficits, 
bradykinesia, muscular rigidity, gait disturbances, and resting tremor 
(144, 145). The episodic nature of PD in most cases suggests a 
multifactorial etiology involving genetic susceptibility and 
environmental influences. While the precise pathogenesis remains 
elusive, current hypotheses implicate abnormal aggregation of 
α-synuclein, mitochondrial dysfunction, calcium dyshomeostasis, 
oxidative stress, and neuroinflammation (146).

3.2.1 Observational epidemiologic study of green 
tea consumption and risk of PD

In order to determine the relationship between PD incidence and 
tea consumption, Quintana et al. examined a total of 12 studies from 
1981 to 2003, comprising 2,215 cases and 145,578 controls. Their 
analysis revealed that tea consumption can prevent PD and that this 
protective effect is more pronounced in the Chinese population (147). 
In order to study the non-hereditary factors associated with PD, 
Hosseini Tabatabaei N. et al. used a sample of 150 people, including 
75 PD patients and 75 people as controls, and showed that tea intake 
was protective against PD and that adherence to daily tea consumption 
reduced the risk of PD by 80% (148). A case–control study was 
conducted by Harvey Checkoway et al. By studying and counting PD 
cases (n = 210) and controls (n = 347), it was found that people who 
drank two or more cups of green tea per day had a reduced incidence 
of PD compared to those who did not drink green tea (149). According 
to research by E-K Tan and colleagues, drinking one unit of tea (3 cups 
per day for 10 years) would result in a 28% decrease in the incidence 
of PD (150). The effects of tea consumption on 60 patients with 
idiopathic PD were examined by Chahra CD et al. According to the 
study’s findings, PD patients who drank tea in addition to traditional 
medication experienced improvements in their non-motor symptoms 
and depression (143). Boris Kandinov et al. also demonstrated that 
drinking tea and smoking delayed the age of PD attacks, while 
drinking coffee may have the opposite effect (151). Observational 
epidemiological studies in PD have more experimental data 
demonstrating a protective effect of green tea compared to AD, and 
even though epidemiological findings support the beneficial effects of 
tea consumption, some have not yet provided clear evidence. 
Therefore, more research is required to determine the connection 
between drinking tea and the risk of PD.

3.2.2 Experimental studies and mechanisms of PD
Pathological accumulation of metal ions or a rapid increase in 

monoamine oxidase B (MAO-B) activity can induce endogenous 
dopamine (DA) oxidation, leading to α-synuclein aggregation, 
mitochondrial dysfunction, and other factors contributing to the 
heightened incidence of PD. Consequently, mitigation strategies 
involve the use of ROS scavengers, DA oxidation inhibitors, MAO-B 
inhibitors, and DA quenchers (152). Zhou et al. demonstrated that 
catechins can impede DA oxidation by inhibiting enzymes and metal 

ions. Furthermore, they inhibit MAO-B activity, detoxify ROS, DA 
quenchers, and harmful DA oxidation byproducts, while regulating 
the Nrf2-Keap1 and PGC-1 pathways. These findings underscore the 
inhibitory effects of tea polyphenols on DA-related toxicity (153). In 
a study by Shyh-Mirnin Ph.D. et  al., the influence of EGCG on 
MAO-B enzyme activity in the adult rat brain was investigated, 
revealing a decrease in MAO-B enzyme activity (154).

PD primarily affects dopaminergic neurons in the substantia nigra 
pars compacta (SNpc) region of the brain (155). The neurotoxins 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 
6-hydroxydopamine (6-OHDA) specifically damage this brain region, 
resulting in the loss of dopaminergic neurons (156). This neuronal loss 
leads to disrupted neural firing patterns and impaired motor control 
(157). Weinreb et al. investigated the impact of pretreatment with tea 
extract (0.51 mg/kg) and the tea polyphenol EGCG (2.10 mg/kg) on 
dopamine neurogenesis loss in the substantia nigra of MPTP-induced 
PD mouse models (158). Their study revealed a considerable 
mitigation of neurogenesis loss (158). Siddique Y. H. et al. examined 
the effects of EGCG in an α-synuclein (h-αS) transgenic Drosophila 
model of PD, analyzing statistical data and markers of changes in 
climbing capacity, lipid peroxidation, and apoptosis (159). Their 
findings demonstrated that various concentrations of EGCG (0.25, 
0.50, and 1.0 g/mL) substantially delayed the loss of climbing ability in 
Drosophila, while reducing oxidative stress and apoptosis (159).

