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Background: The VDR gene is identified as a crucial host factor, influencing the 
gut microbiota. The current research focuses on an observational study that 
compares gut microbiota composition among individuals with different VDR 
gene TaqI polymorphisms in a Caucasian Spanish population. This study aims to 
elucidate the interplay between genetic variations in the VDR gene and the gut 
microbial composition.

Methods: 87 healthy participants (57 men, 30 women), aged 18 to 48  years, were 
examined. Anthropometric measures, body composition, and dietary habits 
were assessed. VDR gene polymorphism TaqI rs731236 was determined using 
TaqMan assays. The V3 and V4 regions of the 16S rRNA gene were sequenced 
to study bacterial composition, which was analyzed using QIIME2, DADA2 
plugin, and PICRUSt2. Statistical analyses included tests for normal distribution, 
alpha/beta diversity, ADONIS, LEfSe, and DESeq2, with established significance 
thresholds.

Results: No significant differences in body composition or dietary habits were 
observed based on VDR genotypes. Dietary intake analysis revealed no variations 
in energy, macronutrients, or fiber among the different VDR genotypes. 
Fecal microbiota analysis indicated significant differences in alpha diversity 
as measured by Faith’s Phylogenetic Diversity index. Differential abundance 
analysis identified taxonomic disparities, notably in the genera Parabacteroides 
and Butyricimonas.

Conclusion: Overall, this study suggests potential associations between genetic 
variations in the VDR gene and the composition and function of gut microbiota.
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1 Introduction

The Vitamin D receptor (VDR) is a conserved nuclear receptor 
controlling the primary physiological actions vitamin D’s, active form, 
1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) (1). It is part of the 
ligand-responsive transcription factors in the nuclear hormone 
receptor superfamily (2). This receptor is prominently expressed in 
multiple tissues, including the intestines, adipose tissue, liver, and 
immune cells, with higher expression observed in small intestine and 
colon epithelial cells (3, 4). It plays a key role in regulating metabolic 
and immune functions, serving as an essential regulator of intestinal 
cell proliferation and differentiation, barrier function, intestinal 
immunity and host-microbial interactions (5).

The VDR gene exhibits an extensive array of allelic variants within 
the VDR locus, encompassing over 900 variants. Among these, the 
most extensively researched polymorphisms include ApaI 
(rs7975232), BsmI (rs1544410), TaqI (rs731236), and FokI 
(rs10735810) (6). Regarding the BsmI–ApaI–TaqI polymorphism, the 
findings remain controversial. Although there is a tendency for the Bat 
haplotype (C allele for TaqI) to exhibit higher levels of mRNA 
expression compared to the baT haplotype (T allele for TaqI), the 
results have been inconsistent. Nevertheless, there appears to be a 
general trend indicating that the Bat haplotype demonstrates a more 
favorable response than the baT haplotype (7). The TaqI restriction 
site polymorphism (T/C) has been linked with health status in various 
studies. The T allele of the TaqI polymorphism has been associated 
with the risk of suffering post-transplant diabetes mellitus (DM) (8), 
and osteoarthritis in the knee (9). Links have been established between 
TaqI polymorphisms and susceptibility to Crohn’s disease, multiple 
sclerosis or primary hyperparathyroidism, renal carcinoma, and the 
risk of metastases in breast cancer (10). However, controversial results 
have been observed between TaqI polymorphisms and prostate cancer, 
DM type 2 and nephrolithiasis (10). Additionally, VDR has been 
proposed as a potential key player in the pathogenesis of obesity, 
through the discovery of a strong association between the VDR TaqI 
‘T’ allele and obesity in a Greek population (11). A study in Iranian 
population also found a significant association between the TaqI ‘T’ 
allele and obesity, contributing to an increment in the BMI of 3 kg/m2 
per risk allele (12), whereas in Asian Indians the tt (CC) genotype of 
the TaqI polymorphism was associated with ≥5% weight loss after 
lifestyle interventions (13). However, no significant relationships were 
observed between TaqI genotypes when analyzed as a risk score in a 
Mendelian Randomization study in 42,024 Caucasians. A significant 
causal effect of the vitamin D metabolism-risk score on obesity was 
not found (14). The combined effects of obesity and VDR gene 
polymorphisms on susceptibility to type 2 diabetes mellitus (T2DM) 
have been explored. However, the specific relationship between TaqI 
polymorphism and T2DM remains unclear (15). Overall, the 
association between TaqI VDR polymorphism and obesity or T2DM 
is still under investigation, and further research is required to fully 
understand the relationship. However, these data suggest that lifestyle 
interventions could reveal one or several modifiable factors associated 
with the TT genotype that may be responsible for the effect.

