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MAFLD has become a major global health problem and is the leading cause 
of liver disease worldwide. The disease progresses from a simple fatty liver to 
gradual fibrosis, which progresses to cirrhosis and even hepatocellular liver 
cancer. However, the methods currently used for diagnosis are invasive and 
do not facilitate clinical assessment of the condition. As a result, research on 
markers for the diagnosis of MAFLD is increasing. In addition, there are no clinical 
medications for the treatment of MAFLD, and lifestyle interventions remain 
effective in the prevention and treatment of MAFLD. In this review, we attempt 
to make a summary of the emerging diagnostic indicators and effective lifestyle 
interventions for MAFLD and to provide new insights into the diagnosis and 
treatment of MAFLD.
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1 Introduction

In 2020, the hepatology community introduced the novel term “metabolic dysfunction-
associated fatty liver disease” (MAFLD) to replace “non-alcoholic fatty liver disease” (NAFLD) 
(1). Recently, this term was again replaced by “metabolic dysfunction-associated steatotic liver 
disease” (MASLD), along with a revised definition of metabolic dysfunction (2). MAFLD is a 
common chronic liver disease worldwide. The high prevalence of MAFLD has been noted in 
several reports (3–5). Overall prevalence is statistically increasing steadily and is projected to 
reach 55.7% by 2040 (6). MAFLD is a type of liver injury characterized by increased fatty 
deposits in hepatocytes with varying histological severity and the potential to progress to 
fibrosis, cirrhosis, and hepatocellular liver cancer. Fibrosis stage was the only independent 
predictor of long-term prognosis in MAFLD. Liver biopsy remains the gold standard for the 
diagnosis of liver fibrosis, but because it is an invasive test that is difficult to use frequently in 
the clinic, it has become important to find a noninvasive index for the effective assessment of 
MAFLD. In addition, there are no approved medications for the treatment of MAFLD, and 
lifestyle interventions continue to be  the most recognized method of preventing and 
treating MAFLD.

The purpose of this review is to summarize current diagnostic indicators and effective 
lifestyle intervention methods for MAFLD.
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2 Diagnostic indicators

2.1 Liver fat content

Magnetic Resonance Proton Density Fat Fraction (MRI-PDFF) 
has the ability to quantify hepatic fat over the entire dynamic range. It 
is a more accurate quantitative imaging biomarker that can be used to 
evaluate liver fat content. In a meta-analysis (n = 6 studies in 635 
patients with biopsy-proven NAFLD), the summary AUROC values 
of MRI-PDFF for detecting steatosis S0 and S1–S3 (≥5%), S0–S1 and 
S2–S3 (≥33%), S0–S2 and S3 (≥66%) were 0.98, 0.91, and 0.90, 
respectively. Pooled sensitivity and specificity were 93 and 94%, 74 and 
90%, and 74 and 87%, respectively (7). However, due to its high cost, 
it is not recommended for routine clinical use.

Controlled attenuation parameter (CAP) is the algorithm available 
on the FibroScan system (Echosens, Paris, France) for quantification 
of the liver fat content. This is a convenient and readily available 
modality that has been widely used to assess liver fat content. However, 
several covariates such as NAFLD, diabetes mellitus, and BMI affect 
CAP values. Currently, guidelines consider values above 275 dB/m to 
have high sensitivity and PPV (>90%) in NAFLD, although there is no 
uniform cut-off value for CAP (8). One study summarized that in 
healthy adolescent boys/girls, the upper limit of normal for CAP is 
258.9/243.1 dB/m (12–13.9 years old), 251.9/266.3 dB/m (14–15.9 years 
old), 247.0/265.2 dB/m (16–17.9 years old), and 249.3/246.0 dB/m 
(18–19.9 years old) (9). Recent studies have analyzed that in children 
with NAFLD, using MRI-PDFF grading as a criterion for steatosis, the 
optimal cutoffs for CAP in the subgroups of S0 vs. S1–S3 (≥6.4%), 
S0–S1 vs. S2–S3 (≥17.4%), and S0–S2 vs. S3 (≥22.1%) were 265 dB/m, 
299 dB/m, and 303 dB/m, respectively (10).