In a study by Tingting Zhou et al., a PD mice model induced by 
MPTP was utilized to investigate the potential therapeutic effects of 
EGCG for PD. The results demonstrated that EGCG administration 
ameliorated impaired locomotion behavior in MPTP-treated mice and 
protected tyrosine hydroxylase-positive cells in the substantia nigra 
pars compacta from MPTP-induced toxicity (160). Additionally, 
following EGCG treatment, flow cytometric analysis revealed an 
increase in the CD3 + CD4+ to CD3 + CD8+ T cell ratio in peripheral 
blood of MPTP-treated mice. Furthermore, EGCG appeared to 
downregulate the expression of inflammatory mediators such as TNF 
and IL-6  in serum (160). These findings suggest that EGCG may 
confer neuroprotective effects in MPTP-induced PD mice models, 
potentially by modulating peripheral immune responses.

Current understanding of PD pathogenesis implicates 
neurofilaments, synaptic vesicle proteins, and ubiquitinated 
α-synuclein as primary contributors to the disease pathology (161). 
Additionally, Lewy bodies may exacerbate the release of free radicals, 
excessive nitric oxide synthesis, microglia-mediated inflammation, 
and disruption of protein degradation pathways, further exacerbating 
the pathophysiology (162). Specific beneficial effects and mechanisms 
of action of EGCG in PD are summarized in Table 2. In conclusion, 
EGCG exhibit diverse pharmacological activities in PD by modulating 
gene expression and interfering with signaling pathways (172). 
Despite substantial experimental evidence supporting this notion, 
challenges such as low solubility, limited bioavailability, and BBB 
impermeability hinder efficient delivery of EGCG to the brain and 
impede clinical translation (173). Overcoming these obstacles 
necessitates cross-sectional studies aimed at elucidating chemical 
modification strategies and optimizing drug delivery mechanisms to 
enhance their therapeutic efficacy.

3.2.3 EGCG anti-neuroinflammatory activity in PD
Numerous studies have established neuroinflammation as a 

significant etiological factor in PD, playing a pivotal role in its early 
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TABLE 2 Specific benefits and mechanisms of action of EGCG in PD.

Animal model EGCG administration Outcome measures Neuroprotective 
mechanisms

Publication

MPTP-induced PD mouse model. EGCG (50 mg/kg/day) gavage administration 

for 20 days.

PD mice recovered motor behavior; increased the CD3CD4 to CD3CD8 T-lymphocyte ratio 

in the peripheral blood; and decreased the inflammatory factor (TNF-α and IL-6) expression 

in the serum.

Anti-neuroinflammatory. (160)

LPS (substantia nigra injection)-

induced PD rat model.

EGCG-Loaded Liposomes 2 μL/d (12.5 μM) 

was administered for 14 days.

Recovery of dyskinesia in PD rats; reduction of TNF-α production in the brain substantia 

nigra region; prevention of BV-2 activation.

Anti-neuroinflammatory. (163)

Paraquat-induced TH > dj-1-β-

RNAi/+ Drosophila melanogaster flies 

(PD Drosophila model)

Feed 0.5 mM EGCG for 15 days. Drosophila restored lifespan and locomotor activity, with decreased lipid peroxidation and 

neurodegeneration.

Antioxidative stress. (164)

Rotidone (ROT)-induced PD rat 

model.

Intravenous EGCG (100 or 300 mg/kg/d) for 

21 days.

NO levels and lipid peroxidation were reduced; SDH, ATPase, and ETCase activities, and 

catecholamine levels were elevated; and levels of neuroinflammatory and apoptotic markers 

were reduced.

Antioxidant effects; prevention of 

mitochondrial dysfunction; 

anti-neuroinflammatory effects; 

anti-apoptotic effects.

(165)

MPTP-induced PD mouse model. EGCG (2 and 10 mg/kg/day) gavage 

administration for 10 days.

Prevention of nigrostriatal dopamine neuron death; restoration of striatal dopamine and 

tyrosine hydroxylase protein levels; elevation of striatal antioxidant enzymes SOD and 

catalase activity.

Antioxidant; iron chelate. (158)

MPTP-induced PD mouse model. EGCG (2 and 10 mg/kg/day) gavage 

administration for 10 days.

Reduced neurotoxicity in PD mice; restored rotational latency; increased striatal dopamine 

concentration and nigral ferritin expression.

Antioxidative stress. (166)

α-Synuclein preformed fibers (α-syn-

PFFs)-induced PD mouse model.

Intraperitoneal injection of EGCG (10 mg/kg/

day) for 7 days.

Reduces anxiety-like behavior and dyskinesia in mice; reduces neuronal degeneration and 

accumulation of p-α-syn in Lewy bodies and Lewy neurons; reduces expression of pro-

inflammatory cytokines (IL-6, IL-1, and TNF-α) while promoting expression of anti-

inflammatory cytokines (TGF-β, IL-10, and IL-4).