The human VDR gene is the first to be identified in a genome-
wide association analysis, involving two cohorts, totaling 1812 
individuals, as a critical host factor that shapes the gut microbiota at 
the genetic level (16). In mice lacking the VDR gene, significant shifts 
in the microbiota relative to control mice have been observed. These 

changes encompass reduced levels of bacteria belonging to the 
Firmicutes phylum, increased levels from the Bacteroidota and 
Proteobacteria phyla (17), modifications in various bacterial genera, 
including Eubacterium, Bacteroides, and Salmonella (18), and shifts in 
critical pathways within the intestinal microbiota. These alterations 
may have implications for detoxification, infection, cancer, and other 
diseases (19). The absence of VDR leads to dysbiosis, indicating a 
critical role of VDR in shaping gut microbiota communities (20).

In this work we  have conducted an observational study to 
compare the gut microbiota composition among individuals with 
different VDR gene TaqI (rs731236) polymorphisms, in a Caucasian 
Spanish population. By analyzing genetic variations in the VDR gene 
and their potential impact on the gut microbial composition, we aim 
to shed light on the interplay between these factors and contribute to 
the development of personalized medical approaches.

2 Materials and methods

2.1 Ethics approval and consent to 
participate

The study was an observational study conducted in accordance 
with the Declaration of Helsinki, and the protocol received approval 
from the Research Ethics Committee of the Community of Madrid 
(CEIm-R; Ref: 47/560280.9/18). All participants provided written 
informed consent.

2.2 Participant characteristics

The study included a total of 87 healthy participants, comprising 
57 men and 30 women, aged 18 to 48 years. Inclusion criteria included 
healthy Caucasian men and women aged 18–50 years with a body 
mass index (BMI) of 18.5–25 kg/m2 and exclusion criteria any kind of 
pathology (current or within 6 months prior to the study), previous 
gastrointestinal surgery, antibiotic intake 3 months before the study, 
smoking, use of prebiotics, probiotics, or nutritional complements, 
being vegetarian or vegan diets, and pregnancy or lactation.

2.3 Anthropometry and body composition

Height and weight were measured with a tallimeter (Asimed T2, 
Barcelona, Spain) and a balance scale (Ano Sayol SL, Barcelona, 
Spain), respectively. Body mass index (BMI) was calculated as weight 
(kg) divided by height (m2). Body composition, including estimated 
visceral adipose tissue (VAT), body fat percentage (BFP), and body fat 
mass (BFM), was evaluated on the day of stool sample collection using 
dual-energy X-ray absorptiometry (DEXA; Hologic DEXA scan, 
Hologic Inc., Barcelona, Spain).

2.4 Dietary habits

A self-reported food frequency questionnaire (FFQ), validated for 
the Spanish adult population, was used to gather information on the 
frequency and quantity of food consumption. The questionnaire 
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includes 93 items encompassing various foods and food groups. 
Participants reported their usual intake of different foods and 
beverages categorizing their consumption frequency within 
predefined intervals (never or less than once a month, 1–3 times per 
month, 1 time per week, 2–4 times per week, 5–6 times per week, 1 
time per day, 2–3 times per day, 4–5 times per day, 6 or more times 
per day). The data collected from the questionnaire was input into the 
DietSource 3.0 software (Novartis, Barcelona, Spain), a dietary 
analysis program to calculate the intake of macronutrients, fiber and 
total energy (21).

2.5 Sample collection

Participants were provided with the Fe-Col® Fecal Sample 
Collection Kit (Alpha Laboratories, Hampshire, United Kingdom), 
along with an insulated bag and ice blocks to preserve the samples 
until delivery to the laboratory. Stool samples were stored at −80°C 
until extraction.

