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Background: Gut microbiota (GM) and metabolic alterations play pivotal roles 
in lung cancer (LC) development and host genetic variations are known to 
contribute to LC susceptibility by modulating the GM. However, the causal links 
among GM, metabolite, host genes, and LC remain to be fully delineated.

Method: Through bidirectional MR analyses, we  examined the causal links 
between GM and LC, and utilized two-step mediation analysis to identify potential 
mediating blood metabolite. We  employed diverse MR methods, including 
inverse-variance-weighted (IVW), weighted median, MR-Egger, weighted mode, 
and simple mode, to ensure a robust examination of the data. MR-Egger intercept 
test, Radial MR, MR-PRESSO, Cochran Q test and Leave-one-out (LOO) analysis 
were used for sensitivity analyses. Analyses were adjusted for smoking, alcohol 
intake frequency and air pollution. Linkage disequilibrium score regression and 
Steiger test were used to probe genetic causality. The study also explored the 
association between specific host genes and the abundance of gut microbes in 
LC patients.

Results: The presence of Bacteroides clarus was associated with an increased risk 
of LC (odds ratio [OR]  =  1.07, 95% confidence interval [CI]: 1.03–1.11, p  =  0.012), 
whereas the Eubacteriaceae showed a protective effect (OR  =  0.82, 95% CI: 
0.75–0.89, p  =  0.001). These findings remained robust after False Discovery Rate 
(FDR) correction. Our mediator screening identified 13 blood metabolites that 
significantly influence LC risk after FDR correction, underscoring cystine and 
propionylcarnitine in reducing LC risk, while linking specific lipids and hydroxy 
acids to an increased risk. Our two-step mediation analysis demonstrated 
that the association between the bacterial pathway of synthesis of guanosine 
ribonucleotides and LC was mediated by Fructosyllysine, with mediated 
proportions of 11.38% (p  =  0.037). LDSC analysis confirmed the robustness 
of these associations. Our study unveiled significant host genes ROBO2 may 
influence the abundance of pathogenic gut microbes in LC patients. Metabolic 
pathway analysis revealed glutathione metabolism and glutamate metabolism 
are the pathways most enriched with significant metabolites related to LC.
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Conclusion: These findings underscore the importance of GM in the 
development of LC, with metabolites partly mediating this effect, and provide 
dietary and lifestyle recommendations for high-risk lung cancer populations.
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1 Introduction

Lung cancer (LC) remains a significant burden in contemporary 
societies. Recent global statistics indicate an incidence rate of 11.4% 
and a mortality rate of 18.0% in 2020 (1). Lung cancer is primarily 
divided into two main types: small-cell lung cancer (SCLC) and 
non-small cell lung cancer (NSCLC), with NSCLC constituting 
80–85% of cases (2, 3). Currently, key risk factors for developing LC 
include smoking, exposure to air pollution, and certain dietary habits 
(4), among others. Understanding and exploring modifiable risk 
factors is essential in reducing lung cancer incidence, promoting early 
diagnosis and effective treatment.

Gut microbiota (GM) emerged as the collective term for the diverse 
and widespread community of microorganisms inhabiting the human 
gastrointestinal tract. Extensive research (5, 6) indicates that alterations 
in the composition, function, and host interaction of the gut microbiota 
are directly implicated in the pathogenesis of lung cancer. In stool 
samples from patients with NSCLC, there was a significant increase in 
the levels of Prevotella, Lactobacillus, Rikenellaceae, Streptococcus, 
Enterobacteriaceae, Oscillospira, and Bacteroides plebeius, in contrast to 
lower levels found in healthy individuals (7). Further research (8) has 
linked early-stage lung cancer with a significant reduction in the diversity 
of the gut microbiota and highlighted the elevation of specific microbes, 
including Bacillus and Akkermansia muciniphila, which may contribute 
to the development of LC. Furthermore, the gut microbiota’s role extends 
beyond its association with lung cancer pathogenesis to influencing the 
tumor microenvironment and treatment outcomes (9). A study on the 
gut microbiota of NSCLC patients undergoing anti-PD-1 therapy 
revealed significant differences in bacterial composition between 
responders and non-responders (10). Considering the significant 
correlation between gut microbiota and pulmonary pathology, 
researchers have introduced the “gut-lung axis” concept (11), 
underscoring the bidirectional communication between gut microbiota 
and lung immune cell recruitment, contributing to tumorigenesis and 
tumor progression (12). One of the crucial mechanisms is that different 
metabolites stimulate or inhibit the immune system to release various 
cytokines (13).

The human gut microbiota is influenced by diet, environmental 
factors, and lifestyle, affecting tumorigenesis. For example, a high-fat 
diet (HFD) can promote the expansion and colonization of potentially 
pathogenic bacteria, like Fusobacteria, reduce the intake of 
fermentable carbohydrates and the production of butyrate (14), shift 
colonocyte metabolism, increase host-derived reactive oxygen and 
nitrogen species (RONS), and ultimately lead to DNA damage and 
tumorigenesis (15). Exposure of A/J mice to a mixture of cigarette 
smoke carcinogens NNK and BaP triggered lung carcinogenesis, 
increased levels of Actinobacteria, Bifidobacterium, and Intestinimonas, 

and decreased levels of Alistipes, Odoribacter, and Acetatifactor (16). 
Despite advances in techniques like 16S rRNA sequencing and the 
continuous updating of data, the correlation between specific gut 
microbiota and lung cancer risk remains elusive due to multiple 
influencing factors.

The emergence of metabolomics has changed our understanding 
of disease mechanisms (17). By enabling metabolic reprogramming, 
tumor cells meet their unique bioenergetic and biosynthetic needs, 
resulting in alterations in the levels and types of metabolites, such as 
glucose, amino acids, and fatty acids (18, 19). Short-chain fatty acids 
(SCFAs), tryptophan metabolites, polyphenolic metabolites, and 
conjugated linoleic acids are known to play a protective role against 
CRC development (20, 21). In melanoma, SCFAs and inosine are 
strongly associated with disease stage and treatment efficacy (22, 23). 
Despite these findings, the crucial impact of microbial metabolites on 
lung cancer development has received only scarce attention. Existing 
research has indicated a significant synergistic relationship between the 
gut microbiome and the serum metabolic profile (24). In vivo studies 
on lung cancer by Hagihara et al. (25) have documented significant 
shifts in the gut microbiome and identified an inverse relationship 
between the lung and gut microbiomes in activating certain metabolic 
pathways, notably those related to retinol, fatty acids, and linoleic acid. 
In comparison to healthy individuals, lung cancer patients display 
distinct gut microbiome and serum metabolome profiles, with higher 
levels of certain glycerophospholipids and hypoxanthine in the serum 
(26), pointing to the possibility that metabolites are utilizable as 
biomarkers for lung cancer. But how do they participate in the 
regulation of the lungs, affect the development of lung cancer? The 
relevant mechanism of action remains to be systematically elucidated.