Anti-neuroinflammatory. (167)

MPTP-induced PD mouse model. EGCG (25 mg/kg) was administered by gavage 

for 1, 2, 4 and 7 days.

Prevents loss of TH-positive cells in the SN and loss of TH activity in the striatum; maintains 

HVA levels in the striatum; decreases nNOS expression in neurons.

Antioxidative stress. (168)

MPTP-induced PD mouse model. Intraperitoneal injection of EGCG (10 mg/kg 

or 50 mg/kg per day) for 14 days.

Reduced neuronal death rate and iNOS expression. Antioxidative stress. (169)

MPTP-induced PD mouse model. EGCG (25 mg/kg/day) gavage administration 

for 7 days

Increased rotational latency; elevated striatal dopamine concentration; and higher substantia 

nigra ferritin expression.

Reduction of oxidative stress; 

iron-export protein ferroportin 

in substantia nigra.

(166)

LPS -induced PD rat model. Intraperitoneal injection of EGCG (10 mg/

kg/d) for 7 days.

Decreased expression of TNF-α and NO; increased levels of dopamine neurons. Anti-neuroinflammatory; anti-

oxidative stress.

(170)

MPTP-induced PD mouse model. EGCG (25 mg/kg/day) gavage administration 

for 6 days

Protected tyrosine hydroxylase (TH)-positive cells in the substantia nigra (SN) and TH 

activity in the striatum; reduced nNOS expression in the substantia nigra and neuronal 

nNOS expression.

Antioxidative stress. (168)

L-DOPA and carbidopa-induced PD 

rat model.

Only one oral dose of EGCG (25 mg/kg). Restores striatal dopamine accumulation; reduces glutamate-induced oxidative cytotoxicity 

by inactivating the NF-kB signaling pathway; reduces neuronal death.

Antioxidative stress; COMT 

inhibiton.

(171)
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pathogenesis. Notably, activated microglia make substantial 
contributions to this process. Evidence supporting the involvement of 
activated microglia-mediated chronic neuroinflammation in PD 
includes: (1) Pro-inflammatory effects are often observed in activated 
microglia surrounding dopaminergic neurons, with the degree of 
microglial activation correlating with dopaminergic endings loss in 
PD (174, 175). (2) Injured neurons release excessive α-synuclein, 
activating proinflammatory factors like TNF-α, NO, and IL-1β 
produced by microglia, thereby modulating chronic 
neuroinflammation in PD (176, 177). (3) Jmjd3, critical for microglial 
cell phenotype expression, when inhibited, leads to overactivation of 
pro-inflammatory microglial responses, exacerbating 
neuroinflammation and neuronal cell death (178). Additionally, it has 
been proposed that α-synuclein aggregates exert toxicity on neurons 
only in the presence of microglia (179, 180). In PD patients, misfolded 
α-synuclein is released from injured neurons into the extracellular 
fluid, where it binds to Toll-like receptors (TLRs), Fcγ receptors 
(FcγR), or nucleotide-binding oligomerization domain-like receptors 
(NLRPs), further activating microglia (181–184). The proinflammatory 
cytokines released by activated microglia subsequently activate protein 
kinase R (PKR), leading to phosphorylation of α-synuclein at Ser129, 
a process considered of significant pathological importance, 
particularly in Lewy bodies of PD patients. Moreover, microglia are 
involved in the clearance of protein deposits, including α-synuclein 
and Aβ, from astrocytes (185–187). Activation of microglia 
upregulates MHC I  expression on neurons, promoting neuronal 
presentation of α-synuclein antigen. Subsequently, these neurons are 
targeted and eliminated by α-synuclein-reactive T cells (187). The 
emergence of α-synuclein pathology follows microglial activation, 
suggesting α-synuclein’s pivotal role in PD progression, albeit not as 
an initiator. Similarly, mounting evidence suggests that the immune 
response contributes to neuronal death as a cause rather than a 
consequence (22).

