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Integrative metagenomic and 
lipidomic analyses reveal 
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Background: Despite emerging evidence linking alterations in gut microbiota 
to childhood obesity, the metabolic mechanisms linking gut microbiota to the 
lipid profile during childhood obesity and weight loss remain poorly understood.

Methodology: In this study, children with obesity were treated with lifestyle 
weight loss therapy. Metagenomics association studies and serum untargeted 
lipidomics analyses were performed in children with obesity and healthy 
controls before and after weight loss.

Main findings: We identified alterations in gut microbiota associated with 
childhood obesity, as well as variations in circulating metabolite concentrations. 
Children with obesity showed significant decreases in the levels of s-Rothia_
kristinae and s-Enterobacter_roggenkampii, alongsige elevated levels of 
s-Clostridiales_bacterium_Marseille-P5551. Following weight loss, the levels 
of s-Streptococcus_infantarius and s-Leuconostoc_citreum increased by 
factors of 3.354 and 1.505, respectively, in comparison to their pre-weight loss 
levels. Correlation analyses indicated a significant positive relationship between 
ChE(2:0) levels and both with s-Lachnospiraceae_bacterium_TF09-5 and 
fasting glucose levels. CoQ8 levels were significantly negatively correlated with 
s-Rothia_kristinae and HOMA-IR.

Conclusion: We linked altered gut microbiota and serum lipid levels in children 
with obesity to clinical indicators, indicating a potential impact on glucose 
metabolism via lipids. This study contributes to understanding the mechanistic 
relationship between altered gut microbiota and childhood obesity and weight 
loss, suggesting gut microbiome as a promising target for intervention.

Clinical trial registration: https://www.chictr.org.cn/showproj.html?proj=178971, 
ChiCTR2300072179.
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1 Introduction

The prevalence of childhood obesity is reaching unprecedented 
levels and is estimated to affect 159 million children worldwide (1). 
Metabolic disorders caused by obesity affect the normal growth and 
development of children, as well as increase the risk of type 2 diabetes 
mellitus, metabolic syndrome, and cancer (2). The management of 
childhood obesity primarily relies on lifestyle interventions, 
encompassing dietary modifications, physical activity, and lifestyle 
adjustments. However, the adherence to and efficacy of these 
interventions have been suboptimal. Furthermore, the unique 
characteristics of the pediatric population pose challenges to the 
implementation of pharmacological treatments and bariatric surgery 
(3). Therefore, it is imperative to identify effective and feasible targets for 
the treatment and prevention of childhood obesity.

In recent years, a growing body of research has demonstrated that 
gut microbiota is the primary endogenous factor affecting obesity (4). 
Owing to the substantial variation in the composition of gut microbiota 
among individuals, as well as variations in gene expression and 
functions within the same individual, elucidating the relationship 
between gut microbiota and childhood obesity, as well as its mechanism 
of action, poses a challenge. The abundance, diversity, and stability of 
human gut microbiota have a significant correlation with the occurrence 
and development of childhood obesity. This can affect energy 
metabolism pathways in these children through various factors, such as 
intrauterine flora exposure, delivery mode, and geographical factors, 
thereby leading to intestinal flora disorder and promoting childhood 
obesity. Several studies have found that the gut microbiota of children 
and adults with obesity is characterized by an increase in Firmicutes and 
a decrease in Bacteroidetes abundance (5–9). At the genus level, 
increased levels of Blautia, Eubacterium, and Bifidobacterium and 
decreased levels of Bacteroides, Ruminococcus, and Akkermansia have 
been found in children with obesity compared with those in normal-
weight children (10–12). Most of the aforementioned studies used 16 s 
RNA sequencing to detect gut microbiota. A few studies have examined 
gut microbiota and described functional alterations in children with 
obesity based on metagenomics (13). The composition and function of 
gut microbiota are dynamic. Lipids affect gut microbiota both by acting 
as substrates for bacterial metabolism and signaling to regulate bacterial 
growth (14). Investigating the relationship between gut microbiota and 
lipids may explain the pathogenesis of childhood obesity and provide 
new therapeutic targets for childhood obesity.

The primary etiology of obesity lies in the increased consumption 
of energy-dense foods rich in fat and sugar, coupled with a lack of 
physical activity. When the adipose tissue surpasses its maximal 
threshold for lipid storage, surplus lipids are released into the circulation 
and other organs, thereby inducing lipotoxicity (15). Untargeted 
lipidomics provides a new perspective for studying childhood obesity 
and its associated complications. Lau et al. (16) conducted a targeted 
metabolomics analysis on 1,162 European children and observed a 
negative correlation between body mass index (BMI) and 
lysophosphatidylcholine (LPC)(14:0) and LPC(16:1) levels, whereas 
long-chain LPCs showed a positive correlation with BMI. Furthermore, 
the effect of visceral adiposity on cardiovascular diseases in children 
with obesity was mediated by decreased phosphatidylcholine (PC)
(16:0_2:0) and increased LPC(14:1_0:0) levels. Notably, the stimulation 
of endoplasmic reticulum stress by LPC leads to mitochondrial 