Recently, a study constructed a new CAP-based scoring scale, 
CBST.CBST = −14.27962 + 0.05431 × CAP 
−0.14266 × BMI + 0.01715 × AST. Confirmed that CBST scores are 
more accurate than CAP itself. The optimal CBST cutoff values for 
MRI-PDFF diagnosis of ≥20%, ≥10%, and ≥5% were −0.5345 
(sensitivity = 72.1%, specificity = 70.8%, PPV = 53.7%, NPV = 84.4%), 
−1.7404 (sensitivity = 88.7%, specificity = 76.0%, PPV = 91.2%, 
NPV = 70.4%) and −1.9959 (sensitivity = 86.4%, specificity = 92.9%, 
PPV = 99.4%, NPV = 35.1%) (11). This would be a practical diagnostic 
basis if more studies were available to verify its accuracy.

2.2 Fibrosis score

2.2.1 Fibrosis-4 score, the aspartate 
aminotransferase-to-platelet ratio index

The FIB-4 and APRI is a score that uses routine laboratory 
parameters to assess liver fibrosis, and the formula is FIB-4 
score = age(year) × AST(U/L)/[PLT(109/L) × ALT1/2(U/L)] 
APRI = [AST(U/L)/(AST(upper limit of normalcy)(U/L)]/
PLT(109/L) × 100). It has been shown that it can be used to assess the 
degree of hepatic fibrosis in chronic hepatitis B patients. The sensitivity 
and specificity of the APRI score > 0.342 to differentiate between 
patients with “no and mild fibrosis” and those with “severe fibrosis” 
were 63 and 64%. Respectively, and the sensitivity of the FIB-4 
score > 0.70 to differentiate between patients with “no and mild 
fibrosis” and those with “severe fibrosis” was 71%, with a sensitivity of 
71% (12). It has been noted that despite the high diagnostic accuracy 

of FIB-4 and APRI for advanced fibrosis in patients with NAFLD, their 
ability to diagnose hepatic fibrosis in its early stages remains 
controversial (13). Furthermore, it was shown that the APRI (AUROC 
range 0.73–0.80) and FIB-4 (AUROC range 0.66–0.82) outperformed 
the NAFLD fibrosis score (NFS) (AUROC range 0.63–0.75) in 
predicting liver fibrosis in MAFLD (14). In a meta-analysis of more 
than 40,000 participants, it was noted that when used to predict the 
severity of liver fibrosis in patients with MASLD, FIB-4 had good 
predictive diagnostic accuracy for any fibrosis, and FIB-4 had good 
diagnostic accuracy for cirrhosis, and could be used to assess the 
prognosis of MASLD (15).

2.2.2 MAFLD screening score, fatty liver index, 
hepatic steatosis index

Detection of hepatic steatosis HS is a mandatory criterion for the 
diagnosis of MAFLD, and the development of a non-invasive means 
of rapid and standardized detection of HS has become very important. 
Han et al. retrospectively evaluated the performance of FLI and HSI 
with respect to the prediction of MAFLD diagnosed by computed 
tomography (CT), and FLI (AUROC, 0.793) and HSI (HSI 0.784) were 
feasible in the prediction of MAFLD (16). In a large cross-sectional 
survey in China including 135,436 patients, the FLI AUROC used to 
predict MAFLD for male and female patients was 0.870 and 0.923 
(17). A Mexican population-based study developed a score, 
MAFLD-S, for the prediction of MAFLD with an AUC of 0.852, 95% 
CI = 0.828–0.877, an optimal cutoff of 0.548, a sensitivity of 78.8%, and 
a specificity of 82.8% (18). In a cross-sectional study, assessment of 
MAFLD-S, FLI, and HSI is a valid tool to accurately predict MAFLD 
in patients with inflammatory bowel disease IBD (19). Valuable tool 
for FLI prediction of MAFLD noted in Japanese population-based 
survey (20). In a cross-sectional study based on adults in Xinjiang, 
FLI, and HSI had good screening for MAFLD in both men and 
women, with FLI having the best screening ability (21). FLI and HSI 
have excellent discriminatory ability in predicting MAFLD in the 
general population, both in the general population and in individuals 
at metabolic risk, FLI and HIS will be effective tools for predicting and 
screening for MAFLD (22).

2.2.3 TyG-body to mass index, TyG-waist 
circumference

A cross-sectional study of people aged 25–75 years showed that 
TyG-WC, TyG-BMI were the best predictors of MAFLD, independent 
of age, sex, obesity or diabetes status (23). Some studies have shown 
that TyG-BMI has good diagnostic efficacy in identifying people at 
risk for MAFLD in western China. In contrast, TyG-WC had the best 
diagnostic performance for identifying MAFLD risk in the US 
population. These findings suggest the need to select the most 
appropriate predictive model based on regional and racial differences 
(24). A Korean population-based study suggests that TyG-WC, 
TyG-BMI are positively correlated with MAFLD risk and can be used 
clinically to rapidly identify patients at risk of MAFLD (25).