2.6 DNA extraction

DNA from humans and bacteria was extracted from 100 mg of 
stool sample using the commercial E.Z.N.A.® Stool DNA Kit (Omega 
Biotek, Norcross, GA) and a bead-beating homogenizer (Bullet 
Blender Storm, Next Advance, NY). The concentration and purity of 
DNA were assessed using the Quant-iT PicoGreen dsDNA Assay Kit 
(ThermoFisher Scientific, Waltham, MA) and an FP-8300 
spectrofluorimeter (Jasco, Tokyo, Japan). Bacterial DNA was utilized 
for microbiota analysis, while human DNA was used for 
VDR genotyping.

2.7 VDR genotyping

Applied Biosystems TaqMan® SNP Genotyping Assays (Applied 
Biosystems, Foster City, CA, Country; assay ID: C_2404008_10) were 
used for allelic discrimination analysis of the TaqI VDR (rs731236) 
gene polymorphism. The StepOnePlus Real-Time PCR system 
(ThermoFisher Scientific) was employed following a protocol that 
included denaturation at 95°C for 10 min, then 50 cycles of 
denaturation at 92°C for 15 s, annealing/extension at 60°C for 1 min, 
and a final extension step of 30 s at 60°C. Fluorescence analysis was 
performed with Allelic Discrimination 7,500 software v.2.0.2. After 
genotyping, participants were classified based on the VDR genotype: 
TT, TC and CC for subsequent analyses. The allele and genotypes 
frequencies were calculated using the SNPStat program (22). 
Experiments were conducted three times to solve incongruences in 
the genotype assignment. In cases where conflict arise, the Allelic 
Discrimination 7,500 software v.2.0.2 provided by Thermofisher 
was used.

2.8 Sequencing and bioinformatics

The hypervariable V3 and V4 regions of the 16S rRNA gene were 
amplified using the primer pair 5’-TCGTCGGCAGCGTCAGAT 

GTGTATAAGAGACAG-3′ and 5’-GTCTCGTGGGCTCGG AGATG 
TGTATAAGAGACAG-3′. The 459 bp amplicon was visualized in a 
0.8% agarose gel stained with ethidium bromide, and bands were cut 
and purified using the MinElute Gel Extraction Kit (Qiagen, Hilden, 
Germany). The DNA amplicons were sequenced on a MiSeq Illumina 
platform (Illumina, San Diego, CA). The sequencing outputs were 
analyzed using the Quantitative Insights into Microbial Ecology 
(QIIME2) program, version V2023.2 (23). The 16 s rRNA paired reads 
were imported in QIIME2 and processed with the DADA2 plugin 
(24), with the maximum expected error threshold set to 2.0 for both 
forward and reverse reads. Taxonomy assignments were conducted 
using the classify-sklearn method (25) and a customized classifier 
based on the SILVA reference database (26, 27). To build the 
customized reference database, sequences, aligned with our primers 
(forward primer sequence: CCTACGGGNGGCWGCAG, reverse 
primer sequence: GACTACHVGGGTA TCTAATCC) were extracted 
from the SILVA 138.1 database clustered at 99% identity. The classifier 
was trained using our tailored reference reads and SILVA 7-levels for 
reference taxonomy, including species probabilities (weights) likely 
observed in human stool1 (28, 29). Diversity analyses were performed 
through QIIME 2’s q2-diversity plugin. Beta-diversity was assessed by 
calculating the Bray-Curtis, Jaccard, unweighted and weighted Unifrac 
distance metrics. For alpha-diversity, observed features (ASVs), 
Evenness, Shannon and Faith’s Phylogenetic Diversity indices were 
calculated. Kyoto Encyclopedia of Genes and Genomes (KEGG) 
ortholog abundances predictions were obtained with the Phylogenetic 
Investigation of Communities by Reconstruction of Unobserved 
States (PICRUSt2) software (30) using default “max parsimony” 
method for hidden-state prediction and a Nearest Sequenced Taxon 
Index (NSTI) value of 2.0.