dysfunction and increased apoptosis (17). Lopez et al. (6) studied the 
roles of ceramide and adiponectin in 28 female adolescents aged 
10–17 years. Compared with healthy subjects, girls with obesity showed 
higher C(18:0), C(20:0), and C(22:0) ceramide and C(24:1) 
dihydroceramide levels. In children with obesity, the plasma levels of 
glycerophosphatides are generally low, whereas PC(36:2), LPC(18:1), 
LPC(18:2), and LPC(20:4) levels increase after weight loss (18–20). In 
an isocaloric fructose restriction trial, total and subspecies ceramide 
levels decreased significantly after weight loss in children with obesity. 
Increased ceramide levels may cause mitochondrial dysfunction and 
lead to insulin resistance (21). However, studies on untargeted lipids in 
children are scarce (13). It is essential to obtain data on lipid changes 
before and after weight loss in children from different regions to 
comprehensively characterize the lipid profiles of children with obesity.

In the present study, we aimed to compare the gut microbiome 
and lipidomics of healthy children and children with obesity before 
and after weight loss. Additionally, we investigated whether altered gut 
microbiota modulated host metabolism via serum lipids in children 
with obesity by performing multi-omics data analysis.

2 Materials and methods

2.1 Study cohort

Children with obesity visiting the clinic of the Pediatric 
Endocrinology Department at the Second Affiliated Hospital of Xi’an 
Jiaotong University who sought anti-obesity treatment were 
consecutively enrolled. The participants and their parents underwent 
examinations before and after treatment and provided blood and stool 
samples. The study inclusion criteria for children with obesity were 
age 6–18 years and age-and sex-specific BMI ≥ 95th percentile. 
Patients were excluded for recent weight loss of ≥5%, infective disease, 
immunodeficiency, prior transplantation, type 1 diabetes mellitus, 
inborn errors of metabolism, endogenous obesity, drug-induced 
obesity, and mental health conditions. Healthy children who visited a 
child healthcare clinic during the same period were included as 
controls. All participants and their parents agreed to participate in the 
study and provided written informed consent. This study was 
registered with the Chinese Clinical Trial Registry (Registration 
number: ChiCTR2300072179). This study was approved by the 
Second Affiliated Hospital of Xi’an Jiaotong University (no. 2022245).

2.2 Study design

Twenty-two children with obesity participated in a family-based 
lifestyle intervention program consisting of three main components. (i) 
Dietary intervention: First, after evaluating the nutritional composition 
and quality of food the children consumed in the last 3 days using 
nutrition calculation (Feiyang, Beijing), a trained dietitian developed an 
appropriate and strict diet for each child. Each parent received a separate 
diet sheet that listed the complete and diversified diet that could 
be replaced at each meal and was labeled with raw weight in grams. The 
daily oil intake was limited to 6 g. The final dietary recommendations 
were based on a balanced distribution of carbohydrates (50–70%), 
proteins (15–20%), and lipids (15–25%), to reduce daily intake by 
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350 kcal. (ii) Exercise program: The participants were required to exercise 
for 30 min every day, and the recommended sports included brisk 
walking, jogging, rope skipping, ball games, and swimming. In addition, 
sedentary activities and screen time were limited to <2 h per day. Parents 
of children with obesity sent daily diet photos to the researchers through 
mobile app group chat, recorded daily exercise through the exercise 
bracelet. Finally, the researchers collected follow-up data through the 
red-cap system. An overview of the study flow CONSORT diagram and 
the experimental protocol (Figure 1A) is provided.

2.3 Clinical and biochemical assessment

Standing height, body weight, and waist circumference were 
measured using a calibrated scale and stadiometer. BMI was 
calculated from height and weight. The BMI data were converted into 
a BMI-SDS according to the Chinese children’s and adolescents’ 
age-and sex-specific percentile standards (22). Blood samples were 
collected after overnight fasting, and the serum samples were stored 
at −80°C after centrifugation. For fecal sample collection, the parents 
and children were asked to follow a rigid standard: (i) wash their 
hands with a hand sanitizer, (ii) drain their urine, and (iii) collect 
stool samples into standard tubes. The collected stool specimens were 
quickly placed into liquid nitrogen cold raffinate and stored at −80°C 
until experiments.

Plasma glucose and lipid profiles (including TG, TC, HDL, LDL, 
VLDL, ALT, and AST) were tested using the Hitachi 747 autoanalyzer. 
Serum insulin levels were measured using radioimmunoassay. The 
HOMA-IR was used to estimate insulin resistance.