2.3 Serum biomarker of MAFLD

2.3.1 Chitinase-3-like protein 1
Chitinase-3-like protein 1 (CHI3L1, YKL-40 protein) is a 

glycoprotein that is abundantly expressed in liver tissues and is mainly 
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involved in inflammation and tissue remodeling (26). It has been 
shown that CHI3L1 is significantly elevated in chronic liver diseases 
such as HBV-Related Liver Diseases, HCV-Related Liver Diseases, and 
hepatocellular carcinoma, and is associated with the degree of fibrosis 
(27–31). Studies have shown that CHI3L1 is an indicator used to 
assess fibrosis, and Xiaoting Huang el confirmed that serum CHI3L1 
is a viable indicator for measuring liver fibrosis. The AUC for serum 
CHI3L1 was 0.812, p  < 0.000. The Youden index was highest at a 
serum CHI3L1 level of 83.36 ng/mL, with a sensitivity of 88.2% and a 
specificity of 66.4% (32). Yanqiang Liao el demonstrated that CHI3L1 
detected by chemiluminescent immunoassay (CLIA) has good 
diagnostic value for HBV-associated hepatocellular carcinoma (27). It 
has been shown that CHI3L1 is a good biomarker in MAFLD and 
assesses the risk of severe liver fibrosis. The AUC for CHI3L1 in the 
diagnosis of significant liver fibrosis was 0.716 (95% CI, 0.596, 0.836), 
with a corresponding optimal cutoff value of 125.315 ng/mL (33). 
High levels of serum CHI3L1 in patients with type 2 diabetes may 
indicate liver fibrosis in patients with MAFLD, CHI3L1 showed the 
area under the ROC curve (AUC) for detection of significant fibrosis 
(0.749, 95% CI, 0.668–0.829, p < 0.001), and the value of 94.89 ng/mL 
(sensitivity:54.4%, specificity:87.6%, p < 0.001) was the best cutoff 
point to predict significant liver fibrosis in T2DM-MAFLD 
patients (34).

2.3.2 Leukocyte cell-derived chemotaxin-2
LECT2 is a chemokine (35), it is mainly produced by the liver. It 

has been shown that LECT2 attenuates fatty changes and insulin 
resistance in the liver (36). Whereas insulin resistance is a key factor 
in the development of MAFLD, LECT2 may be  involved in the 
development of MAFLD. It has been shown that LECT2 levels were 
31.2 (20.9, 41.5) ng/mL in the group of people with NAFLD compared 
to those without NAFLD, which was significantly higher than in the 
group without NAFLD (37). It is proposed that LECT2 is highly 
expressed in both hepatic tissue and serum in biliary atresia (BA), 
suggesting that LECT2 can be used as a biomarker for BA (38). LECT2 
levels are increased in patients with metabolic syndrome (MetS) and 
correlate with severity, suggesting that LECT2 can be  used as a 
biomarker for MetS (39). Currently, there are experiments showing an 
increase in serum LECT2 concentration in children with NAFLD, 
which showed a diagnosis of NAFLD at a concentration of 3.76 ng/mL 
with a sensitivity of 90.5% and a specificity of 54.8%, suggesting that 
LECT2 can be used as a diagnostic biomarker for MAFLD in children 
(40), which has not been studied in adults with MAFLD.

2.3.3 Cathepsin D
Cathepsin D (CTSD) is a lysosomal enzyme involved in 

inflammatory responses and lipid metabolism, and previous data have 
shown that hepatic inflammation is associated with hepatic CTSD 
activity and expression (41, 42). In addition, plasma CTSD 
concentrations were associated with different stages of NAFLD, 
Significantly elevated in metabolic dysfunction-associated 
steatohepatitis (NASH) (43). A recent study analyzed RNA sequencing 
of MASLD and found higher expression of CTSD in severe MASLD 
compared to controls and mild disease, and validated the diagnostic 
role of serum CTSD in MASLD, showing that CTSD contributes to 
the accuracy of FIB-4  in diagnosing MASLD. The AUC of serum 
CTSD in predicting NASH fibrosis was 0.731 with a cutoff value of 
10624.5 pg./mL (specificity 47.1%, sensitivity 93.3%) (44).