Unfortunately, the causal link between metabolites and LC remains 
elusive, clouded by observational study limitations like lifestyle changes 
post-diagnosis, medication effects, and tumor-induced metabolic 
changes. Ethical issues, observation periods, high financial costs, and 
other constraints further complicate the execution of Randomized 
Controlled Trials (RCTs). Additionally, the variability introduced by 
non-standardized patient cohorts and methodologies exacerbates the 
challenge of pinpointing risk-increasing metabolites. Mendelian 
randomization (MR), which utilizes genetic variants as instrumental 
variables (IVs), is a widely used technique in genetic epidemiology 
designed to minimize the impact of potential confounding factors (27, 
28). By avoiding reverse causation bias, it supports stronger causal 
conclusions between exposures and clinical outcomes. Recent 
advancements in MR research methods have reinforced its effectiveness 
as a prime approach for gene-level investigations, offering a clear 
understanding of the links between exposures and outcomes. The role 
of some microorganisms in cancer development exert biological effects 
through various metabolic pathways. Hence, the relationship of gut 
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miceobiota and metabolite needs to be  explored (29). Mediation 
analysis can clearly decompose the total effect into direct and indirect 
effects, quantifying the correlation between GM and metabolites, 
thereby providing a deeper understanding of how gut microbiota 
influences lung cancer through metabolites. Therefore, we conducted 
a bidirectional MR study and two-step mediation analyses using 
summary statistics from the largest and most up-to-date genome-wide 
association studies (GWAS) of the GM, blood metabolites, and LC to 
dissect the associations between them.

2 Methods

2.1 Study design

Summary statistics on the GM, blood metabolite and LC were 
obtained from the respective consortia for the study design. We then 
explored the bidirectional two-sample MR analysis to probe the 
genetic causality and correlation between gut microbiota abundance 
and lung cancer (Figure 1). Additionally, we employed Multivariable 
Mendelian Randomization (MVMR) to adjust for potential 
confounders. And the approach we adopted for this MR analysis was 
grounded on 3 fundamental assumptions (Figure  1). Two-step 
Mediation analysis (30) was further conducted to assess the complex 
interactions between the GM, metabolites, and LC, pinpointing 
potential pathways through which gut microbiota and metabolites 
influence LC risk. Following this, linkage disequilibrium score 
regression (LDSC) was used to discern genetic associations and 
estimate sample overlap (31). Furthermore, instrumental variables 
(IVs) of GM with a direct causal association with LC were separately 

extracted for single nucleotide polymorphism (SNP) annotation. 
Finally, Significant blood metabolites related to lung cancer risk were 
also subject to metabolic pathway enrichment analysis. This study 
adhered to the reporting guidelines of the STROBE-MR 
(Supplementary material). Figure 1 illustrates the schematic diagram 
of the study design.

2.2 GWAS data for gut microbiota, blood 
metabolites and LC

The prospective cohort study LifeLines recruited 7,738 
participants from the Dutch Microbiome Project (32). The summary 
statistics offered the most detailed insight into the genetic impact on 
human gut microbiota and bacterial pathways so far, identifying a 
comprehensive list of 207 taxonomies (comprising 5 phyla, 10 classes, 
13 orders, 26 families, 48 genera, and 105 species) along with 205 gut 
microbial metabolic pathways. To ensure data quality, the majority of 
cohorts employed similar methods for interpolation and subsequent 
filtering. The full GWAS summary statistical data are available for 
download at NHGRI-EBI GWAS Catalog.1 Genetic data for blood 
metabolites also were accessed from the GWAS Catalog (see Footnote 
1). Notably, this genetic data was conducted by Chen et al. (33), which 
was the most comprehensive analysis of genetic loci for blood 
metabolites thus far, identifying associations with 1,091 metabolites 
and 309 metabolite ratios through Genome-wide association scans 

1 https://www.ebi.ac.uk/gwas/

FIGURE 1

Assumptions and design of the bidirectional and mediation Mendelian randomization (MR) analyses. Firstly, a two-sample bidirectional MR was 
performed to investigate the causal relationships between gut microbiota and lung cancer. Then, we conducted a two-step mediation analysis to 
detect potential mediating metabolites (Step 1, the effect of metabolites on lung cancer; Step 2, the effect of significant gut microbiota on significant 
metabolites). The images for gut microbiota, blood metabolites, and lung cancer were adapted from BioRender.com.
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with high-throughput metabolic profiling. The study encompassed a 
cohort of 8,299 unrelated European subjects from The Canadian 
Longitudinal Study of Aging (CLSA), excluding 203 European 
individuals identified as having first- and second-degree relatives. 
Among the 1,091 metabolites, 241 were defined as unknown due to as 
yet poorly defined chemical properties. Another 850 metabolites were 
chemically authenticated and allocated to eight super pathways, 
including lipids, amino acids, xenobiotics, nucleotides, cofactors and 
vitamins, carbohydrates, peptides, and energy. The analysis not only 
expanded the spectrum of known metabolites but also provided an 
in-depth exploration of metabolite ratios, which have been 
scarcely studied.

To bolster statistical power, validate research findings, and foster 
the exploration of potential new associations, summary-level GWAS 
data for the association analysis between the gut microbiota, 
metabolite and LC were obtained from two large GWAS meta-
analyses. One GWAS encompassed 29,863 cases and 55,586 controls 
of European descent from the Transdisciplinary Research in Cancer 
of Lung team (TRICL) based on OncoArray and other Illumina 
genome-wide arrays. TRICL is a member of an organization focused 
on Genetic Associations and Mechanisms in Oncology (GAME-ON 
consortium). The data was downloaded from GWAS Catalog (see 
Footnote 1) (34). The other was a primary meta-analysis of the Lung 
Cancer Cohort Consortium (LC3), International Agency for Research 
on Cancer (IARC), MD Anderson Cancer Center (MDACC), St. 
Luke’s Radiation Research Institute (SLRI), The Institute of Cancer 
Research (ICR), Harvard, National Cancer Institute (NCI), Germany 
and deCODE, which encompassed 85,716 individuals of European 
descent (29,266 patients and 56,450 controls) (35). Characteristics of 
corresponding GWAS data sources are described in Table 1.

This study utilized data that is accessible to the public. Each study 
involved in the GWAS was approved by the appropriate Institutional 
Review Board, and consent was obtained from the participants or 
their legal representatives, guardians, or proxies.

2.3 Instrumental variable selection

The criteria for selecting IVs were determined through a 
methodical process: (1) Threshold Adjustment: Guided by research 
(36, 37), we  adjusted the threshold to p < 1 × 10−5 for locus-wide 
significance; (2) Performing a linkage disequilibrium (LD) analysis 
with an r2 < 0.001 and a clumping window of 10,000 kb; (3) Excluding 

palindromic sequences and SNPs with allelic discrepancies between 
samples; (4) Removing SNPs with an F value <10 to reduce bias, using 
R2 and F statistics to assess instrument quality; (5) Identified LC’s 
main risk factors—smoking, alcohol use, and air pollution—through 
literature review (4, 38), we then used the PhenoScanner database (39) 
to remove confounders. This culminated in an MR analysis of gut 
microbiota and metabolites associated with at least two SNPs. Given 
the evidence from previous studies highlighting the adverse effects of 
unhealthy lifestyles, such as smoking and drinking, along with air 
pollution on the respiratory system, we conducted an MVMR analysis 
(40) to adjust for genetic liability to the aforementioned risk factors, 
using the same IV screening procedures and criteria as 
mentioned above.