A growing body of evidence suggests that EGCG may impede or 
postpone the progression of PD by targeting chronic 
neuroinflammation. EGCG exhibits potent anti-inflammatory activity 
both in vitro and in vivo, primarily attributed to its ability to inhibit 
microglia-induced cytotoxicity (120). In vitro studies have 
demonstrated that EGCG suppresses the secretion of pro-inflammatory 
factors from LPS-activated microglia by downregulating the expression 
of iNOS and TNF-α (188). Furthermore, EGCG has been shown to 
inhibit microglial activation and reduce neuronal damage in SH-SY5Y 
and rat mesencephalic cultures (188). Gülşen Özduran et al. reported 
that EGCG restored viability in PD model cells, inhibited apoptosis, 
and enhanced survival by attenuating 6-OHDA-induced expression of 
TNF-α and IL-1β in SK-N-AS cells (189). The findings from the in vivo 
study corroborate those observed in vitro, further substantiating the 
potential of EGCG to mitigate the inflammatory response associated 
with microglia-mediated damage to dopaminergic neurons. Al-Amri 
et al. demonstrated that EGCG significantly increased the number of 
TH-immunoreactive neurons in the midbrain of PD model rats by 
reducing the production of TNF-α and NO (170). Similarly, EGCG 
liposomes alleviated symptoms in a PD rat model by suppressing the 
expression of NO and TNF-α in microglia exhibiting an LPS-induced 
inflammatory phenotype (165). In summary, EGCG shows promise as 
a therapeutic and prophylactic agent for PD, exerting neuroprotective 
effects both in vivo and in vitro through the inhibition of 
neuroinflammation (Figure 4).

3.2.4 EGCG antioxidant activity in PD
PD patients commonly exhibit reduced mitochondrial 

complex I  activity and increased ROS production (190). This 
diminished function of proton pumps on mitochondria, coupled 
with decreased membrane voltage and the opening of permeability 
channels, initiates the apoptotic process. Deficiency in 
mitochondrial complex I can result in oxidative stress, heightening 
neuronal susceptibility to excitotoxic injury. The densely packed 
substantia nigra is particularly vulnerable to elevated oxidative 
stress compared to other brain regions. Under normal conditions, 
H2O2 generated by dopamine toxicity is neutralized by reduced 
glutathione, mitigating potential harm. However, in the remaining 
dopamine neurons of PD patients, ineffective scavenging of H2O2 
may occur due to compensatory mechanisms, including 
accelerated toxicity production in dopamine metabolism, 
heightened monoamine oxidase (MAO)-B activity, and reduced 
glutathione levels (191). Excessive H2O2 reacts with Fe2+ via 
Fenton chemistry, yielding highly toxic hydroxyl radicals, 
culminating in lipid peroxidation and apoptosis of nigral neurons. 
This oxidative stress and mitochondrial dysfunction form a 
reciprocal relationship, perpetuating a vicious cycle.

The neuroprotective effects of EGCG, attributed to its 
antioxidant properties, have been observed in PD (Figure  4). 
Typically, α-synuclein localizes to the mitochondria-associated 
membrane, and its presence may disrupt mitochondrial function 
by promoting the formation of the mitochondrial permeability 
transition pore (mPTP), leading to mitochondrial membrane 
potential (MMP) loss, subsequent mitochondrial degradation, and 
ultimately cell death (192). Compounds capable of preserving 
mitochondrial activity are therefore deemed invaluable in 
combating PD. EGCG has been shown to safeguard mitochondrial 
function by preventing Ca2+ influx through voltage-gated calcium 
channels and mitochondrial Ca2+ uptake via the mitochondrial 
Ca2+ uniporter (159, 193). Furthermore, in vivo studies have 
demonstrated EGCG’s ability to reduce oxidative stress by 
decreasing serum protein carbonyls and mitigating neurotoxicity 
in the MPTP-induced mouse model of PD (166). Similarly, Pinto 
et  al. reported that EGCG improved cognitive dysfunction 
induced by 6-OHDA in male Wistar rats. 6-OHDA is known to 
induce ROS generation. EGCG treatment reversed striatal 
oxidative stress and attenuated immunohistochemical alterations 
(194). In conclusion, EGCG has been shown to alleviate PD by 
inhibiting neurotoxin-induced oxidative stress injury both in vitro 
and in vivo.

4 EGCG bioavailability, toxicity, and 
safe dose

When evaluating EGCG for clinical therapeutic applications, 
significant concerns arise regarding its safety, toxicity, and optimal 
dosage post-treatment. While numerous studies have highlighted 
EGCG’s beneficial impact on neurodegenerative diseases due to its 
antioxidant and anti-neurotoxic properties, others have reported 
adverse effects such as heightened oxidative stress and the generation 
of toxic EGCG metabolites (195–197). Hence, there is a critical need 
for systematic investigations into EGCG’s bioavailability, toxicity 
profile, and appropriate dosing regimens.
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4.1 Bioavailability of EGCG

EGCG has been extensively investigated for its notable health-
promoting effects, with particular focus on its neuroprotective 
properties. Despite these benefits, the bioavailability of EGCG is 
limited, posing a challenge for its clinical application in treating 

neurodegenerative diseases. Following oral administration, EGCG 
exhibits a mean peak plasma concentration between 1.3 and 2.2 h, 
a half-life ranging from 1.9 to 4.6 h, and is almost completely 
metabolized within 24 h (198). Pharmacokinetic studies reveal that 
merely 0.1% of the ingested EGCG dose reaches detectable levels 
in the bloodstream at its peak concentration time (Tmax) in 