2.4 Serum metabolomics

2.4.1 Metabolite extraction
An appropriate liquid sample, 800 μL of methyl tertiary butyl 

ether, and 240 μL of precooled methanol were added to a centrifuge 
tube and vortexed. The samples were sonicated, centrifuged, and dried 
under nitrogen gas. For mass spectrometry (MS) analysis, 200 μL of 
the 90% isopropanol/acetonitrile solution was added, redissolved, and 
centrifuged. The supernatant was collected for further analysis. The 
samples were separated using the UHPLC Nexera LC-30A ultra-high-
performance LC system. Electrospray ionization positive and negative 
ion modes were used for MS detection. LipidSearch was used to 
perform peak identification, peak extraction, and lipid identification 
of lipid molecules and internal standards. The main parameters were 
a precursor tolerance of 5 ppm, a product tolerance of 5 ppm, and a 
product ion threshold of 5%. The Base Peak spectra of quality control 
(QC) samples was performed to examine the stability of the 
instrument. Principal component analysis (PCA) was used to check 
the repeatability of the experiment. The relative standard deviation 

FIGURE 1

Alterations in clinical parameters in control and children with obesity at before and after weight loss intervention. (A) Workflow of clinical research in 
this study. (B) Comparison of BMI standard deviation score (BMI-SDS), fasting glucose, HOMA-IR, homeostatic model assessment of insulin resistance 
(HOMA-IR), alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL) and 
high-density lipoprotein (HDL) between controls and children with obesity. (C) Comparison of BMI, fasting insulin, fasting glucose, HOMA-IT, TC, TG, 
HDL, LDL and very low-density lipoprotein (VLDL) in children with obesity at baseline and after weight loss. *p  <  0.05, **p  <  0.01.
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(RSD) of ion peak abundance in QC samples was performed to 
identify the reliability of the data quality.

2.5 Fecal whole-genome shotgun 
sequencing

Total DNA was isolated from fecal samples using QIAamp Fast 
DNA Stool Mini Kit (Qiagen, United States). The library preparation 
protocol was performed and paired-end 2 × 150 bp sequencing was 
performed using the Illumina NovaSeq  6,000 high-throughput 
sequencing platform. Raw sequencing data were saved in the 
FASTQ format at: https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA1090975. The raw sequencing data were screened and filtered 
using fastp (v0.20.0) software. The effective sequences were 
annotated using Kraken2, and the bacterial, archaeal, fungal, 
protozoan, viral, metazoan, and green plant genome data from the 
RefSeq genome database of NCBI were used as references to 
construct a database with an adjusted confidence level of 0.5. A 
non-concatenated species abundance table was obtained after 
normalizing the species abundance. The MetaGeneMark software 
was used to analyze the contigs. The open reading frame was 
identified and the coding region was predicted to obtain the 
corresponding gene sequence, protein sequence, gene transfer 
format, and general feature format files. The filtered protein 
sequence sets were aligned with common protein databases to 
annotate gene functions in all samples.

2.6 Statistical analysis

Composition and abundance distribution tables were obtained for 
each sample at the six taxonomic levels. The α-diversity indices, 
rarefaction curve, species accumulation curve, rank abundance curve, 
and β-diversity were individually determined using QIIME software. 
Mothur software was used to calculate the abundance located in the 
top  50 of the Spearman rank correlation co-efficient between 
dominant species, for which |rho| > 0.6 and p < 0.01 were considered, 
and the related associated network of dominant species was 
constructed. The metagenomeSeq method was used to perform the 
pairwise comparisons of phylum-, genus-, and species-level taxa in the 
sample group, and the results of the statistical analysis of significant 
differences were obtained. The false discovery rate was controlled 
using the Benjamini–Hochberg method. Taxa with adj.p < 0.05 were 
selected as species with significant differences in abundance. KEGG, 
GO, EggNOG, and CAzmy annotations were performed based on 
protein annotation results and abundance. Enriched pathways 
between the groups were obtained by performing LEfSe analysis. 
Correlation analysis (Spearson’s correlation coefficients) between 
metabolomics, metagenomics, and clinical index was performed using 
the “corr.test” function.

Statistical analysis of clinical data was performed using SPSS 23.0 
and GraphPad Prism 9.0 software. Normal distributions were assessed 
using the Kolmogorov–Smirnov test. Data are expressed as the 
mean ± standard error of the mean or count (percent). Comparisons 
between groups were performed using the t-test or chi-square test. 
Associations between clinical and metabolic variables were studied 
using Pearson’s or Spearman’s correlations. A p < 0.05 was considered 

statistically significant. Data were imported into Cytoscape and R 
software for visual display.