2.4 Statistical and sensitivity analysis

To explore the link between GM, metabolites, and LC, 
we  employed five methods: inverse variance weighted (IVW), 
MR-Egger, Weighted Median (WM), Simple Model, and Weighted 
Model. IVW combines Wald estimates across loci for multi-SNP 
analysis, assuming no horizontal pleiotropy (41). MR-Egger addresses 
pleiotropy under the InSIDE assumption, correcting biases via 
weighted regression (42). The WM offers reliable causal effect 
estimates, especially when valid IVs contribute over 50% of the weight 
(43), by prioritizing larger effect sizes for consistency even with less 
valid SNPs. The Simple Model posits a direct causal link between 
genetic variants and outcomes (44), minimizing biases from complex 
MR methods. IVW is the primary method, with the rest providing 
supportive results. Consistency across methods suggests reliability. 
We applied an FDR correction for multiple comparisons to reduce 
false positives, indicating that non-significant post-correction results 
may still suggest a potential causal link to lung cancer.

Sensitivity analysis is vital for addressing horizontal pleiotropy 
and heterogeneity, which can affect MR estimates significantly. 
Horizontal pleiotropy occurs when IVs influence the outcome 
through unrelated pathways. We employed a quartet of methods to 
identify and adjust for heterogeneity and pleiotropy: MR-Egger 
intercept, Radial MR, MR-PRESSO, and the Cochran Q test (45). 
MR-Egger intercept identifies directional pleiotropy and biases from 
invalid IVs. Radial MR spots outliers, allowing for reanalysis without 
them. MR-PRESSO assesses for heterogeneous SNPs, while Cochran 
Q test, with a significance threshold of p < 0.05 (46), evaluates result 

TABLE 1 The data source of exposure, mediator and outcome.

Traits Sample 
size

Consortium Ancestry Year Download 
URL

Accession 
number

Exposure Human Gut 

microbiota

7,738 doi: 10.1038/s41588-

021-00992-y

European 2022 https://www.ebi.ac.

uk/gwas/

GCST90027446 to 

GCST90027857

Mediator Blood 

metabolites

8,299 doi: 10.1038/s41588-

022-01270-1

European 2023 https://www.ebi.ac.

uk/gwas/

GCST90200453 to 

GCST90200711

Outcome Lung cancer 85,449 TRICL European NA https://www.ebi.ac.

uk/gwas/

ieu-a-987

Lung cancer 85,716 doi: 10.1038/ng.3892 European 2017 https://www.ebi.ac.

uk/gwas/

ebi-a-GCST004748

Notations: TRICL, Transdisciplinary Research in Cancer of Lung team.
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heterogeneity. Additionally, a leave-one-out sensitivity test determined 
the influence of each IV on the causal estimation. In summary, our 
detailed analysis of GM and blood metabolites’ potential causal links 
to LC followed several key criteria: (1) Primary analysis significance 
(IVW p < 0.05 post-FDR correction); (2) Consistent direction and 
magnitude across five MR methods; (3) No heterogeneity or horizontal 
pleiotropy in MR findings; (4) Little influence of any single SNP on 
MR estimates. Additionally, we calculated the statistical power of our 
estimates using the results_binary function, incorporating Sample 
Size, Significance Level, Proportion of Variance Explained, Case–
Control Ratio, and Odds Ratio (47).

2.5 Reverse Mendelian randomization 
analysis

To further assess the causal relationship between gut microbiota 
and lung cancer, we conducted reverse MR analysis considering LC as 
the exposure and GM or metabolite as the outcome, using the same 
methods and settings as the forward analysis.

2.6 Evaluation of genetic correlation

In MR studies, causal interpretations can be skewed by genetic 
links between the studied exposure and outcome. Although 
we excluded SNPs with direct lung cancer associations from our IVs 
selection, indirect SNP associations could still influence LC’s genetic 
structure. To confirm that observed causal effects were not muddled 
by genetic overlap between exposure and lung cancer, we applied 
LDSC regression. The threshold for genetic correlation (rg) was set at 
0.05, and Genetic correlation is considered significant if the p-value is 
less than 0.05; otherwise, it is not significant. This method helps 
accurately assess genetic correlations and sample overlap, essential for 
verifying that our findings on gut microbiota, metabolites, and lung 
cancer stem from genuine causal connections, free from confounding 
by genetic coheritability.

2.7 Mediation analysis

Given that dysbiosis of the GM can promote the onset and 
progression of cancer by producing harmful metabolites (20, 48), 
we adopted two-step Mendelian randomization to investigate whether 
blood metabolites play a mediating role between the GM and LC (49). 
The GWAS data of blood metabolites are available in large-scale 
consortia or cohorts with no sample overlap with the GWASs of 
exposures and outcomes. Four inclusion criteria were established for 
each candidate mediator. First, the mediator should be  causally 
associated with LC. Second, the mediator should have a direct causal 
effect on LC independently of GM. Third, GM should be causally 
associated with the mediator, but not vice versa. Fourth, the 
association of GM with the mediator and the association of the 
mediator with LC should be in the same direction (50). We assessed 
the causal impact of GM on potential mediators (β1) and the effect of 
these mediators on LC (β2), with the total effect (β3) representing the 
comprehensive impact of GM on LC. The magnitude of the mediated 
effect is calculated as the product of indirect effects (β1*β2), and its 

proportion is derived by dividing this product by the total effect, 
which quantifies the relative contribution or degree of influence of the 
gut microbiota on lung cancer through the specific mediator. We also 
applied the Delta method to calculate the indirect effect’s standard 
error (SE) (51).

2.8 SNP annotation

To annotate SNPs, this study employed the advanced 
bioinformatics tool g: SNPense,2 specifically designed to map human 
SNP rs-codes to corresponding gene names. This tool not only 
provides chromosomal coordinates of SNPs but also predicts potential 
variant effects. Notably, g: SNPense facilitates mapping only for 
variants overlapping with at least one protein-coding Ensembl gene, 
ensuring the accuracy and relevance of the annotation. All 
foundational data were sourced from the Ensembl genome database 
and WormBase ParaSite database, providing a robust and 
comprehensive genomic background for our SNP annotations.

2.9 Metabolic pathway analysis

To explore how blood metabolites might influence LC, 
we conducted metabolic pathway analyses with MetaboAnalyst 6.0 
(52, 53),3 aiming to uncover LC pathogenesis. Functional enrichment 
and pathway analysis modules helped identify relevant metabolite 
groups or pathways. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and the Rapid Metabolite and Pathway Mapping (RaMP) 
database supported our research. We  set the pathway analysis 
significance threshold at 0.10.

All statistical analyses were conducted using the R software, 
version 4.3.1. For our Mendelian randomization approach, we utilized 
the packages “TwoSampleMR,” “MR-PRESSO,” and “PhenoScanner” 
which are available in R (54). Visualization of results was performed 
using the packages “ggplot2” and “ComplexHeatmap” also 
available in R.