2.3.4 Plasminogen activator inhibitor-1
Plasminogen activator inhibitor-1 (PAI-1) is the most important 

inhibitors of the plasminogen/plasmin system (45). PAI-1 plays an 
important role in hepatic fibrogenesis (46). It has been shown that 
elevated plasma levels of PAI-1 correlate with the degree of hepatic 
steatosis (47). The study found that the PAI-1 gene was significantly 
down-regulated in NAFLD by bioinformatic analysis of the GEO 
database. Although bias may be induced by the small sample size, it 
suggests that PAI-1 has the potential to serve as a diagnostic marker 
for NAFLD (48). Recent studies have found that as liver pathology 
progresses toward nonalcoholic steatohepatitis (NASH), there is a 
corresponding increase in the level of mRNA expression of Serpine1, 
as well as the protein level of PAI-1. Use of Serum PAI-1 Levels as a 
noninvasive biomarker to identify NASH-associated fibrosis (49). 
However, no experiments have been performed to assess its diagnostic 
value in MAFLD.

3 Lifestyle interventions of MAFLD

3.1 Healthy diet

3.1.1 Daily dietary patterns
Moderate fiber intake is associated with lower odds of MAFLD 

compared to low fiber intake (50). Healthy low-carbohydrate and 
low-fat diets are protective against MAFLD, while unhealthy low-fat 
diets have deleterious effects on MAFLD (51). A study based on a 
Korean population showed that a dairy-rich dietary pattern was 
associated with a lower risk of MASLD, The cumulative incidence of 
MASLD was also significantly lower when adhering to a dietary 
pattern rich in dairy products (52). βHB, one of the ketone, has been 
reported to have inhibitory effects on adipocyte lipolysis, liver fat 
accumulation and inflammatory responses, suggesting a possible 
protective effect against MAFLD (53). The ketogenic diet (KD) is a 
diet that is very low in carbohydrate intake, and KD can be beneficial 
in treating diseases such as MAFLD and NASH. Sugar deficiency 
markedly reduces the effect on insulin resistance, and despite the 
benefits of KD, precautions need to be taken regarding the nature of 
dietary fats, and saturated fatty acids can be  replaced with 
polyunsaturated fatty acids (54). One study tried to assess the effects 
of 8 weeks of a very low-calorie ketogenic diet (VLCKD) on MASLD, 
and found that it significantly reduced liver stiffness, and substantially 
reduced WC, fat mass, systolic and diastolic blood pressure, and BMI, 
and effectively reduced fasting glucose, insulin, insulin resistance 
(measured by HOMAIR), triglycerides, total cholesterol, LDL 
cholesterol, HDL cholesterol, and GT. This suggests that VLCKD 
improves insulin sensitivity and results in elevated levels of vitamin 
D. VLCKD treatment also reduces low-grade inflammation (55) 
(Figure 1).

The Mediterranean diet is currently the more recommended diet 
for the prevention of MAFLD (56). The Mediterranean diet includes 
plenty of vegetables, fruits, legumes, nuts and olive oil, as well as small 
to moderate consumption of red meat and wine, which has anti-
inflammatory, antioxidant and antifibrotic components. Adherence to 
the Mediterranean diet, especially higher fruit intake, is associated 
with lower severity of MAFLD (57). Additional studies have found 
that the Mediterranean diet DM and the Mexican regional diet RMD 
are equally effective in improving MASLD symptoms, particularly 
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steatosis, highlighting the feasibility of using regionally adapted diets 
to treat fatty liver. DM implementation is not feasible in all countries. 
Therefore, adapting the diet to the ingredients available in that country 
is a better option, as balanced implementation can improve the health 
of patients with fatty liver disease (58).

In China, three regional dietary patterns have been evaluated for 
their association with MAFLD: the Sichuan Basin pattern, 
characterized by high intakes of fish/seafood, poultry, fresh fruits and 
vegetables; the Yunnan-Guizhou Plateau pattern, characterized by 
high intakes of animal oils and salt; and the Qinghai-Tibet Plateau 
pattern, characterized by high intakes of coarse grains, wheat 
products, tubers and tea. The results showed that both the Yunnan-
Guizhou Plateau dietary pattern and the Tibetan Plateau dietary 
pattern were positively associated with MAFLD. Studies point to an 
undesirable role of salt, animal oils and high carbohydrates in the 
progression of MAFLD, with animal oils rich in saturated fatty acids 
(SFA) being positively associated with MAFLD (59).