2.9 Statistical analysis

Statistical analysis was conducted using QIIME2 v2023.2, SPSS 
software v26.0 (SPSS, Chicago, IL) and the R statistical package v4.1.1 
incorporating the packages: Phyloseq (31) and microbiomeMarker 
(32). The Shapiro–Wilk test was used to assess the normal distribution 
of variables; non-parametric tests were performed when a normal 
distribution was not observed. Differences between groups in terms 
of alpha-diversity were assessed using the Kruskal–Wallis test (33). A 
significance threshold of adjusted p value = 0.05 was applied in all 
calculations. For beta-diversity, the differences between groups were 
assessed using the ADONIS permutation-based statistical test 
adjusted for sex (34). A significance threshold of p value = 0.05 was 
used in all calculations. Linear discriminant analysis coupled with 
effect size (LEfSe v1.0) was employed to identify bacterial-associated 
pathways that exhibited differential representation between groups, 
utilizing default settings. Initially, the Kruskal-Wallis rank test was 
applied to discern specific differences among groups. Subsequently, 
the Wilcoxon rank test was conducted, utilizing sex as subgroups, to 
assess the consistency of differences identified in the preceding step. 
Significance was set at p < 0.05. To determine whether the allele 
frequencies were in Hardy–Weinberg equilibrium for the VDR 

1 https://github.com/BenKaehler/readytowear
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genotypes we employed the Chi-square (χ2) test. The determination 
of differentially abundant bacterial taxa between VDR gene TaqI 
polymorphisms was performed using analysis of composition of 
microbiomes (ANCOM-BC) (35) and DESeq2 (36) adjusting for sex. 
DESeq2 applies a negative binomial generalized linear model for each 
taxon count, estimating log-fold changes between two classes and 
using a Wald test on this value for significance testing. ANCOM-BC 
addresses variability in microbiota samples by assuming that the 
observed sample represent an unknown fraction of the ecosystem’s 
unit volume, with varying sampling fractions among samples. This 
method includes sample-specific offsets in a linear regression 
framework, estimated from observed data, serving as bias corrections. 
Both DESeq2 and LEfSe analyses were conducted on prefiltered data. 
The raw dataset was prefiltered to remove rare taxa occurring in less 
than 20% of the samples. ANCOM-BC being more conservative and 
precise identifies only a small number of ASVs as significant, 
potentially reducing sensitivity. Therefore, DESeq2 was also utilized 
to enhance sensitivity (37). The p-values from the DESeq2 test were 
adjusted for multiple testing using the Benjamini-Hochberg false 
discovery rate (FDR) procedure, with results deemed significant at 
FDR <0.05, in line with DESeq2’s default settings. The p-values from 
the ANCOM-BC test were adjusted using the Holm–Bonferroni 
method, with results considered significant at alpha <0.05, as per 
ANCOMBC’s default settings.

3 Results

3.1 Subjects, genotypes and allelic 
frequencies

Eighty-seven subjects were recruited for this study comprising 57 
men and 30 women. Genotyping results for the rs731236 (TaqI) 
polymorphism were obtained and are presented in Table 1. Compared 
to the 1,000 Genomes Project reference the calculated allele 
frequencies (T = 0.61 and C = 0.39) matched those expected for a 
European population sample. When examining genotypes, TT 
homozygotes were found at a frequency of 0.43, while TC 
heterozygotes and CC homozygotes had frequencies of 0.38 and 0.20, 
respectively, in accordance with Hardy–Weinberg equilibrium 
(p = 0.071; Table 1).

Furthermore, we grouped the carriers for the common allele (TT) 
for VDR and compared their frequency with carriers of the rare allele 
(CC and TC) across all the parameters of this study (body composition, 
dietary habits, and microbiota). Additionally, carriers of the recessive 
alleles (CC) were grouped and compared against carriers of the 

dominant allele (TT and TC) following the approach previously used 
by Vasilopoulos (11).

3.2 Body composition and dietary habits

In this study, we  explored the potential impacts of the 
polymorphisms on body composition and dietary habits. The aim to 
control for dietary habits was to ensure that observed differences are 
not attributed to various dietary patterns, especially given the 
significant influence of diet on the microbiota. After categorizing 
participants based on their VDR genotypes (see 
Supplementary Table S1), no significant differences in body 
composition parameters were observed between the groups (genotypic 
or dominant and recessive allele grouping).

Furthermore, we utilized a Food Frequency Questionnaire (FFQ) 
to record and analyze the participants’ dietary intake, including 
energy, macronutrients, and fiber. Subsequent comparisons of various 
VDR genotypes (Supplementary Table S2) revealed no statistically 
significant variations in the intake levels of macronutrients (such as 
carbohydrates, protein, fat, protein/carbohydrate ratio, and protein/
fat ratio), fiber, and total energy.