3 Result

3.1 Two-sample Mendelian randomization 
analysis between microbiota and LC

To start with, we  examined the causal relationship between 
genetically determined gut microbiota and the risk of lung cancer. After 
rigorous quality control of IVs, we identified 3,760 significant SNPs 
closely associated with gut microbiota. Our MR analysis then included 
200 gut microbiota. The characteristics of IVs for microbial taxa and 
LC are detailed in Supplementary Table S1. The F statistics for all SNPs 
related to GM exceeded 10, demonstrating the strong power of our IVs. 
After excluding confounding factors (Supplementary Table S12), 
we investigated the associations between specific gut microbiota taxa 

2 https://biit.cs.ut.ee/gprofiler/snpense

3 https://www.metaboanalyst.ca/
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and LC utilizing MR. Using the IVW method, we identified 17 causal 
relationships between GM and LC, as shown in Table 2, Figure 2A, and 
Supplementary Table S3. Among these 17 microbial communities, 
we found suggestive evidence for a causal association between genetically 
predicted increases in Bacteroides_faecis (p = 0.010), Dorea (p = 0.029), 
Holdemania (p = 0.024), Bacteroidaceae_clarus (p = 1.80E-4), 
Adlercreutzia/Adlercreutzia_equolifaciens (p = 0.017), Bacteroides_
xylanisolvens (p = 0.003), Negativicutes/Negativicutes_Selenomonadales 
(p = 0.025) and Lachnospiraceae (p = 0.025) and higher risk of LC, while 

Eubacteriaceae/Eubacterium (p = 7.43E-06), Alistipes_putredinis 
(p = 0.042), Ruminococcus_lactaris (p = 0.036), Veillonellaceae  
(p = 0.009), Eggerthella (p = 0.022) and Roseburia (p = 0.013) were 
deemed negatively correlated with LC risk. After FDR correction, 
Bacteroides_clarus (OR = 1.07, 95% CI: 1.03–1.11, p = 0.012) remained 
significant. Eubacteriaceae/Eubacterium illustrated a protective effect 
on LC (OR = 0.82, 95% CI: 0.75–0.89, p = 0.001). Certain microbiota 
traits like Enterobacteriales, Adlercreutzia and Negativicutes shared 
identical IVs and were categorized similarly. Bacteroides_clarus 

TABLE 2 Mendelian randomization analyses of the causal effects between gut microbiota and lung cancer.

Exposure Method nsnp Odds 
ratio 

(95%CI)

P value FDR Q-statistics Ph Egger 
intercept

Pintercept

Species 

Bacteroides_clarus

IVW 8 1.07 (1.03–

1.11)

0.0002 0.0121 7.6318 0.3662 −0.0025 0.9051

Family 

Eubacteriaceae

IVW 6 0.82 (0.75–

0.89)

0.0000 0.0015 2.9500 0.7077 −0.0116 0.5736

Genus 

Eubacterium

IVW 6 0.82 (0.75–

0.89)

0.0000 0.0015 2.9412 0.7091 −0.0115 0.5769

Degradation of 

acetylene

IVW 5 1.22 (1.10–

1.35)

0.0002 0.0121 8.4969 0.0750 −0.0222 0.7943

Guanosine 

ribonucleotides de 

novo biosynthesis

IVW 14 0.90 (0.85–

0.96)

0.0006 0.0263 21.1523 0.0700 −0.0095 0.5419

Engineered 

Biosynthesis of 

Taxadiene

IVW 10 0.93 (0.89–

0.97)

0.0003 0.0136 16.8759 0.0507 0.0138 0.5368

Degradation of 

fucose

IVW 9 1.15 (1.07–

1.24)

0.0003 0.0136 5.3251 0.7223 0.0127 0.3908

SNP, single nucleotide polymorphism; CI, confidence interval; OR, odds ratio; Ph, p-value for heterogeneity; Pintercept, p-value for the intercept of the MR-Egger regression.

FIGURE 2

Circular heat map of lung cancer with an MR IVW p less than 0.05. (A) is the gut microbiota abundance; (B) is the blood metabolites.
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persisted as positive (p = 0.000703) even after adjusting for relevant 
factors, including smoking, alcohol intake and air pollution, through 
MVMR analysis (Supplementary Table S4). The MR-Egger, Weighted 
model, Weighted median and Simple model yielded causal effect 
estimates with magnitudes and directions comparable to those 
obtained from the IVW method (see Supplementary Table S3). The 
variability in LC explained by these taxa, as represented by R2 values, 
ranged from 1.58 to 3.54%, while the estimated effect sizes spanned 
from 57.88 to 99.96%. Importantly, our findings confirmed no 
heterogeneity or pleiotropy, with sensitivity analyses like MR Egger 
reinforcing the main results’ consistency. MR PRESSO further validated 
the absence of pleiotropy, as detailed in Table 2, Supplementary Table S7, 
and Supplementary Figures S1, S2.

3.2 Microbial pathways and lung cancer

A comprehensive set of 205 pathways was examined to 
determine the key targets. When solely considering the p value of 
the IVW, 30 functional pathways emerged as potential initial 
findings (see Supplementary Table S3). After FDR corrections, 
only the degradation of acetylene (OR = 1.22, 95% CI: 1.10–1.35, 
p = 0.012) and fucose (OR = 1.15, 95% CI: 1.07–1.24, p = 0.013) 
showed a positive correlation with LC incidence. In contrast, 
Engineered Biosynthesis of Taxadiene (OR = 0.93, 95% CI: 0.89–
0.97, p = 0.013) and Synthesis of Guanosine Ribonucleotides 
(OR = 0.90, 95% CI: 0.85–0.96, p = 0.026) were negatively 
correlated with LC occurrence after stringent corrections 
(Figure  3A and Table  2). Among these, the degradation of 
acetylene and Synthesis of Guanosine Ribonucleotides remained 
significant (p = 0.0306, p = 0.0176, respectively) after MVMR 
validation (see Supplementary Table S4). We also performed a 
reverse MR analysis to explore if LC causally affects significant 
bacteria, following the same MR process. No significant results 
were found (Supplementary Table S10).