FIGURE 4

A schematic representation illustrates the neuroprotective effects of EGCG in Parkinson’s disease. EGCG exerts neuroprotection by inhibiting oxidative 
stress, neuronal apoptosis, and neuroinflammatory responses via diverse molecular mechanisms.
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healthy individuals (39, 199). This minimal absorption occurs 
primarily through passive diffusion (paracellular and transcellular 
diffusion) in the small intestine, while the remaining EGCG 
reaches the colon to be degraded by intestinal microbial enzymes 
(198, 200, 201). EGCG undergoes phase II metabolism in 
enterocytes and hepatocytes following ingestion (199, 202). The 
polyphenolic hydroxyl structure of EGCG facilitates binding 
reactions such as methylation, glucuronidation, sulfation, and 
cysteine binding, contributing to its limited bioavailability (203). 
Upon entering the colon, EGCG encounters rapid hydrolysis of 
conjugate groups like glucuronides and sulfates by colonic 
microbiota. Subsequently, glycosides are released and further 
catabolized into ring cleavage products and low molecular weight 
phenolic acids (198, 204). While absorption studies traditionally 
focus on the small intestine, phenolic acid metabolites degraded by 
colonic microorganisms constitute approximately 40% of the 
ingested EGCG, underscoring the significant role of colonic 
metabolism in EGCG bioavailability.

Keiko Unno et al. demonstrated that EGCG can penetrate the BBB 
to access the brain parenchyma, influencing neuronal cell proliferation 
and neurogenesis, thus potentially mitigating neurodegenerative 
diseases (34). There are two common views on the impact of EGCG 
bioavailability on neuroprotection. We know that only a small fraction 
of oral EGCG is absorbed into the circulation. In addition, Shimizu 
et al. found that oral EGCG accumulates primarily in the gut (50%), 
with less than 0.01% distributed in the liver, blood, and brain (205). 
Upon comparison of the distribution of EGCG in mice following oral 
and intravenous administration, it was observed that the majority of 
orally administered EGCG entered the bloodstream in its 
glucuronidated form. Additionally, a significant portion of EGCG 
accumulated in the small intestine and colon (206). Intravenously 
injected EGCG was rapidly distributed in an uncoupled state in other 
tissues such as brain, liver, and lung (207, 208). These findings 
underscore the notion that while intravenous EGCG achieves rapid 
tissue penetration, oral administration necessitates absorption 
through the intestine followed by redistribution to tissues and organs. 
Thus, intestinal absorption emerges as a critical factor limiting EGCG 
bioavailability and its potential neuroprotective effects across the BBB.

An alternative perspective posits that the gut harbors a 
substantial population of immune cells and neural networks, and 
EGCG has the potential to modulate signaling and functional 
disruptions in intestinal neuroimmune communication via the 
brain-gut axis (13, 209–211). This theory underscores the 
gut-brain axis as pivotal in brain injury, neuroinflammation, and 
related diseases, with microbiota signaling pathways playing a 
crucial role in neuroprotection (212, 213). It is known that gut 
microbes can metabolize EGCG into fission products that are more 
bioavailable and easier to pass through the BBB to exert 
neuroprotective effects (214). Moreover, evidence supporting 
EGCG’s neuroprotective effects via BBB-mediated anti-
neuroinflammation and reduction of oxidative stress includes: (i) 
EGCG enhances dopamine neuron activity in the gut, decreases 
serotonin levels in the colon, and increases hippocampal 
5-hydroxytryptamine levels by enhancing intestinal permeability 
(215–217). (ii) EGCG alleviates intestinal inflammation and 
repairs the intestinal barrier by altering the gut microbiome. The 
alteration of the gut microbiome ultimately results in the 
alleviation of neuroinflammation and neurodegenerative diseases 

by affecting physiological processes such as immune cell 
development and migration, amyloid deposition, BDNF and 
NMDA signaling (218–220). (iii) EGCG also impacts the 
metabolome of gut microbes, influencing short-chain fatty acids, 
secondary bile acids, and tryptophan-related metabolites (221, 
222). These metabolites traverse the BBB and modulate the host’s 
nervous system.