3.3 Fecal microbiota

The average number of reads per sample was 167,839. In the study 
of alpha diversity indices among VDR genotypes, no significant 
differences were observed in measures of richness or evenness except 
for Faith’s Phylogenetic Diversity index. This index, which accounts 
for both species richness and phylogenetic distance among species 
present in a community, showed significant differences (p = 0.013; 
Figure  1). The results for observed features (p = 0.250), Shannon 
entropy (p = 0.138) or Pielou evenness (p = 0.320) indicated no 
significant variations. Similarly, for β-diversity 
(Supplementary Figure S1), no significant differences were detected 
across the following distance metrics: Bray–Curtis (R2 = 0.02 p = 0.633), 
Jaccard (R2 = 0.02 p = 0.093), unweighted Unifrac (R2 = 0.03 p = 0.127) 
and weighted Unifrac (R2 = 0.02 p = 0.497).

When analyzing results were according to dominant and recessive 
allelic grouping (CC vs. TC_TT and TT vs. TC_CC) no significant 
differences between groups were observed for alpha diversity 
parameters except for Faith’s Phylogenetic Diversity common allele 
TT vs. rare allele TC_CC grouping (p = 0.006; CC vs. TC_TT p = 0.167; 
Supplementary Figure S1). Other alpha diversity parameters showed 
no significant variations: observed features (TT vs. TC_CC p = 0.105; 
CC vs. TC_TT p = 0.380), Shannon entropy (TT vs. TC_CC p = 0.063; 
CC vs. TC_TT p = 0.164), or Pielou evenness (TT vs. TC_CC p = 0.144; 
CC vs. TC_TT p = 0.234).

Additionally, no significant differences were found in β-diversity 
parameters except for unweighted Unifrac distance metric in the TT 
vs. TC_CC grouping (Figure 2; Supplementary Figures S2, S3): Jaccard 
(TT vs. TC_CC: R2 = 0.01 p = 0.059; CC vs. TC_TT: R2 = 0.01 p = 0.585), 
Bray–Curtis (TT vs. TC_CC: R2 = 0.01 p = 0.181; CC vs. TC_TT: 
R2 = 0.01 p = 0.997), unweighted Unifrac (TT vs. TC_CC: R2 = 0.02 
p = 0.026; CC vs. TC_TT: R2 = 0.01 p = 0.743), and weighted Unifrac 
(TT vs. TC_CC: R2 = 0.01 p = 0.572; CC vs. TC_TT: R2 = 0.01 p = 0.709) 
distance metrics.

TABLE 1 SNP allele and genotype frequencies.

rs731236 
(TaqI, C/T)

SNP allele 
frequencies 

(n  =  87)

Genotypes Frequencies*

T 0.39 TT 0.43

C 0.61 TC 0.38

CC 0.20

*Genotype frequencies were in Hardy–Weinberg equilibrium (p = 0.071) (21).
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3.4 Differential abundance analysis

This study further assessed disparities in microbiota communities 
using DESeq2 methodology on three distinct polymorphisms, TT, 
CC, and TC, as depicted in Figures  3, 4. Notably, the CC 
polymorphism on taxa within the Parabacteroides and Butyricimonas 
genera, both constituents of the Bacteroidota phylum, and the 

Victivallis genus, showed a decrease when compared to TC and TT 
polymorphisms. In contrast, genera from Firmicutes phylum, 
inlcuding Ruminococcus gauvreauii group, Holdemanella, 
Catenibacterium, and the Christensenellaceae_R-7 group, were 
increased in CC polymorphism, as illustrated in Figure  3. 
Noteworthily, no significant disparities in microbiota were observed 
between TC and TT polymorphisms.

FIGURE 1

Alpha-diversity parameter of VDR polymorphisms: Shannon entropy, Observed features, Pielou evenness and Faith’s Phylogenetic Diversity.

FIGURE 2

Principal coordinates analysis plots of Bray-Curtis, Jaccard, unweighted and weighted Unifrac distance metrics for VDR polymorphisms according to 
common versus rare allelic grouping (TT vs. TC_CC).
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When allelic grouping was employed for comparison of 
microbiota communities [carriers for the common allele (TT) vs. 
rare allele (CC and TC) and carriers for the recessive allele (CC) vs. 
dominant allele (TT and TC)], similar outcomes were discerned 
(Figure 4). The microbiota associated with the CC allelic variant 
also showed a decrease in Parabacteroides and Butyricimonas, 
alongside with an increase in the taxa Holdemanella, 
Catenibacterium, and the Christensenellaceae_R-7 group. 
Additionally, in the comparison of the TC_CC allelic variants, a 
reduction of Butyricimonas and a rise of the Ruminococcus 
gauvreauii group were observed.