3.3 Mediator screening

In our study aimed at identifying potential mediators, 
we initially selected 1,400 metabolites to investigate their effects on 
LC. After performing initial filtering and completely excluding 
confounder-related SNPs, we identified a total of 25,879 significant 
SNPs. The detailed characteristics of IVs of metabolite were 
summarized in Supplementary Table S2. In the IVW analysis, 
we identified correlations between the risk of LC and 13 metabolites 
after rigorous FDR correction, including 10 with known chemical 
identities and 3 with unknown chemical identities, which were 
shown in Figures 2B, 3B. The 13 known metabolites were chemically 
assigned to the amino acid, carbohydrate, dipeptide, lipid, 
nucleotide and xenobiotics. They were as follows: Propionylcarnitine 
(OR 0.93, 95% CI: 0.90–0.97, p = 0.00092), 2-hydroxy-3-
methylvalerate (OR 1.09, 95% CI: 1.04–1.14, p = 0.00034), 
1-palmitoyl-2-stearoyl-gpc (16:0/18:0) (OR 1.08, 95% CI: 1.04–1.13, 
p = 4.69E-05), N-palmitoyl-sphingadienine (d18:2/16:0) (OR 1.10, 
95% CI: 1.05–1.16, p = 0.00026), 1-stearoyl-2-arachidonoyl-gpc 
(18:0/20:4) (OR 1.06, 95% CI: 1.03–1.09, p = 0.00013), 3-(3-amino-
3-carboxypropyl)uridine (OR 0.88, 95% CI: 0.83–0.94, p = 0.00022), 
5alpha-androstan-3beta,17alpha-diol disulfate (OR 1.08, 95% CI: 
1.03–1.12, p = 0.00064), Fructosyllysine (OR 1.09, 95% CI: 1.04–
1.14, p = 0.00032), Gamma-glutamylcitrulline (OR 0.91, 95% CI: 
0.87–0.96, p = 0.00010), Cystine (OR 0.88, 95% CI: 0.82–0.93, 
p = 2.63E-05), X-14056 (OR 1.12, 95% CI: 1.05–1.18, p = 0.000189), 
X-22509 (OR 0.89, 95% CI: 0.84–0.94, p = 2.73E-05) and X-24757 
(OR 1.09, 95% CI: 1.04–1.14, p = 0.00036). Additionally, 
we observed correlations between the risk of LC incidence and the 
ratios of 5 pairs of metabolites after strict FDR corrrection 
(Figures 2B, 3B), and they are Adenosine 5′-diphosphate (ADP) to 
Adenosine 5′-monophosphate (AMP) ratio (OR 1.08, 95% CI: 1.04–
1.12, p = 4.14E-05), AMP to arginine ratio (OR 0.88, 95% CI: 0.83–
0.94, p = 0.00012), phosphate to 2′-deoxyuridine ratio (OR 0.93, 
95% CI: 0.89–0.97, p = 0.00024), Oleoyl-linoleoyl-glycerol (OLG) 
(18:1/18:2) to linoleoyl-arachidonoyl-glycerol (LAG) (18:2/20:4) [1] 

FIGURE 3

Mendelian randomization results of causal effects on lung cancer risk (p  <  0.05). (A) Gut microbiome; (B) metabolites. ADP, Adenosine 5′-diphosphate; 
AMP, Adenosine 5′-monophosphate; OLG, Oleoyl-linoleoyl-glycerol; LAG, linoleoyl-arachidonoyl-glycerol.
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ratio (OR 0.94 95% CI: 0.90–0.97, p = 0.00074) and OLG (18:1/18:2) 
to LAG (18:2/20:4) [2] ratio (OR 1.09, 95% CI: 0.92–0.98, 
p = 0.00070). In summary, IVW-derived estimates were significant 
(p < 0.05), with the direction and magnitude of IVW, MR-Egger, 
WM, and both weighted and simple models exhibiting consistency 
(see Supplementary Table S5 and Supplementary Figure S2). After 
the exclusion of outliers, the MR-PRESSO results further negated 
the presence of heterogeneous SNPs (Supplementary Table S7). The 
Cochran Q test (p > 0.05) and MR-Egger intercept test (p > 0.05) 
corroborated the absence of heterogeneity and pleiotropy 
(Supplementary Table S7). LOO analysis substantiated that no 
single SNP significantly contributed to bias in MR estimation 
(Supplementary Figure S4). The statistical power for all estimates 
exceeded 99.00% (Supplementary Table S2). The above results were 
obtained after excluding confounding factors 
(Supplementary Table S12). We  also conducted a reverse MR 
analysis to determine if LC has a causal impact on the significant 
metabolites identified. Using the same MR methodology, no 
significant associations were found, as detailed in 
Supplementary Table S11. Therefore, these blood metabolites and 
metabolite ratios are identified as promising candidates for 
further investigation.

Following our examination of the influence of metabolites on 
LC, we  selected strictly screened microbial communities and 
microbial pathways and further explored the potential mediation 
effects of GM exposures on these significant mediators (refer to 
Figure 4). Our analysis yielded that the bacterial pathway involving 
the de novo biosynthesis of guanosine ribonucleotides was found to 
influence LC through its impact on Fructosyllysine, with indirect 
effect sizes of −0.012 (p = 0.0367). The detailed MR results can 
be seen in Supplementary Table S6. After identifying significant 
mediators influencing lung cancer and the subsequent effects of 
exposure on mediation, we  assessed the mediation effect 
proportions. Specifically, as Figure 4 shows, the de novo biosynthesis 
of guanosine ribonucleotides demonstrated an 11.38% mediation 
effect on LC outcomes, mediated through Fructosyllysine. These 
results highlight the complex relationships between GM exposures 
and specific blood metabolites in influencing LC, providing a 
deeper understanding of the pathways involved. No significant 
heterogeneity or pleiotropy was observed in the analysis (see Table 3 
and Supplementary Table S7).

3.4 Evaluation of genetic correlation and 
directionality

LDSC analysis was conducted on the GM and metabolites 
identified as having significant causal relationships through MR 
methods. The results of the LDSC analysis unveiled the genetic 
correlation (rg) between various GM, metabolites, and LC 
(Supplementary Table S7), with Bacteroides_clarus showing a 
significant correlation with LC (Rg = −0.467, Se = 0.201, p = 0.020). 
In contrast, other gut microbiota did not exhibit significant 
correlations. Furthermore, LDSC-based estimates indicated a 
minimal genetic correlation between LC and the following 
metabolites: Propionylcarnitine (Rg = −0.082, Se = 0.054, p = 0.127), 
3-(3-amino-3-carboxypropyl) uridine (Rg = 0.031, Se = 0.068, 
p = 0.652), 2-hydroxy-3-methylvalerate (Rg = 0.048, Se = 0.060, 
p = 0.419), among others. This implies that MR estimates are 
unaffected by shared genetic components. Additionally, the 
SNP-heritability of metabolites was determined based on LDSC. The 
SNP-heritability (proportion of variance explained by genome-wide 
SNPs) of these metabolites ranged from 0.0094 to 0.1681 
(Supplementary Table S8). The application of the Steiger test further 
confirmed that the observed causal relationships between GM, 
genetically proxied metabolites, and LC were not influenced by 
reverse causation, as detailed in Supplementary Table S9.

3.5 SNP annotation

We annotated the SNPs at a locus-wide significance level of the 
three intestinal flora and identified 10 host genes that may be related 
to pathogenic intestinal microflora in LC patients (Table 4). In this 
study, the SNPs corresponding to the family Eubacteriaceae and the 
genus Eubacterium were identical, leading to the annotation of the 
same genes for both taxonomic categories.

3.6 Metabolic pathway analysis

Based on the analysis of eight known metabolites, our study 
identified five metabolic pathways potentially implicated in the 
pathogenesis of LC, as detailed in Table 5 and Figure 5. These pathways 

FIGURE 4

Mediating effects of gut microbiota on lung cancer. β1 signifies the causal influence of gut microbiota on potential mediators. β2 depicts the causal 
effect of these metabolite mediators on lung cancer. β3 represents the cumulative causal impact of gut microbiota on lung cancer.
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TABLE 3 Mendelian randomization analyses of the causal effects between blood metabolites and lung cancer.