4.2 Toxicity of EGCG

Despite its limited oral bioavailability, EGCG can induce toxicity, 
particularly when administered in fasted states or at high doses. 
Numerous studies have questioned whether EGCG has a clinical 
therapeutic role, as well as concerns about EGCG toxicity during 
treatment of various neurodegenerative diseases. Multiple system 
atrophy (MSA) is a rare neurodegenerative disorder characterized by 
neuronal loss and gliosis in various regions of the CNS, including the 
striatum, olivocerebellum, and central autonomic structures (223). A 
histopathological hallmark of MSA is the presence of oligodendrocyte 
cytoplasmic inclusions containing misfolded and aggregated 
α-synuclein (223, 224). EGCG has been shown to inhibit α-synuclein 
aggregation and mitigate associated toxicity. Johannes Levin et al. 
conducted a randomized, double-blind, parallel-group, placebo-
controlled clinical trial, which demonstrated that 48 weeks of EGCG 
treatment did not alter disease progression or provide clinical benefit 
in MSA (225). Two patients discontinued EGCG therapy due to severe 
hepatotoxicity during the trial (225). The study concluded that 
elevated transaminase concentrations at therapeutic doses greater 
than 1,200 mg would cause hepatotoxicity (225). However, the study 
affirms that EGCG is generally well tolerated in humans and supports 
the idea that EGCG therapy acting on the α-synuclein oligomer 
formation may be  an effective target for the treatment of 
neurodegenerative diseases (225). Additionally, numerous animal 
studies have highlighted adverse effects of EGCG, particularly 
affecting the liver and kidneys (226–228). We  focus on the 
hepatotoxicity and nephrotoxicity of EGCG and briefly summarize the 
other adverse effects of EGCG (gastrointestinal toxicity).

4.2.1 Hepatotoxicity of EGCG
The liver is known to be the major drug metabolizing organ in the 

human body. Initially, K Nakagawa et al. examined the distribution of 
EGCG (500 mg/kg body weight) in the body after 1 h of oral 
administration in rats (227). They observed that EGCG concentrations 
were highest in the intestine, followed by the liver, with plasma levels 
approximately one-fourth of those in the liver and notably lower 
concentrations in the brain (227). Autopsy findings further confirmed 
EGCG induced hepatotoxicity, correlating the extent of liver damage 
with dosage, route, and duration of EGCG administration (228). 
Studies on oral EGCG toxicity have documented varying degrees of 
hepatotoxicity, ranging from mild elevation in liver enzymes (alanine 
aminotransferase (ALT) and aspartate aminotransferase (AST)) to 
severe hepatocellular necrosis and bile duct hyperplasia as therapeutic 
doses increased (229). Thus, it is evident that the liver is a significant 
target organ for EGCG toxicity.

Animal studies have shown that the severity of liver injury 
produced by EGCG treatment is related to dose, administration route, 
and treatment duration. Balaji Ramachandran et al. investigated the 

https://doi.org/10.3389/fnut.2024.1425839
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2024.1425839

Frontiers in Nutrition 15 frontiersin.org

relationship between the adverse effects of EGCG treatment with dose 
and administration route by giving EGCG (108, 67.8, 21.1, and 6.6 mg/
kg/d) orally or intraperitoneally to mice (230). Subcutaneous injection 
of 108 mg/kg EGCG resulted in severe hepatic parenchymal 
congestion, hepatocellular balloon-like degeneration, kupffer cell 
hyperplasia, and calcification (acute hepatitis); serum levels of 
bilirubin, AST, ALT, and ALP were markedly elevated, leading to 
mortality by the 8th day of treatment (230). Mice injected with 
67.8 mg/kg EGCG subcutaneously exhibited moderate hepatic 
peritoneal and mild lobular inflammation; elevated serum AST and 
ALT levels were observed, with mortality occurring by day 16 of the 
experiment (230). In comparison to subcutaneous injection, oral 
administration of EGCG resulted in lower hepatotoxicity, with 
significant liver damage observed only in mice receiving 108 mg/kg 
EGCG orally. Notably, increasing EGCG doses correlated exclusively 
with hepatic toxicity, ranging from mild periportal inflammation to 
severe hepatitis (230). Similarly, Dongxu Wang et al. investigated the 
dose-dependent hepatotoxic effects of subcutaneously injected EGCG 
(55, 70, and 125 mg/kg/day) in mice (229). Their findings revealed that 
all mice injected with 125 mg/kg or 70 mg/kg EGCG succumbed 
within 2 days, showing severe hepatotoxicity characterized by elevated 
serum levels of ALT, AST, and 4-HNE, along with increased expression 
of Nrf2 target genes in the liver. Mice injected with 55 mg/kg EGCG 
exhibited hepatotoxic effects but survived the duration of the study 
(229). It has also been demonstrated that subcutaneous injection of 
45 mg/kg/day of EGCG represents the maximum tolerated dose in 
mice, with long-term administration at this dose showing no impact 
on the body’s oxidative defense mechanisms (231). However, injections 
of 55 or 75 mg/kg/day of EGCG induced hepatotoxicity in mice, 
accompanied by inhibition of hepatic antioxidant enzymes and 
increased nuclear distribution of Nrf2 (231). Furthermore, repeated 
injections of 75 mg/kg/day of EGCG altered the oxidative defense 
mechanism, significantly reducing levels of SOD, catalase, and GPX 
(231). Subcutaneous injection of EGCG in mice at doses exceeding 
100 mg/kg/day induces severe hepatotoxicity and dose-dependent 
mortality, with higher concentrations leading to accelerated death. 
This treatment also inhibits Nrf2 target gene expression and diminishes 
antioxidant defense capacity (231). Similarly, gavage administration of 
EGCG yielded comparable results: mice exhibited hepatic congestion 
and a slight elevation in ALT levels after receiving 750 mg/kg/day of 
EGCG for 5 consecutive days (228). Following gavage of 750 mg/kg/
day of EGCG for 7 consecutive days, mice exhibited a significant 
increase in ALT, MDA, MT, and γH2AX levels in the liver, along with 
hepatocyte degeneration, resulting in a mortality rate of 75% (232). 
single gavage of 1,500 mg/kg of EGCG led to a 108-fold increase in 
ALT levels and an 85% mortality rate among mice (232). Metabolites 
EGCG-2′-cysteine and EGCG-2″-cysteine were detected in urine 
following high-dose gavage of EGCG (233). Notably, EGCG 
administered via diet was well tolerated and demonstrated reduced 
hepatotoxicity compared to gavage administration in animals (233). 
Studies administering EGCG to Beagles indicated that fasting 
increased the likelihood of hepatotoxicity compared to animals that 
were fed prior to treatment (234). These findings underscore the 
influence of dose, route of administration, treatment duration, and 
nutritional status on EGCG-induced hepatotoxicity.