ANCOM-BC, adjusted for sex, was employed to investigate 
dissimilarities in microbial communities. Notably, only a single 
Amplicon Sequence Variant (ASV) affiliated with Butyricimonas 
virosa (B. virosa) exhibited enrichment in the microbiota of the TT_
TC group when compared with the CC group, as illustrated in 
Figure  5. No other taxonomic differences were identified when 

performing comparisons among genotyping groups (TT, TC, CC) or 
when comparing allelic groups TC_CC and TT.

3.5 Predicted functional metagenome by 
PICRUSt

PICRUSt was employed to infer the functional capacities of 
microbial communities by projecting functional genes linked to various 
taxa (Figure 6). No significant differences in metabolic pathways were 
observed when comparing the microbiota from TT and TC 
polymorphisms. However, LEfSe analysis revealed the enrichment of 
several pathways within the CC polymorphisms. These pathways 
included nivalenol biosynthesis (PW 7013), ubiquinol-8 biosynthesis 
(early decarboxylation; PWY-6708), ubiquinol-10 biosynthesis (early 
decarboxylation; PWY-5857), ubiquinol-9 biosynthesis (early 
decarboxylation; PWY-5856), ubiquinol-7 biosynthesis (early 

FIGURE 3

Differential abundance analysis of VDR polymorphisms (TT, TC, CC) by DESeq2 adjusted by sex. (A). Log fold changes for all significant genera between 
TT and CC. (B). Log fold changes for all significant genera between TC and CC. (C). Normalized abundances of genera identified by differential 
abundance analysis. Boxplots represent normalized count abundances of individual genera in each group (CC, TC, TT). *Belonging to order_
Coribacteriales_family_uncultured_genus_uncultured.
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decarboxylation; PWY-5855), and the superpathway ubiquinol 8 
(UBISYN-PWY) within microbial communities associated with CC 
polymorphisms when compared to TC. In addition, nivalenol 
biosynthesis (PW 7013) was the only pathway that exhibited upregulation 
in CC when contrasted with TT_TC. Furthermore, the superpathway of 
(Kdo)2-lipid A biosynthesis (KDD-NAGLIPASYN-PWY) displayed 
downregulation in the CC group when compared with TT, as well as in 
the TC_CC group when compared to TT.

4 Discussion

The genetic variations associated with TaqI rs731236 have been 
linked to diverse responses in obesity, immune regulation, and 
inflammatory pathways, suggesting a potential influence on the 
composition and function of the gut microbiota. This study aimed to 
characterize the bacterial communities in individuals with different 
genotypes of the VDR gene genotypes (TaqI rs731236), employing the 

FIGURE 4

Differential abundance analysis of VDR polymorphisms in allelic grouping by DESeq2 adjusted by sex results for DESeq2 adjusted by sex. (A) Log fold 
changes for all significant genera between TC_CC and TT. (B) Log fold changes for all significant genera between TT_TC and CC. (C) Normalized 
abundances of genera identified by differential abundance analysis. Boxplots represent normalized count abundances of individual genera in each 
group.
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16S rRNA gene study approach. We investigated microbial diversity 
and abundance across groups (CC, TT, TC), to explore potential 
associations between the TaqI polymorphism alleles C/T and 
genotypes groups with specific microbial profiles.

Analyses of alpha-diversity and beta-diversity reveal that among 
all the studied indices, only those considering phylogenetic diversity 
(Unweighted UniFrac, Faith PD) are significantly different among 
populations with different genotypes for the TaqI polymorphism of the 
VDR gene. This indicates that the observed differences among 
genotypes are primarily due to variations in the presence of 
taxonomically distinct bacterial species rather than abundance 
differences. Different phylogenetic lineages can play specific roles in 
the functionality of the microbiota (38). Therefore, changes in 
phylogenetic diversity may impact the metabolic and biological 
functions of the microbial community. The phylogenetic diversity was 
found to be  higher in individuals with the TT genotype, possibly 
indicating a distinct and/or enhanced functionality of the microbiota 
in this group. The TT genotype/T allele is linked to a higher abundance 
of the Parabacteroides and Butyricimonas genera, recognized for their 
roles in degradation of complex carbohydrates and production of 
short-chain fatty acids. The Parabacteroides genus, a commensal 