Exposure Method nsnp OR (95%CI) P value FDR Q-statistics Ph Egger intercept Pintercept

Propionylcarnitine (c3) IVW 22 0.90 (0.85–0.96) 0.0009 0.0480 23.6455 0.3105 0.0054 0.3500

3-(3-amino-3-carboxypropyl)

uridine

IVW 15 0.91 (0.82–1.00) 0.0002 0.0239 19.9214 0.1326 −0.0068 0.5177

2-hydroxy-3-methylvalerate IVW 27 1.06 (0.99–1.14) 0.0003 0.0279 29.7113 0.2797 −0.0004 0.9521

5alpha-androstan-

3beta,17alpha-diol disulfate

IVW 23 1.12 (1.05–1.19) 0.0006 0.0421 27.4831 0.1934 −0.0131 0.0898

Fructosyllysine IVW 25 1.11 (1.03–1.19) 0.0003 0.0279 36.1424 0.0532 −0.0016 0.8253

1-palmitoyl-2-stearoyl-gpc 

(16:0/18:0)

IVW 26 1.10 (1.04–1.17) 4.69E-05 0.0131 28.2053 0.2985 −0.0008 0.8978

N-palmitoyl-sphingadienine 

(d18:2/16:0)

IVW 19 1.09 (1.01–1.18) 0.0003 0.0245 15.3049 0.6409 −0.0056 0.4695

Gamma-glutamylcitrulline IVW 24 0.91 (0.85–0.97) 0.0001 0.0204 28.9856 0.1808 0.0017 0.8899

Cystine IVW 16 0.90 (0.82–0.98) 2.63E-05 0.0127 19.7558 0.1815 −0.0042 0.7038

X-14056 IVW 18 1.10 (1.01–1.21) 0.0002 0.0227 24.0973 0.1168 0.0071 0.3628

X-22509 IVW 18 0.91 (0.85–0.97) 2.73E-05 0.0127 27.8395 0.0468 0.0044 0.6446

X-24757 IVW 21 1.10 (1.03–1.18) 0.0004 0.0279 24.9050 0.2051 −0.0039 0.6242

1-stearoyl-2-arachidonoyl-gpc 

(18:0/20:4)

IVW 32 1.06 (1.03–1.09) 0.0001 0.0204 47.5948 0.0288 −0.0043 0.2430

ADP to AMP ratio IVW 24 1.06 (1.00–1.11) 4.14E-05 0.0131 14.6195 0.9078 0.0026 0.7018

Phosphate to 2′-deoxyuridine 

ratio

IVW 26 0.90 (0.85–0.96) 0.0002 0.0240 36.0953 0.0702 0.0059 0.4521

OLG (18:1 to 18:2) [2] to LAG 

(18:2 to 20:4) [1] ratio

IVW 23 0.93 (0.90–0.97) 0.0007 0.0421 37.8373 0.0191 −0.0004 0.9487

OLG (18:1 to 18:2) [2] to LAG 

(18:2 to 20:4) [2] ratio

IVW 25 0.93 (0.90–0.96) 0.0007 0.0421 33.3778 0.0963 0.0010 0.8360

AMP to arginine ratio IVW 16 0.89 (0.82–0.98) 0.0001 0.0204 15.8477 0.3922 −0.0121 0.1894

SNP, single nucleotide polymorphism; CI, confidence interval; OR, odds ratio; Ph, p-value for heterogeneity; Pintercept, p-value for the intercept of the MR-Egger regression; ADP, Adenosine 5′-diphosphate; AMP, Adenosine 5′-monophosphate; OLG, Oleoyl-linoleoyl-
glycerol; LAG, linoleoyl-arachidonoyl-glycerol.
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TABLE 5 Significant metabolic pathways involved in lung cancer.

Metabolite 
pathways

Total Expected Hits p value

Leucine, isoleucine 

and valine 

metabolism

67 0.0783 2 0.00234

Glutathione 

metabolism

17 0.0199 1 0.01970

Amino acid 

metabolism in 

triple-negative 

breast cancer cells

19 0.0222 1 0.02200

Cysteine 

Metabolism

21 0.0245 1 0.024300

Glutamate 

Metabolism

39 0.0456 1 0.044700

include the metabolism of leucine, isoleucine, and valine; glutathione 
metabolism; amino acid metabolism in triple-negative breast cancer 
cells; cysteine metabolism and glutamate metabolism. Importantly, 
glutathione metabolism and glutamate metabolism appear to 
be closely related to all other pathways.

4 Discussion

Microbiome and metabolomics studies have significantly 
advanced our understanding of lung cancer’s pathogenic mechanisms 
(55, 56). The gut microbiota’s impact on lung cancer risk through 
metabolite interactions highlight the lung-gut axis as a critical area of 
research (57, 58). Through this comprehensive large-scale MR 
analysis, we have, for the first time, established a causal and mediating 
relationship between gut microbiota, metabolites, and lung cancer, 

addressing the gaps left by prior research constrained by confounders 
and reverse causation.

Our findings indicate that the s_Bacteroides clarus is a risk factor 
for LC, whereas f_Eubacteriaceae serves as a protective element 
against this disease. Significantly, Bacteroides clarus, a species within 
the g_Bacteroides, is a Gram-negative anaerobic bacterium that can 
decompose complex polysaccharides in the diet, and regulate the host 
immune system (59). Bacteroides has been proven to be a significant 
microbial biomarker for the non-invasive screening of colorectal 
neoplasms in asymptomatic individuals (60). And a notable 
augmentation in Bacteroides abundance was observed in the follow-up 
samples relative to the baseline samples among subjects who 
experienced a recurrence of adenomas (61). Moreover, Bacteroides 
clarus can coexist with other bacteria such as Fusobacterium nucleatum 
and Peptostreptococcus anaerobius in the intestinal epithelium, playing 
an important role in carcinogenesis by inducing tumor proliferation 
(62), enhancing inflammation (63), triggering DNA damage (64) and 
provide protection to tumor from immune attack (65). Indeed, the 
equilibrium between Bacteroidetes and Firmicutes seems to 
be  important in the prevalence of CRC (66). The balance and 
composition of Eubacteriaceae in the gut microbiome are considered 
indicators of the host’s health status, with deviations linked to a range 
of conditions such as inflammatory bowel disease, obesity, and cancer. 
A research focusing on cholangiocarcinoma in mice involved high-
throughput sequencing of prokaryotic 16S ribosomal DNA (67) 
revealed a decrease in the abundance of Eubacteriaceae. In contrast, 
the observed increase in Eubacteriaceae abundance in post-liver 
transplantation patients (68) underscores the microbiome’s recovery 
and the positive impact of the transplant on the patient’s gut flora. 
These contrasting situations emphasize the presence and balance of 
Eubacteriaceae are crucial for health. It is important to note that 
despite the slightly different results after MVMR adjustment, which 
may be due to reduced statistical power or weakened instrumental 
variable effects (69), the potential protective role of Eubacteriaceae 
cannot be denied.