In addition, a vegetarian diet is now considered a healthy diet, and 
a vegetarian diet means replacing meat and fish with soy and refined 
carbohydrates with whole grains. Studies have shown that vegetarian 
diets may be associated with less pronounced liver fibrosis and that 
vegetarians have lower NAFLD fibrosis scores, which could mean 
lower cardiovascular-related mortality in the future (60). However, 
there has been no extensive research on its relationship with MAFLD 
progression, incidence or prevalence (61).

Therefore, a dietary pattern with less salt, less sugar and more 
vegetables and fruits has a favorable effect on the prevention 
of MAFLD.

3.1.2 Dietary supplement
In addition to daily dietary changes that are beneficial in 

preventing MAFLD, increasing or decreasing the intake of some 

dietary supplements may also be beneficial in reducing the incidence 
of MAFLD. Studies have shown that high dietary selenium intake 
increases the risk of MAFLD by modulating insulin biosynthesis and 
secretion dysregulation as well as stimulating glucagon secretion, 
insulin resistance and dyslipidemia (62). Reducing the ratio of Se and 
vitamin E, or not supplementing them at all, may reduce the 
prevalence of MAFLD (63). Patients with MAFLD consume more 
vitamin E in their daily diet than healthy controls, so increased 
vitamin E may be  positively associated with MAFLD (64). Thus 
suggesting that to prevent MAFLD, we need to reduce se and vitamin 
E intake.

Patients with MAFLD consume more polyunsaturated fatty acids 
PUFA and iron in their daily diets than healthy controls Increased 
intake of these substances may be positively associated with MAFLD 
(64). According to an analysis of NHANES 2017–2020 data, high 
copper intake and moderate iron intake are associated with low odds 
of MAFLD (65). Therefore, we believe that there is also a relationship 
between copper and iron intake, and the occurrence of MAFLD. A 
significant association between vitamin D insufficiency and increased 
incidence of MAFLD suggests the potential of vitamin D as an anti-
adipogenic and anti-fibrotic agent (66). A randomized controlled trial 
of vitamin D supplementation on serum levels of VDR, fibrotic factors 
and fibrotic microRNA (MiR) levels in patients with MASLD revealed 
for the first time significant reductions in some hepatic fibrotic factors, 
hepatic aminotransferases, and the corresponding changes in some 
fibrotic-associated MiR and some metabolic factors (67). suggests that 
vitamin D supplementation is beneficial in reducing the likelihood of 
MASLD fibrosis.

MAFLD is primarily caused by fat accumulation, and oral 
glutamine supplementation leads to insulin resistance in fat cells, 
which reduces fat (68). Glutamine was shown to contribute to 
attenuating the severity of hepatic lipid injury in mice exposed to 
high-fat diet (HFD) induced MAFLD by ameliorating changes in 
serum lipids, hepatic lipid metabolism, and oxidative stress (69).

Silymarin is a flavonoid compound derived from milk thistle seed 
that has been used for many years, as a Chinese herbal treatment for 
liver diseases (70). Silymarin can not only promote the production of 
glutathione to enhance the ability to resist oxidative stress (71), but 
also can inhibit the expression of NF- κ B, reduce TNF- α, IFN- γ, 
IL-2, and IL-4, and reduce the inflammatory response (72). In 
addition, silymarin can improved glucose tolerance and insulin 
tolerance in NAFLD patients, and the colonizing of altered microbiota 
from silymarin and polyherbal extract treated mice directly 
ameliorated NAFLD (73).

Insulin resistance is a common pathological feature in MAFLD 
patients, and artichoke has been found to have positive amelioration 
on insulin resistance. Previous studies have shown that water extract 
from artichoke ameliorates high-fat diet-induced non-alcoholic fatty 
liver disease in rats (74). Deng’s study (75) demonstrated that 
artichoke water extract (AWE) reduced the expression of acid enol 
phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-
phosphatase (G6Pase), and inhibited insulin resistance to improve 
glucose metabolism. Meanwhile, AWE also inhibited the endoplasmic 
reticulum stress to protect HepG2 cells. This is thought to be  the 
resulting from the regulation of IRS 1/PI3K/AKT/FoxO 1 and GSK-3 
β signaling.