Animal experiments have shown that EGCG induced 
hepatotoxicity correlates with changes in several oxidative stress 
markers in the body, including MDA, 4-HNE, MT, γH2AX, and Nrf2 
(228, 229, 231, 235). MDA and 4-HNE are products of lipid 

peroxidation and serve as biochemical indicators of oxidative stress 
(228). MT and γH2AX are molecular markers associated with 
oxidative stress. All these biomarkers suggest that hepatotoxicity 
induced by EGCG treatment is largely induced by oxidative stress 
(201). Nrf2 functions as a crucial transcription factor in antioxidant 
defense. Under normal physiological conditions, Nrf2 is sequestered 
by Keap1; however, during oxidative stress, Nrf2 dissociates from 
Keap1 and translocates to the nucleus where it binds to antioxidant 
response elements. This activation of the Nrf2-ARE signaling pathway 
upregulates the expression of various antioxidant genes such as HO-1, 
GST, and NADP (H): NQO1 (231). The Nrf2-ARE signaling pathway 
activates and enhances the expression of downstream antioxidant 
enzymes, serving as a critical cellular defense mechanism against 
oxidative stress (236). This pathway, particularly in the liver, is pivotal 
in mitigating EGCG-induced hepatotoxicity (236). Animal studies 
have shown that subcutaneous injection of EGCG at 45 mg/kg/day in 
mice does not impair major hepatic antioxidant defenses but modestly 
increases hepatic expression of Nrf2 target genes (231). Conversely, 
injection of 75 mg/kg/day of EGCG inhibits major hepatic antioxidant 
enzymes while significantly elevating Nrf2 expression and its target 
genes (231). Injection of 100 mg/kg/day of EGCG notably suppresses 
the hepatic Nrf2 pathway (231). These findings indicate a biphasic 
response of Nrf2 to different EGCG doses. In summary, EGCG-
induced hepatotoxicity involves the inhibition of major antioxidant 
enzymes, with the Nrf2 salvage pathway playing a crucial role in 
mitigating toxicity. However, this pathway becomes inhibited at higher 
concentrations of EGCG.

4.2.2 Other toxicities of EGCG
Nora O. Abdel Rasheed et al. investigated potential nephrotoxic 

effects of EGCG treatment in diabetic mice, a crucial concern due to 
the kidney’s vulnerability in diabetes (237). Diabetic mice injected with 
100 mg/kg EGCG daily for 4 days exhibited decreased resistance to 
oxidative stress, as indicated by elevated NADPH oxidase levels and 
reduced expression of Nrf2, HO-1, and HSP90 (237). Serum levels of 
CYS-C and NGAL were significantly elevated, and histopathological 
analysis confirmed EGCG-induced renal injury in diabetic mice (237). 
Similarly, another study demonstrated nephrotoxicity in colitis mice 
treated with green tea extract containing 35% EGCG, evidenced by 
increased serum creatinine levels (a nephropathy biomarker), and 
elevated expression of antioxidant enzymes (HO-1 and NQO1) and 
HSP 90 (238). These findings collectively underscore the potential 
nephrotoxic effects of EGCG treatment, exacerbated by oxidative stress 
implicated in diabetes and its complications (239). Thus, caution is 
advised when considering EGCG supplements for diabetic patients, 
particularly at high doses.