Beyond the GM, our findings demonstrate the complex 
interaction between bacterial pathways and LC risk. Recent research 

TABLE 4 SNP annotation of intestinal flora IVs.

id chr Start End Strand Gene_ids Gene_names

Genus Eubacterium rs1942648 7 15,736,946 15,736,946 + ENSG00000286376 ENSG00000286376

rs2252668 18 36,269,080 36,269,080 + ENSG00000075643 MOCOS

rs3898456 8 138,163,106 138,163,106 + ENSG00000147724 FAM135B

rs4113953 −1 −1

rs6021384 20 51,689,988 51,689,988 + ENSG00000054793 ATP9A

rs9600403 −1 −1

Species Bacteroides_

clarus

rs1157623 −1 −1

rs11676681 2 33,150,881 33,150,881 + ENSG00000049323 LTBP1

rs1470205 3 77,267,537 77,267,537 + ENSG00000185008 ROBO2

rs1667938 −1 −1

rs450741 22 21,049,682 21,049,682 + ENSG00000187905 LRRC74B

rs4867972 5 170,505,906 170,505,906 + ENSG00000182132 KCNIP1

rs61944136 12 118,809,199 118,809,199 + ENSG00000255814 LINC02439

rs814760 1 110,438,037 110,438,037 + ENSG00000224699 LAMTOR5-AS1
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indicates that two acetylene alcohols inhibited phosphorylation of 
IGF-1Rβ as well as reduced its target signaling molecules IRS-1 and 
PDK1, allowing inhibition of pro-survival signaling and showed anti-
tumor effects (70), suggesting the gut bacterial acetylene degradation 
pathway may increase LC risks. The abundance of gut bacterial 
pathway for acetylene degradation is closely related to Proteobacteria 
and Bacteroidetes. It has been reported that α-, β-, γ-, and δ- subclasses 
of Proteobacteria all have the ability to degrade acetylene (71). Multiple 
clinical studies have indicated an increase in pathogens within 
Proteobacteria in fecal samples from lung cancer patients (72, 73). 
Understanding these dynamics is key to developing strategies that 
support microbiome health, thereby aiding in tumor treatment.

In the current work, we  finally determined that genetically 
determined high levels of Cystine, Propionylcarnitine, Gamma-
glutamylcitrulline and so on are associated with lower LC risk, while 
genetically predisposition to high levels of N-palmitoyl-
sphingadienine (d18:2/16:0), 1-stearoyl-2-arachidonoyl-gpc 
(18:0/20:4), Fructosyllysine and so on increased risk of LC. Among 
the metabolites that reduce the risk of LC, cystine stands out for its 
antioxidative role and potential in modulating cancer progression 
(74). Studies show (75) that cystine supplementation rebalances redox 
states, enhances glutathione production, and counters drug-resistant 
lung cancer cell growth by reversing P-glycoprotein upregulation. 
These findings, combined with our research, underlining the 
significance of targeting the uptake and metabolic pathways of cystine 
in cancer therapy. In the study of propionylcarnitine, the prediction 
model constructed by Zhang et  al. (76) proved that reduced 
propionylcarnitine content is significantly related to the risk of LC, 
which is consistent with our study results. Gamma-glutamylcitrulline, 
a plasma metabolite significantly correlated with glucose and lipid 
fluxes (77), has been previously associated with LC, along with 
citrulline. A study on Polish NSCLC patients found (78) that decreased 
level of citrulline is a clear marker of cancer. Further research (79) 
indicates that monitoring citrulline levels can help evaluate gut health 
and predict the efficacy of immune checkpoint inhibitors for lung 
cancer patients. Among the metabolites that contribute to the 
increased risk of LC, we focus on the key metabolites identified by the 
highest OR and the lowest p-values. Despite limited research on 

N-palmitoyl-sphingadienine (palmitoyl ceramide), evidence shows it 
promotes cell apoptosis, linking it to endothelial damage and LC risk 
(80). Ceramide was found to trigger apoptosis in lung adenocarcinoma 
cells by affecting the Txnip/Trx1 complex (81), which appears to 
contradict our results, suggesting a complex role for ceramide species. 
1-palmitoyl-2-stearoyl-gpc (16:0/18:0) and 1-stearoyl-2-
arachidonoyl-gpc (18:0/20:4), all belong to Phosphatidylcholine (PC). 
Studies have found that (82) PC isomers were associated with a shorter 
recurrence-free period and a greater likelihood of progressed T-factor 
and pleural invasion in post-surgery lung adenocarcinoma (ADC) 
patients who are smokers. Our study further refines the subclasses of 
PC, this detailed classification facilitates deeper investigation into its 
role in cancer progression.

The connection between microbial traits and plasma 
metabolic traits underscores the significant role of microbe-
metabolite interactions in the carcinogenesis process (83). 
Building on this, our MR analysis also provided genetic evidence 
for the association between GM and blood metabolites. For 
instance, fructosyllysine (FL) is not only associated with an 
increased risk of LC but was also confirmed in our study to act as 
a mediator in the pathway of de novo biosynthesis of guanosine 
ribonucleotides, through which the gut microbiota influences LC 
risk. This pathway, crucial for guanosine synthesis (84)—a key 
molecule in RNA synthesis and LC development—impacts cancer 
through the ABCG transporter, reducing the proportion of side 
population (SP) cells in cancer (85). Additionally, activation of 
guanosine leads to cell cycle arrest, apoptosis, and inhibits 
metastasis in LC mice models (86). Understanding this mechanism 
is vital for creating targeted treatments, particularly for patients 
with KRAS mutations (87). Fructosyllysine, a key Amadori 
rearrangement product (ARPs) from lysine and glucose, is 
significantly metabolized by the gut microbiota, a factor linked to 
its high detection in infant feces (88). Evidence shows ARPs, 
including FL, trigger oxidative stress and inflammation, 
promoting cancer progression (89). Research by Raupbach et al. 
(90) on FL’s effects on colon cancer cells highlights its structure-
dependent pro-inflammatory impact, underscoring the need to 
further study the gut microbiota’s role in FL metabolism.

FIGURE 5

Enriched significant metabolic pathways of lung cancer.
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A growing area of investigation in microbiome studies relevant to 
cancer focuses on whether dietary components mediate their 
beneficial health effects via the regulation of gut microbiota and 
metabolite. Bacteroides, originally studied for its role in causing 
human inflammatory diarrhoea, has emerged as a CRC-promoting 
bacterium (91). Secretion of active B. fragilis toxin can be suppressed 
by fermentable carbohydrates that are derived from plant-based diets 
and are constituents of healthy colonic mucus (92). In the diet of rural 
Africans with African Americans who consume different diets, a lower 
occurrence of Bacteroides rural Africans as compared to African 
Americans has been noticed. As rural Americans consume more diets 
based on low fiber and high fat and animal protein (93). In addition, 
supplementation of Wild melon (Cucumis melo var. agrestis) seed oil 
in the diet remarkably increased the production of fecal SCFAs and 
favorably altered the relative abundances of Eubacteriaceae at a family 
level (94).

Besides, environmental factors and lifestyle are also influential 
factors that cannot be  ignored, such as air pollution. The gut is 
exposed to particulate matter (PM) as most of the inhaled particles are 
removed from the lungs to the gastrointestinal (GI) tract via 
mucociliary clearance. This represents a concrete manifestation of the 
lung-gut axis. Air pollution, particularly benzo [a] pyrene (BaP), is 
highly carcinogenic (95). A study explored the impact of BaP oral 
exposure on the gut microbiome in C57BL/6 mice (96). In the feces, 
compared with the control group, the relative abundance of 
Bacteroides was increased. Air pollution also induces changes in lipid 
metabolism and the redox lipidome, both of which may influence 
tumor development and progression (97).