Bergamot is a citrus fruit with extensive biological activity which 
has anti-proliferative, pro-apoptotic, anti-inflammatory and 

FIGURE 1

Lifestyle interventions are now a widely recognized method of 
prevention and treatment for MAFLD. An effective lifestyle includes a 
proper diet (less salt, less sugar, good quality carbohydrates, 
unsaturated fatty acids, vitamin D, etc.), and good habits (exercise, 
adequate and good quality sleep, good mood, improved gut 
microbiology, reduced air pollution, etc.).
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anti-oxidation effects to make positive influence on MAFLD (76). 
Bergamot extract can reduce blood glucose levels in type 2 diabetic 
mice, prevent hyperglycemia caused by leptin receptor disruption, 
and regulate glucose homeostasis by enhancing insulin sensitivity. In 
this study, Liu et al. (77) also observed reduced TC, TG, and LDL-C 
levels, which effectively controlled blood lipids and protected the 
liver. In NAFLD, bergamot extracts can decrease the hepatic 
steatosis (78).

P. tenuifolia seed oil (PWSO) therapeutic diet (17% lard and 14% 
PWSO diet) inactivates SREBP1 and SREBP2, which are involved in 
lipogenesis, to attenuate hepatic lipid accumulation and reduce 
inflammatory responses induced through the NF-κB signaling 
pathway. Studies have shown that PWSO can be a relatively effective 
dietary supplement to inhibit the onset and progression of 
MAFLD (79).

We believe that moderate dietary supplements are beneficial for 
the prevention of MAFLD (Table 1).

3.1.3 Drinks
Green tea is generally recognized as a healthful drink (80). Tea 

consumption (≥1 cup/day) is not associated with the prevalence of 
newly diagnosed NAFLD among the general Chinese adult population, 
and further research may be  needed to examine the association 
between higher frequency tea consumption and MASLD, says a study 
based on the Tianjin population (81). A 2020 study suggested that 
green tea reduced liver enzyme levels in participants with non-alcoholic 
fatty liver disease (NAFLD), but liver enzymes were significantly 
increased in healthy subjects (82). This suggests to us that drinking 
more green tea may be effective in reducing the prevalence of MAFLD.

It has also been suggested that caffeine attenuates liver fat and 
stiffness in patients with diabetes and NAFLD (83). Coffee is associated 
with NAFLD severity in type 2 diabetics (84). For overweight/obese 
patients with MASLD and T2D, coffee consumption may have 
potential benefits (85). It has also been shown that excessive soft drink 
consumption is still significantly associated with MASLD (86).

Therefore, appropriately increasing the consumption of green tea 
and coffee and decreasing the consumption of soft drinks in daily life 
may help prevent MAFLD.

3.2 Living habits

3.2.1 Physical exercise
According to data from the 2003–2006 U.S. population, longer 

physical activity (PA) is associated with a lower risk of cardiovascular 
disease-related death in patients with NAFLD (87). A study based on 
the 2017–2018 U.S. population shows that physical activity is strongly 
associated with a lower risk of obese and non-obese MAFLD (88). 
Active physical activity PA and adequate weekday sleep duration are 
both inversely associated with the risk of MASLD, and combining 
them can further reduce the risk of MASLD (89). Increased physical 
activity improves the strength of the muscles in the body. Whereas 
muscle strength may play a critical role in the incidence and 
progression of NAFLD/MAFLD, interventions to improve muscle 
strength in the management of NAFLD/MAFLD may be helpful (90). 
One study showed that adherence to an overall healthy lifestyle of 
non-smoking, non-alcohol use, physical activity, and healthy diet was 
associated with a 19% reduction in adjusted MAFLD risk (91).

It has been suggested that concentrating on physical activity 1 or 
2 days per week (WW model) versus an average weekly schedule of 
physical activity (RA model) are both associated with lower DXA 
measures of fat mass (both in the abdominal region and whole body), 
BMI, and waist circumference. The WW model may also be applicable 
to the prevention of NAFLD (92).

3.2.2 Sleep
Short sleep duration and poor sleep quality are significantly 

associated with increased risk of NAFLD, according to a Korean 
population-based study (93). A study of 2,172 people in Japan found that 
the prevalence of NAFLD declined progressively with increasing sleep 
duration, with the lowest prevalence in the subgroup with 6 to ≤7 h of 
sleep and the highest in the groups with ≤6 and >8 h of sleep (94). A 
study of 708 non-diabetic adolescents found that sleep deprivation was 
associated with the presence of NAFLD in the younger population (95). 
Patients with sleep-disordered SD have higher risk of NAFLD in a 
Taiwanese population-based study (96). In addition, poor sleep patterns 
were associated with a high risk of MAFLD and severe fibrosis, and sleep 
difficulties, snoring, excessive daytime sleepiness, and sleep apnea 
symptoms were positively associated with the odds of MAFLD when 
specific factors of sleep patterns were examined in isolation (97). Good 
sleep habits, therefore, help reduce the prevalence of MAFLD.