3 Results

3.1 Demographic and clinical data

Thirty children with obesity participated in this study. After 
4 weeks, 22 children successfully lost more than 0.5% of their body 
weight. Blood and stool specimens were collected from children with 
obesity at baseline and after weight loss. Additionally, 16 age-matched 
children were recruited as healthy controls, and their blood stool 
samples were collected simultaneously. Eight children with obesity 
dropped out during the weight loss therapy because they did not 
strictly follow the protocol, did not meet the weight loss criteria, and 
were lost to follow-up. No significant differences were observed in the 
demographic characteristics according to sex or age between the 
obesity and control groups (Table  1). The obesity group showed 
significantly higher BMI standard deviation score (BMI-SDS), fasting 
glucose, homeostatic model assessment of insulin resistance (HOMA-
IR), alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), total cholesterol (TC), and low-density lipoprotein (LDL) 
levels than did the control group, whereas high-density lipoprotein 
(HDL) and triglyceride (TG) levels were similar in the two groups 
(t-test, Figure 1B). BMI decreased significantly after the intervention. 
Insulin and HOMA-IR levels significantly decreased, whereas no 
significant changes in fasting glucose levels were observed. 
Additionally, lipid metabolism was improved significantly. Serum TC, 
LDL, and very low-density lipoprotein (VLDL) levels decreased 
significantly after the intervention (paired t-test, Figure 1C).

3.2 Fecal metagenome analyses

We obtained 47,661,359 paired-end reads on average based on 
shotgun metagenomic sequencing. No significant changes were 
observed in the Shannon, Simpson, ACE, or CHAO indices among 
healthy control, children with obesity before and after weight loss. A 
total of 2,143 species were detected, of which 1,185 overlapped among 
the three groups. Species accumulation curves, which were used to 
measure and predict the magnitude of the increase in species richness 
with sample size, showed that the sample size was sufficient. 

TABLE 1 Clinical parameters of the study population.

Characteristics
Control 
(n  =  16)

Obesity 
(n  =  30)

Post-
intervention 

(n  =  22)

Gender male 8 24 16

Female 8 6 6

Age (years) 10.57 ± 2.77 10.79 ± 1.86 10.88 ± 1.81

Height 128.37 ± 17.29 151.09 ± 13.58 149.45 ± 10.05

Weight 25.86 ± 7.46 65.87 ± 16.73a 56.28 ± 15.05a,b

BMI (kg/m2) 15.32 ± 1.41 28.74 ± 4.18a 24.76 ± 4.16a,b

BMI-SDS −0.30 ± 0.63 4.27 ± 1.80a 2.64 ± 1.37a,b

ap < 0.05, compared with control. bp < 0.05, compared with the obesity group.
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Additionally, the rank–abundance curve showed that the species 
abundance distribution in each sample was identical 
(Supplementary Figure S1). Differential analyses were performed 
from the phylum to species level using relative abundances. Wilcoxon’s 
test with Benjamini–Hochberg correction showed significant changes 
in the relative abundance of gut microbiota phyla, families, and species 
among the control, obesity, and post-obesity groups. Figure 2A shows 
the top 18 phylum in terms of overall abundance. Firmicutes (53.2%), 
Bacteroidetes (21.3%), and Actinobacteria (19.6%) were the major 
phyla identified. At the species level, the highest proportions were 
s-Bifidobacterium pseudocatenulatum (8.3%) in the control group, 
s-Bifidobacterium longum (9.7%) in the obese group, s-Faecalibacterium 
prausnitzii (9.1%) in the post-obesity group (Figure  2B). Linear 
discriminant analysis effect size (LEfSe) was used to compare 
differences in gut microbiota composition among the three groups 
and the current LDA threshold was set as 2.66. In the control group, 
higher levels of g-Hungatella, s-Hungatella_hathewayi, s-Bacteroides_
caccae, and s-Blautia_wexlerae were observed. Higher levels of 
p-Actinobacteriac, c-Actinobacteria, and o-Bifidobacteriales were 
observed in the obesity group, whereas the post-obesity group showed 
higher levels of p-Bacteroidetes, c-Bacteroidia, and o-Bacteroidales 
(Figure 2C).

Next, we compared the differential relative abundances of taxa 
between the two groups by performing metagenomeSeq analysis. At 
the phylum level, Corynebacteriales, Micrococcales, Lactobacillales, 
Fusobacterials, and Enterobacterales were more abundant in the obese 
group than in the control group. Lactobacillales were significantly 
more abundant in the post-intervention group than in the obesity 

group (Figure 2D). At the species level, s-Clostridiales_bacterium_
Marseille_P5551 and s-Clostridiales_bacterium_Marseille-P5551 levels 
were significantly higher in the obese group than in the control group 
(log2FC = 3.062 and 2.352, respectively). In contrast, s-Rothia_kristinae 
and s-Enterobacter_roggenkampii levels were significantly lower in the 
obese group than in the control group (logFC = −6.236 and − 4.888, 
respectively). After weight loss, s-Streptococcus_infantarius and 
s-Leuconostoc_citreum levels increased by 3.354 and 1.505 folds, 
respectively, compared with those before weight loss (Figure  2E). 
Additionally, we constructed association networks for the dominant 
microbial taxa in our population (Figure 2F). S-[Eubacterium]_hallii 
and s-Dorea_longicatena were significantly and positively correlated 
(r = 0.732, p < 0.01), whereas s-Enterococcus_faecium and 
s-[Eubacterium]_rectale were significantly negatively correlated 
(r = −0.566, p < 0.01).