Influencing GM and metabolite levels through dietary and 
lifestyle adjustments could be  an effective prevention strategy. 
We suggest that lung cancer patients increase their intake of foods rich 
in dietary fiber, such as fruits, vegetables, and whole grains, to promote 
the growth of beneficial bacteria like the Eubacteriaceae family. These 
foods help produce protective metabolites such as SCFAs, which can 
reduce lung cancer risk (98, 99). At the same time, reducing high-
sugar diets, such as candies, chocolates, smoked foods, and instant 
foods, and using cooking methods like moist heat can reduce the 
accumulation of harmful metabolites like fructosyllysine (100). 
Avoiding smoking may prevent the increase of harmful bacteria like 
Bacteroides clarus (101, 102), thereby reducing lung cancer risk. For 
individuals at high risk of lung cancer, personalized dietary and 
lifestyle interventions can be  developed through genomic and 
metabolomic analyses (103) to modulate gut microbiota and reduce 
LC risk.

Considering the influence of the aforementioned factors, 
we conducted additional analyses to ensure the robustness of our 
results and further explored mechanisms related to host genetics. Our 
LDSC analysis found only Bacteroides clarus genetically correlated 
with LC, with no significant correlation for other microbes or 
metabolites. This is primarily because LDSC’s focus on genetic 
background of two triats (104) and the low heritability of gut 
microbiomes and metabolites (h2 p > 0.05), which are heavily 
influenced by diet, lifestyle, and medication. However, this does not 
dismiss a potential connection between GM, metabolites, and LC, but 
rather emphasizes the role of genetic and environmental factors in 
shaping the gut microbiome and plasma metabolites (105, 106). 
Future microbiome-wide association studies and metabolite-focused 

research may elucidate the impact of the environment on the host, 
thereby yielding valuable insights.

We also conducted an initial exploration of the key genes and 
pathways involved in the causal link between GM, blood metabolites, 
and LC. Our study identified 8 metabolic pathways linked to LC 
development, with glutathione and glutamate metabolism playing key 
roles (107, 108). Abnormal glutathione metabolism expression affects 
oxidative stress, apoptosis, and ferroptosis in NSCLC cells (109, 110). 
Recent studies have pointed out that the glutathione metabolism core 
SMS gene was highly enriched in M2 Macrophages in lung 
adenocarcinoma (111). Furthermore, glutamine metabolism is 
involved in biosynthesis and redox reactions and has been proven to 
be  the key metabolic pathway contributing to the chemo-
immunotherapy response in advanced NSCLC patients (112). Single-
cell RNA-seq data analysis revealed that the glutamine metabolism 
gene scores of tumor cells were significantly higher than those of 
CD8T cells, and glutamine metabolism inhibitor could promote the 
proliferation of CD8T cells (113).

Studies have shown that GM and host gene expression vary during 
the disease process, with certain microbes stimulating oncogene 
transcription in NSCLC cells (114), highlighting the importance of 
GM-host gene interactions in lung cancer development. We linked 10 
host genes, including ROBO2, to gut microbe abundance in LC, with 
studies (115) showing a correlation between ROBO2 and oral 
microbiota levels. During tumor formation, advanced sequencing 
techniques suggest ROBO2’s immunosuppressive function may 
influence the tumor microenvironment, contributing to the 
progression of various cancers (116–118). Interestingly, further 
research indicates that ROBO family-related signaling pathways may 
be  involved in macrophage immune responses by inducing 
cytoskeletal changes in macrophages (119). These findings suggest 
that immune cells and the TME are critical factors in the disease 
process (120), and advanced methods like the scPagwas method (121), 
combined with immune cell scRNA-seq data, could be  used for 
further exploration.

Our research stands out for its comprehensive approach. First, 
we  analyzed 412 gut microbiotas and 1,400 blood metabolites, 
alongside integrating data from over 170,000 individuals from two 
lung cancer databases for enhanced statistical solidity. Second, to 
overcome limitations like reverse causality, we conducted strict MR 
analyses, employing SNPs as IVs, with consistency checks across five 
MR estimates and sensitivity analyses. Besides the host’s genetic 
characteristics, we considered the impact of confounding factors and 
applied MVMR to ensure the robustness of the results. Moreover, 
we  employed Two-sample MR and mediation analysis to explore 
linear and possible nonlinear relationships. Third, apart from MR 
analysis, we assessed the heritability of IVs through LDSC, explored 
metabolite pathways related to lung cancer risk, and conducted a 
preliminary exploration of the gut microbiome genome.

Nonetheless, the current MR study has limitations, including the 
exclusive inclusion of European participants. Differences in diet, 
lifestyle, environmental exposures, and genetic backgrounds can 
influence the genetic architecture and prevalence of specific GM and 
metabolites across ethnicities. These differences could result in distinct 
causal pathways and interactions between GM, metabolites, and LC 
risk in non-European populations. Additionally, although 
we identified gene-gut microbiome associations via SNP annotation, 
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the diagnostic and prognostic relevance of these lung cancer-specific 
links requires further clinical validation due to the scarcity of existing 
studies. Furthermore, we were unable to include detailed dietary data. 
The lack of comprehensive dietary information prevents us from 
accounting for the potential effects of various dietary patterns on gut 
microbiota composition and metabolism. Lastly, the inability to 
dynamically capture the changes in GM, metabolites, and LC 
development limits our understanding of how these relationships 
change over time and prevents us from accurately identifying the 
specific time points at which they interact during disease progression.

Future studies should include a more diverse range of participants to 
capture the full spectrum of genetic and environmental factors affecting 
these relationships. Additionally, if sufficient sample sizes are available, 
we plan to explore different lung cancer subtypes, such as small cell lung 
cancer, lung adenocarcinoma, and others, to offer more precise prevention 
and treatment strategies. We also suggest considering the collection of 
detailed dietary data to better understand the impact of dietary patterns 
on gut microbiota and their metabolites. And we  plan to collect 
longitudinal data, including regular fecal and blood samples from 
participants, to monitor the dynamic changes in gut microbiota, 
metabolite levels, and lung cancer development. Furthermore, we will 
consider incorporating more environmental and lifestyle factors, such as 
medicine usage and exercise, through questionnaires and community 
collaborations. This comprehensive approach aims to elucidate how the 
relationships between gut microbiota, blood metabolites, and lung cancer 
evolve over time and in response to external factors.

5 Conclusion

Our MR and genetic analysis revealed causal links between 
three microbial communities, four GM pathways, thirteen 
metabolites, and LC, also investigating how metabolites mediate 
the relationship between the GM and LC. This study highlights 
the importance of considering gut microbiota and their 
metabolites in the clinical prevention and treatment of lung 
cancer, and proposes that interventions related to gut microbiota 
and metabolites could include promoting healthy lifestyles such 
as avoiding smoking, regulating diet by increasing the intake of 
foods rich in dietary fiber and reducing high-sugar diets, and 
taking precautions in environments with poor air quality, such as 
wearing masks.
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