3.2.3 Stress
The stress-eating relationship is mediated by the release of cortisol 

from the hypothalamic pituitary adrenal (HPA) axis. In a survey studying 
the relationship between occupational stress and NAFLD among 
Chinese police officers, it was found that the higher the stress, the higher 
the risk of developing NAFLD (98). Chronic stress linked to obesity, 
stress management important in treating NAFLD (99). Studies based on 
the Korean population have shown direct and indirect associations 
between psychological factors and NAFLD, depending on individual 
susceptibility (100). And in another study, it was also demonstrated that 
higher perceived stress was associated with increased prevalence of 
NAFLD (101). All of these studies have shown that the greater the 
psychological stress the greater the risk of developing NAFLD. Another 
recent Mendelian randomized analysis of studies points out that 
depression increases the prevalence of NAFLD (102). Suggesting the 
impact of the psychological illness on MAFLD, attention needs to be paid 
to managing stress and proper relaxation and stress relief in life.

3.2.4 Gut microorganisms
Study proves gut microbes linked to NAFLD development (103). 

Study finds that gut microbial diversity declines in NAFLD, and 
modulating gut microbiota health may help overcome NAFLD (104). 
In addition, probiotic yogurt significantly improves metabolic 
disorders through modulating intestinal microflora and lipid 
metabolism and effectively regulating the occurrence and development 
of MAFLD (105). By improving the flora of the gut microbiota, it helps 
reduce the risk of developing MAFLD.

3.3 Environment

It has been suggested that long-term exposure to PM2.5 significantly 
increases the risk of metabolic disorders, which can increase lipid 
accumulation and loss of liver function (106). Ambient PM2.5 stems from 
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TABLE 1 Effect of dietary supplements in MAFLD.

Author (reference) Supplement Experimental model Concentrations of supplement Findings

Niu et al. (64) Polyunsaturated fatty acids (PUFAs); 

vitamin E; Iron

MAFLD patient The percentages of individuals consuming PUFAs for >11% of 

their total energy intake, >14 mg/day of vitamin E, and >12 mg of 

iron

 • Risk of MAFLD↑

Guo and Yu (63) γ-tocopherol; α-tocopherol; Se MAFLD patient serum concentrations of γ-tocopherol (1.43 ± 0.52 μmol/L), 

α-tocopherol (3.38 ± 0.31 μmol/L) and Se (0.89 ± 0.13 μmol/L)

 • Risk of MAFLD↑

Hou et al. (65) Copper; Iron MAFLD patient Copper intake > 0.53 mg/1,000 kcal, Iron intake 5.19–

7.57 mg/1,000 kcal

 • Risk of MAFLD↓

Lee et al. (66) Vitamin D MAFLD patient Serum vitamin D levels of 14.07 ± 3.55 ng/mL (men); Serum 

vitamin D levels of 12.57 ± 3.98 ng/mL (women)

 • Risk of MAFLD↑

Ebrahimpour-Koujan et al. (67) Vitamin D MASLD patient 4,000 IU/d vitamin D (12 weeks)  • ALT, AST, FBS, and LDL-C levels↓

 • Serum 25(OH) vitamin D, VDR, 

and HDL-C↑

 • MiR-21 and MiR-122 gene expressions↓

Abboud et al. (68) Oral glutamine Wistar rats on a high-fat diet (HFD); 

Overweight (BMI ≥ 25 kg/m2) and obese 

(BMI ≥ 30 kg/m2) humans

Glutamine (0.4 g in 1 mL) 3 days a week for 4 weeks (rats); a total 

of 30 g of Gln per day, lasted for 14 days (humans); a dose of 0.4 g/

kg of glutamine in humans and 2.4 g/kg in rats

 • Waist Circumference and 

Circulating LPS↓

 • Weight↓

 • Glucose incorporation in 

adipose tissue↓

 • Not increase insulin-induced Akt 

phosphorylation

Zhang et al. (69) Glutamine High-fat diet (HFD)-induced MAFLD 

C57BL/6 mouse model

HFD concomitant with 4% glutamine treatment for 24 weeks  • Lipid catabolism↑

 • lipid accumulation↓

 • Glutamine-based treatments alone 

cannot reverse serum lipid 

dysregulation

Sozen et al. (71) Silymarin Adult female Wistar Albino rats 100 mg/kg/ day oral SIL for 14 days, once in 24 h  • Hepato-cyte degeneration and 

multinuclear giant cell formation↑

 • Prevented DNA damage

 • Oxidative stress in tissues ↓

Wang et al. (73) Silymarin High-Fat Diet-Induced NAFLD in Mice HFD supplemented with a medium or high dose of silymarin 