To further examine functional differences in the gut microbiota 
between the obesity and control groups, CAZyme, Gene Ontology 
(GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
annotations were used to classify bacterial proteins. We identified 518 
CAZymes for subsequent analyses (Figure 3A). Carbohydrate-binding 
modules and Glycoside hydrolases accounted for the highest 
proportion in the control group. Glycosyltransferases, auxiliary 
activities, carbohydrate esterases, and polysaccharide lyases accounted 
for the highest proportion in the obesity group. Based on the results 
of the KEGG analysis, the peroxisome proliferator-activated receptor 
and hypoxia-inducible factor 1 signaling pathways were enriched in 
the control group. The phosphotransferase system was enriched in the 
obesity group, and the citrate and tricarboxylic acid cycle (TCA) 

FIGURE 2

Children obesity and weight loss alter gut microbiota. Taxonomic classification at the phylum (A) and species (B) level of gut microbiota. The 
differences of gut microbiota among controls and children with obesity before and after weight loss intervention using LEfSe analysis (linear 
discriminant analysis, LDA threshold is 2.66) (C) and metagenomeSeq (The false discovery rate, FDA was controlled by the Benjamini-Hochberg, 
adj.p <  0.05) (D). Relative abundances of fecal gut microbiota responsible for differentiation between the two groups (E). The spearman correlation 
analysis was used to explore the co-occurrence network. The relevant networks with Spearman’s correlation, |rho|  >  0.6 and p <  0.05 were shown (F).

https://doi.org/10.3389/fnut.2024.1423724
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yin et al. 10.3389/fnut.2024.1423724

Frontiers in Nutrition 06 frontiersin.org

cycles were enriched in the post-obesity group (Figure  3B). The 
EggNOG analysis results showed that the most enriched orthologs 
were involved in cell wall membrane envelope biogenesis in the 
control group, energy production and conversion in the obesity group, 
and inorganic ion transport and metabolism in the post-obesity group 
(Figure  3C). In total, 62 GO pathways were enriched in the 
participants, including metabolic processes, protein-containing 
complexes, catalytic activities, and transporter activities (Figure 3D).

3.3 Serum lipidomics and correlation 
analyses in the obesity and control groups

Forty-two lipid classes and 4,086 lipid species were identified in 
our cohort. The percentage of Peak QC samples exhibiting a RSD of 
30% or less constituted over 80% of the total number of Peak QC 
samples. The composition of lipid subclasses in each sample is 
presented in a circular diagram (Supplementary Figure S2). A chord 
diagram was used to determine the co-regulatory relationship of lipids 
(|r| > 0.8, p < 0.05). Robust associations were identified between TG 
levels and diacylglycerol (DG), wax esters (WE), and sphingosine 
(SPH) levels. The partial least squares-discriminant analysis (PLS-DA) 
analysis showed a significant effect of the intervention on separating 
children with obesity before and after weight loss from the control 
children (Figure 4A). The total lipid contents (TG, PI, MG, Cer, and 
SPH) were higher in the obesity group than in the control group 
(Figure 4B). At the species level, we screened 138 lipids for significant 
changes (VIP > 1, p < 0.05), of which 55 were upregulated and 83 were 
downregulated in the obesity group compared with those in the 
control group. Phosphatidic acid (PA)(37:1) was the most upregulated 
lipid (fold change = 12.39). Additionally, the relative abundances of 

SPH(d22:1) and WE(22:1) were significantly higher in the obesity 
group than in the control group. The top few downregulated lipids in 
the obesity group were SM(d18:0_22:1), PS(27:1_11:1), and ChE(2:0) 
(Figure 4C).

To determine the possible role of lipids in the clinic, a heatmap 
was used to visually represent the correlation matrix of lipids and 
clinical indices. The relative abundances of SPH(d22:1), WE(22:1), 
SPH(d18:0), SPH(d16:0), SM(d36:0), and SM(d40:0) were positively 
correlated with the BMI-SDS, whereas those of PC(17:0), 
TG(16:0_18:2_18:2), and Co(Q8) were negatively correlated. 
SPH(d22:1), WE(22:1), SPH(d18:0), SPH(d16:0), and PE(27:2e) levels 
were positively associated with fasting insulin levels and HOMA-IR. In 
contrast, PC(17:0), PC(17:0), PS(27:0_11:2), and ChE(2:0) levels were 
negatively correlated with fasting insulin levels and HOMA-IR. Among 
the liver enzymes, SPH(d20:0), SPH(d18:0), and SPH(d16:0) levels 
were negatively correlated with ALT and AST levels (Figure 4D).