In addition to nephrotoxicity and hepatotoxicity, numerous 
studies have documented gastrointestinal toxicity associated with 
EGCG administration, whether by gavage or in diet, in animal 
models (240–242). The severity of gastrointestinal effects varied with 
dosage, ranging from mild gastric erosion and vomiting to severe 
ulceration, hemorrhage, and epithelial necrosis. Notably, 
gastrointestinal toxicity was more pronounced in animals 
administered EGCG via gavage or when fasted, whereas 
administration via diet, water, or capsule resulted in milder effects 
(234, 243). In conclusion, treatment with EGCG at high doses or for 
prolonged duration may have adverse effects, and the above data 
suggest that the boundary between protective and toxic doses of 
EGCG may be narrow.
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4.3 Safe dose of EGCG

Another critical issue is establishing safe dosage levels of EGCG to 
optimize therapeutic efficacy while minimizing adverse effects. Current 
clinical studies on EGCG dosages vary widely, and extrapolation from 
animal dosages to humans is virtually impossible (244–255). Safety data 
from human studies indicate distinct toxicity thresholds for EGCG 
consumed as a beverage compared to capsules or tablets, necessitating 
separate consideration of safe intake levels. Studies have shown that 
ingestion of up to 676 mg of EGCG in capsules or tablets did not result 
in significant adverse effects in healthy adults or patients with various 
conditions (256). In addition, liver toxicity has been documented with 
the intake of 800 mg or 1,200 mg of EGCG (225, 253). However, 
considering that the pro-health benefits of EGCG are similar to those of 
nutrients. Jiang Hu et al. used an approach similar to the Institute of 
Medicine (IOM) nutrient risk assessment to determine the safe intake of 
EGCG (257). The results indicated that the safe intake of EGCG in 
capsules or tablets for adults is 338 mg/day (257). This safe dose is 
consistent with the dose derived from animal data (322 mg/day) and is 
consistent with recent doses proposed by Yates et al. (258) and Dekant 
et al. (195). Regarding the toxicity threshold for EGCG intake in the form 
of beverages, the highest reported intake level of EGCG was 704 mg/day 
with no apparent adverse effects (245). For the current study, it is still 
uncertain what the standardized safe intake level of EGCG is, as the data 
currently available from human clinical studies may vary in terms of 
design, duration, and subject populations. However, the results of the 
current analyses suggest that diluting and/or slowing the rate of systemic 
administration of EGCG often appears to be better tolerated by the body. 
Even so, careful calculation of daily EGCG intake is important when 
EGCG is used as a dietary supplement. When other EGCG sources are 
available, EGCG intake may require health-based guidance. The use of 
EGCG as a clinical agent for neurodegenerative diseases still requires 
further evaluation of toxicity and dosage.

5 Conclusion

In conclusion, this review highlights the significant potential of 
EGCG, a prominent catechin abundant in green tea, as a therapeutic 
agent for neurodegenerative diseases. By targeting chronic 
neuroinflammation and oxidative stress, EGCG demonstrates 
promising neuroprotective effects in conditions such as AD and 
PD. Through its antioxidant properties and anti-inflammatory 
activities, EGCG shows efficacy in mitigating key pathological 
mechanisms associated with neurodegeneration. The comprehensive 
exploration of EGCG’s molecular mechanisms, including its modulation 
of autoimmune responses, nervous-immune system interactions, and 
inflammatory pathways, underscores its therapeutic relevance in AD 
and PD. Observational epidemiological studies and experimental 

investigations provide compelling evidence for EGCG’s neuroprotective 
effects, supporting its potential as a therapeutic intervention. 
Furthermore, EGCG’s ability to scavenge free radicals, chelate iron, and 
attenuate neuroinflammatory processes highlights its multifaceted 
mechanisms of action. Overall, EGCG emerges as a promising natural 
compound with the capacity to combat chronic neuroinflammation 
and oxidative stress, offering novel avenues for the development of 
neuroprotective strategies in the treatment of neurodegenerative 
disorders. Further research into EGCG’s therapeutic potential, 
including clinical trials and mechanistic studies, is warranted to fully 
elucidate its efficacy and safety profile in neurodegenerative diseases.
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