(0.101 g, 0.202 g)

 • Glucose tolerance and insulin 

tolerance↑

 • Pro-inflammatory cytokines tumor 

necrosis factor-α (TNF-α) and 

interleukin-17 (IL-17) in the liver↓

 • altered microbiota from silymarin and 

polyherbal extract treated mice directly 

ameliorated NAFLD

(Continued)
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a complex interaction of multiple emissions and chemical reactions; it is 
a mixture of various chemical components such as elemental carbon, 
organic carbon, sulfate (SO4

2−), nitrate (NO3
−), and ammonium (NH4

+), 
and chronic exposure to PM2.5 and its five major chemical components 
may increase MAFLD risk. Of these, nitrate may have the greatest impact 
on MAFLD (107). In addition, in a study analyzing the correlation 
between cirrhosis and air pollution in patients with NAFLD, based on 
the UK population, it was noted that long-term exposure to air pollution 
was associated with the risk of NAFLD and cirrhosis in the UK 
population (108). There was a dose-dependent relationship between 
different fibrosis stages and PM2.5 levels (PM2.5 levels in patients with 
fibrosis stages 0, 1–2, and 3–4:27.9, 28.4, and 29.3 μg/m3, respectively; 
trend p < 0.001). Exposure to PM2.5 is associated with advanced liver 
fibrosis in patients with MAFLD (109). Recently, a cross-sectional study 
based on Taiwanese and Hong Kong populations analyzed airborne 
concentrations of nitrogen dioxide (NO2) and ozone (O3) and fine 
particulate matter (PM2.5) in relation to advanced fibrosis in NAFLD. The 
results showed that higher ambient PM2.5 and NO2 were associated with 
higher odds of NAFLD and advanced fibrosis, and that, in addition, 
lowering PM2.5 and NO2 concentrations may be an effective method of 
preventing NAFLD, and that further research is necessary on O3 (110). 
From this, we concluded that reducing air pollution or actively reducing 
exposure to PM2.5 can effectively prevent MAFLD.

4 Conclusion and outlook

MAFLD is a liver disease with high prevalence, and currently used 
to diagnose MAFLD is still mainly diagnosed by imaging. This review 
summarizes the commonly used imaging markers (MRI-PDFF, CAP) 
and new evaluation markers based on the original markers (FIB-4, 
APRI, FLI, HSI, MAFLD-S, TyG-WC, TyG-BMI, CBST). The more 
studied serological markers (CHI3L1, LECT2, CTSD) are also 
summarized, and some serological markers in combination with 
imaging indices help to improve the accuracy. Combined serologic 
and imaging diagnosis may become an effective method for clinical 
diagnosis of MAFLD.

However, nowadays, indicators are generally devoted to reflecting 
the degree of hepatic steatosis, the degree of fibrosis, or predicting 
MAFLD in other metabolic disorders, and there is a lack of research 
on specific indicators for MAFLD, which might be useful to look for 
specific diagnostic indicators at the molecular level.

This review summarizes the effective methods currently used for 
the prevention and treatment of MAFLD in terms of diet, lifestyle 
habits and living environment. Dietary supplements are well suited to 
help in the clinic, as daily diet and lifestyle habits require a great deal 
of adherence from the patients themselves, and the living environment 
is difficult to change. Current research, based on cell and animal 
experiments, suggests that supplements are useful in reducing liver fat 
accumulation, anti-inflammatory, and antioxidant.

Current treatments targeting obesity, insulin resistance, and 
cardiovascular aspects are effective but lack specificity for 
MAFLD. This may be due to the fact that the pathomechanism of 
MAFLD is very complex and requires further research. It is therefore 
important to understand the pathogenesis of MAFLD, which may help 
to find drugs in the future that can both improve metabolic disorders 
and reduce hepatic inflammation and fibrosis, as well as provide new 
guidelines for finding early specific diagnostic indicators.T
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