Additionally, we  performed a correlation analysis between 
significantly altered lipids and gut microbiota. The relative levels of 
SPH(d22:1), SPH(d20:0), SPH(d18:0), SPH(d16:0), and WE(22:1) 
were positively associated with the abundances of s-Leuconostoc_
mesenteroides, s-Enterobacter_roggenkampii, s-Klebsiella_variicola, 
s-Leuconostoc_lactis, and s-Rothia_kristinae, respectively. PE(27:2e) 
levels showed a robust positive correlation with s-Fusobacterium_
periodonticum. In contrast, SM(d40:0) levels were negatively correlated 
with s-Clostridiales_bacterium_Marseille-P5551. Additionally, 
CerP(d41:3 + 2O), ChE(2:0), and PS(27:0_11:2) levels were negatively 
correlated with s-Collinsella_sp.AF15-51 and positively correlated with 
s-Lachnospiraceae_bacterium_TF09-5 abundances (Figure  4E). 
Finally, a co-relationship network was conducted to seek the central 
traits. As shown in Figure  4F, the lipids and gut microbes were 
significantly associated with BMI-SDS and HOMA-IR.

FIGURE 3

Children obesity and weight loss alter gut microbiota function. Function enrichment analysis were performed using CAZyme (A), Kyoto Encyclopedia 
of Genes and Genomes (KEGG) (B), EggNOG (C), gene Ontology (GO) (D), annotations. LDA threshold was 2.66.
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3.4 Serum lipidomics and correlation 
analyses in the obesity and 
post-intervention groups

Lipid compositions before and after weight loss were compared in 
children with obesity. At the species level, we screened 177 lipids for 
significant changes (VIP > 1, p < 0.05), and 42 upregulated and 125 
downregulated lipids in the post-intervention group were compared 
with those in the obesity group (Figure 5A). A robust association was 
observed between WE  and SPH. The most upregulated lipid was 
TG(16:0_18:2_20:5) (log2FC = 13.71). additionally, 
TG(20:0_18:2_20:5) and PC(35:2e) levels were significantly higher in 
the post-intervention group than in the obesity group. The top few 
lipids downregulated in the post-intervention group were 
TG(16:0_14:0_14:0), SPH(d18:0), and WE(22:1). Differences observed 
between the children with obesity and the control indicated that the 
relative levels of CoQ8 and ChE(2:0) were higher after weight loss and 
those of SPH(d22:0) were lower than those before weight loss 
(Figure 5B).

Correlation analysis was performed between lipid levels and 
clinical parameters, with significant changes before and after weight 
loss. The relative levels of SPH(d20:0), SPH(d22:1), WE(22:1), 
SPH(d18:0), SPH(d16:0), and SM(d40:0) were positively correlated 
with BMI-SDS, whereas those of TG(16:0_18:2_20:5), PE(39:4e), and 
PE(37:4e) were negatively correlated. SPH(d20:0), SPH(d22:1), 
WE(22:1), SPH(d18:0), SPH(d16:0), and SM(d40:0) levels were 
positively correlated with fasting insulin levels and HOMA-IR. In 
contrast, Hex1Cer(t38:2), PE(37:4e), and PE(39:4e) levels were 

negatively correlated with fasting insulin levels and HOMA-IR 
(Figure 5C). The altered microbiota and lipids were correlated with 
each other. S-Streptococcus_infantariu and s-Leuconostoc_citreum 
abundances were significantly and positively correlated with 
SPH(d20:0), SPH(d22:1), WE(22:1), SPH(d18:0), SPH(d16:0), and 
TG(16:0_16:0_16:0) levels (Figure 5D). Finally, the co-relationship 
network identified that significantly changed lipids and gut microbes 
were associated with HOMA-IR.

4 Discussion

The gut microbiota and lipids modulate obesity. However, limited 
information is available regarding their effects on children with 
obesity. In this study, we examined changes and correlations in gut 
microbiota and serum lipid metabolism in children with obesity 
before and after weight loss and healthy controls. The principal novel 
findings of this research indicated significant variations in the lipid 
compositions of fecal and blood samples across the three studied 
groups. We identified specific lipid and gut microbiota markers that 
exhibited a strong correlation with childhood obesity. Furthermore, 
notable alterations in gut microbiota functions were detected in 
children with obesity following weight loss interventions.

Dyslipidemia and pathoglycemia are common complications of 
childhood obesity. Our findings showed that the obesity group showed 
significantly higher fasting glucose, HOMA-IR, TC, LDL, ALT, and 
AST levels than did the control group, and these levels significantly 
improved after weight loss with the life intervention. Treatment 

FIGURE 4

Comparisons of serum lipidomic profiles and associations of representative serum metabolites with clinical indices and gut microbial species in 
controls and children with obesity. (A) Principal component analysis (PCA) of lipidomic profile in control, children with obesity and after intervention 
samples. (B) Lipidomic profiles of controls and children with obesity. (C) Relative abundance of representative lipids between controls and children 
with obesity. Heatmap of Spearman’s correlation coefficient between the significantly different lipids and (D) clinical indices and (E) gut microbiota in 
controls and children with obesity. (F) Correlation network analysis. *p  <  0.05, **p  <  0.01.
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options for childhood obesity are limited, and no drugs are currently 
available to treat the condition. To prevent obesity, it is necessary to 
ensure healthy linear growth in children while restricting their calorie 
intake. Most children in the obese group managed to lose weight with 
supervision and rewards from both investigators and parents. This 
indicated that the life intervention exerted a substantial effect on 
weight loss in children with obesity. As the duration of the intervention 
increased, long-term supervision could not be effectively guaranteed, 
and four children dropped out. This finding indicates that lifestyle 
interventions have some limitations. It is imperative to investigate 
alternative interventions such as altering the gut microbiota and 
identifying possible therapeutic targets.

The metagenomics analysis revealed no significant differences in 
the diversity of gut microbiota between children with obesity and the 
controls. Firmicutes and Bacteroidetes abundances significantly 
decreased in children with obesity and increased after weight loss, 
which was consistent with previous results (23). In the present study, 
we  found that s-Lachnospiraceae_bacterium_TF09-5 and 
s-Clostridiales_bacterium_Marseille-P5551 levels increased 
significantly in children with obesity. Zhu et al. (24). showed that 
f-Lachnospiracea was enriched in obesity-sensitive mice. Additionally, 
we  found increased s-Clostridiales_bacterium_Marseille-P5551 
abundance in children with obesity. We identified 13 probiotics that 
were significantly decreased in these children. The top decreased 
species was s-Rothia_kristinae. Liver steatosis and inflammation 

improved significantly when an alcoholic fatty liver mouse model was 
supplemented with Rothia (25). A study on the effects of 
s-Leuconostoc_pseudomesenteroides showed its role in reducing body 
weight and improving dihydroceramide levels in high-fat diet-induced 
obese mice (26). Additionally, s-Kluyvera_georgiana was inversely 
associated with 25-hydroxyvitamin D levels in women with obesity 
suffering from polycystic ovary syndrome (27). These findings 
indicated that gut microbiota was substantially altered in children 
with obesity. After the lifestyle intervention, s-Streptococcus_
infantarius and s-Leuconostoc_citreum abundances increased 
significantly. These two microbiotas are closely related to milk 
fermentation, indicating that changes in the dietary structure during 
the process of weight loss in children affect the gut microbiota (28). 
We analyzed differences in microbiota functions between different 
groups. Glycosyltransferase and phosphotransferase system pathways 
were enriched in the obesity group, suggesting that gut microbiota 
also plays a role in host modification. Glycosylation and 
phosphorylation modifications in individuals with obesity affect 
protein functions such as glucose transport, lipoprotein binding, and 
inflammation (29). The changes in carbon fixation and the TCA cycle 
after weight loss indicated that gut microbiota also played a role in the 
process of weight loss.

Lipid species play critical roles in cellular structure, energy 
metabolism, and cell signaling. Lipid dysregulation is closely 
associated with obesity progression. As shown by PLS-DA, lipidomics 

FIGURE 5

Comparisons of serum lipidomic profiles and associations of representative serum metabolites with clinical indices and gut microbial species in 
children with obesity before and after weight loss intervention. (A) Lipidomic profiles of children with obesity before and after weight loss intervention. 
(B) Relative abundance of representative lipids between children with obesity before and after weight loss intervention. Heatmap of Spearman’s 
correlation coefficient between the significantly different lipids and (C) clinical indices and (D) gut microbiota in children with obesity before and after 
weight loss intervention. (E) Correlation network analysis. *p  <  0.05, **p  <  0.01.
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could clearly distinguish between the controls, children with obesity, 
and children with obesity after weight loss. The total abundance of 
diglycerides and phosphatidylinositol was significantly higher in 
children with obesity and decreased after weight loss, which is 
consistent with the results in adults with obesity (30). However, several 
studies have reported that the levels of several PI species are lower in 
children with obesity than in controls (31–33). Phosphatidylinositol 
(PI)(36:3), PI(38:1), PI(39:6), PI(40:4), and PI(44:6e) levels were lower 
in children with obesity at the subspecies level. 
Phosphatidylethanolamine (PE)(37:2e) was associated with TC and 
LDL levels. In a study on adults with obesity, increased 
phosphatidylethanolamine levels increased susceptibility to 
nonalcoholic fatty liver disease (NAFLD), inhibited hepatocyte 
proliferation, and induced inflammation (34). Draijer et  al. (35) 
identified PE as a potential biomarker of pediatric NAFLD. However, 
PE(37:4e) and PE(39:4e) were negatively related to ALT levels after the 
intervention, proving that chain length and saturation affect PE 
function differently in children with obesity. LPC is produced through 
the cleavage of phosphatidylcholine and plays a role in cholesterol 
biosynthesis and fatty acid oxidation (36). Research conducted by 
Sharma et al. (37) indicates that elevated plasma LPC levels in children 
with obesity correlate with BMI, a finding that aligns with our 
own results.

Sphingolipids are the second most abundant membrane lipids. 
The relative abundances of sphingolipids and ceramides were 
significantly higher in the obesity group than in the control group. 
Sphingolipid and ceramide levels increased significantly after weight 
loss. Moderate-intensity exercise without dietary intervention also 
induces significant sphingolipid reduction (38). Most SPHs and 
ceramides were positively correlated with metabolic parameters in our 
cohort. Hellmuth et al. (20) found that SM(32:2) was closely related to 
the BMI z-score. Sphingosine-1-phosphate affects insulin signaling via 
sphingosine-1-phosphate receptors (39). Ceramide content increases 
in the presence of excess fatty acids and affects insulin-stimulated Akt 
activation (40). SPHs positively correlated with s-Enterobacter_
roggenkampii. A recent study demonstrated that sphingolipids 
produced by gut bacteria could enter host metabolic pathways and 
affect ceramide levels (41). Given that SPHs were associated with most 
of the significantly altered microbiota, it is likely that the changes in 
SPHs were a consequence, rather than a cause, of the changes in gut 
microbiota. There are a few reports on hexosylceramide levels in 
children with obesity. Decreased hexosylceramide levels have been 
observed in children with obesity. In addition, Her1Cer(t38:2) levels 
were negatively associated with HOMA-IR. A previous study reported 
that hexosylceramide levels were inversely associated with 
dysmetabolic biomarkers (42).

We found that CoQ8 levels were negatively correlated with most 
obesity-related indicators, reflecting reduced coenzyme metabolism 
in children with obesity. CoQ8 plays a critical role in increasing and 
streamlining coenzyme Q production (43). CoQ supplementation 
rescued ceramide-associated IR (44). A positive correlation was 
observed between CoQ8 levels and s-Lachnospiraceae_bacterium_
TF09-5 abundance. Coenzyme Q biosynthesis is also observed in 
bacteria (45). The mechanism of action of CoQ8 in obesity requires 
further exploration.

In the joint analysis of lipids and gut microbiota, ChE(2:0) levels 
were positively correlated with s-Lachnospiraceae_bacterium_TF09-5 
but negatively correlated with s-Corynebacterium_variabile. A recent 
study showed that cholesteryl esters synthesized by hepatocytes and 

enterocytes affected β-oxidation and glucose metabolism (46). Taken 
together with the significant positive correlation between ChE levels 
and HOMA-IR, it is reasonable to hypothesize that gut microbiota 
may affect glucose metabolism via ChE.

To the best of our knowledge, the current investigation represents 
the inaugural effort to integrate untargeted lipidomics and gut 
metagenomics in order to evaluate the lipid and gut microbiota 
profiles among normal-weight children, children with obesity, and 
children with obesity following weight loss. Previous research has 
established a connection between gut microbiota and lipid profiles in 
children with obesity. Nonetheless, this study is not without its 
limitations. Firstly, the research was conducted with a relatively small 
sample size within a pediatric clinic, which may introduce selection 
bias. Secondly, the simultaneous collection of serum and stool samples 
precludes the establishment of a causal relationship between lipids and 
gut microbiota. Thirdly, variations in sociodemographic factors and 
dietary habits may exert some influence on gut microbiota 
composition. Despite these limitations, the present study primarily 
focuses on the effects of dietary energy restriction and lifestyle 
modifications on childhood obesity. Consequently, there is a pressing 
need for a multi-center study to enhance the sample size. Furthermore, 
the implementation of questionnaires addressing socioeconomic 
factors and diverse dietary patterns is recommended to further 
investigate the impact of these variables on childhood obesity and 
weight loss through gut microbiota in future research endeavors.

In conclusion, the present study has identified a relationship between 
altered gut microbiota and serum lipid concentrations in children with 
obesity, along with associated clinical markers. The findings contribute 
to our understanding of the mechanistic relationship between modified 
gut microbiota and childhood obesity, as well as weight reduction, 
indicating that the gut microbiome may serve as a viable target for 
interventions aimed at reducing weight in pediatric populations.
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SUPPLEMENTARY FIGURE S1

Species diversity analysis of the metagenome of gut microbiota. (A) Alpha 
diversity in controls, children with obesity and after intervention represented 
by Shannon, Simpson, ACE, or CHAO indices using pairwise Wilcoxon rank 
sum test (p  >  0.05 for measured index). (B) Venn diagram of three groups of 
gut microbiota species were obtained after identification. (C) The species 
accumulation curves of all subjects. (D) The rank–abundance curves of 
all subjects.

SUPPLEMENTARY FIGURE S2

Categorical composition of serum lipidomics. The subclass of lipids number 
(A) of all subjects and proportion of controls (B), children with obesity (C) and 
after weight loss intervention (D) were shown.
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