member of the gut microbiota, has previously been associated as being 
influenced by the VDR gene (16). Species within Parabacteroides act as 
immune system regulators and possess anti-inflammatory properties 
(39). Some members of this genus play a crucial role in the digestion 
of complex carbohydrates, producing short-chain fatty acids (SCFAs) 
such as acetate, propionate, and butyrate, thereby providing benefits to 
the host. Hence, modifications in the population of this genus have 
been associated to host’s health/disease status, with some species 
suggested as next-generation probiotics (39). The Butyricimonas genus, 
as its name suggests, is associated with butyric acid production, offering 
several benefits, including energy provision to colonocytes, immune 
system modulation by providing anti-inflammatory properties, 
improved nutrient absorption, and hepatic lipid metabolism regulation 
(40). B. virosa has been proposed to have therapeutic potential for 
preventing high-fat diet (HFD)-induced diabetes and metabolic 
disorders in mice. Both live and heat-killed B. virosa improved body 
weight, serum glucose level, insulin resistance, and liver steatosis in 
HFD-induced obese mice (41). Nevertheless, the TT genotype has also 
been associated to increased insulin resistance and chronic low-grade 
inflammation (42). This could be explained by the fact that microbiota 
that produces a high amount of short-chain fatty acids is also associated 

FIGURE 5

Differential abundance analysis by ANCOM BC adjusted by sex. Log fold change of differentially abundant ASV corresponding to Butyricimonas virosa 
when comparing TT_TC to CC.

FIGURE 6

Predicted functional composition of metagenomes based on 16S rRNA gene sequencing data. LEfSe based on the PICRUSTt2 dataset revealed 
differentially enriched metabolic pathways associated with VDR polymorphisms (TT, TC, CC, TT_TC, TC_CC).
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with microbiota dysbiosis, obesity and cardiometabolic risk. However, 
the mentioned study does not conduct an analysis of the microbiota, 
and currently, this is the first time in the literature that the TT 
genotype/T allele is associated with the presence of Butyricimonas in 
the microbiota (43). Further research in this area is needed.

Finally, the Victivallis genus, overrepresented in the TT genotype/ 
T allele, is a sugar fermenter and acetate producer (44). Victivallis, 
known for anaerobic sugar fermentation, alongside genera like 
Parabacteroides and Butyricimonas, known for complex carbohydrate 
degradation and butyrate production, respectively, are also significant 
components of the gut microbiota. Victivallis has been associated with 
decreased adiposity, hepatic steatosis, and diabetes in animal models 
(45, 46), and is less abundant in hypercholesterolemic patients (47), 
suggesting potential positive effects on glucose and fat metabolism in 
individuals with the TT genotype/ T allele.

Conversely, groups less represented in the TT genotype included 
the R. gauvreauii group, Catenibacterium, Holdemanella, and the 
Christensenellaceae_R-7 group. The R. gauvreauii group is a bile-
resistant acetate acid producer using sucrose and sugar alcohols as 
carbon sources (48). R. gauvreauii, stands out for its inability to 
metabolize resistant starches but proficient growth on sugar alcohols 
(49). This unique metabolic behavior may have implications for 
substrate utilization within the gut. It has been observed that 
R. gauvreauii increases in gut microbiota of obese men post exercise and 
is positively associated with respiratory capacity and negatively with 
visceral fat (50). Catenibacterium, a member of the Christensenellaceae 
family, has been linked to leanness and lower BMI, suggesting roles in 
energy metabolism and dietary fiber digestion. Its species produce 
acetic, lactic, butyric, and isobutyric acids from sugars (51). However, 
its health impacts are not fully unclear. While reduced Catenibacterium 
abundance has been linked to obesity (52), conflicting evidence showed 
its enrichment in obesity cases (53). High Catenibacterium levels have 
also been connected to lower trimethylamine oxide (TMAO) levels, a 
cardiovascular disease-related metabolite (54). Holdemanella, a 
relatively unknown genus, has been investigated for potential roles in 
fermentation and anti-inflammatory properties, particularly in colitis 
contexts. It is involved in carbohydrate metabolism and associated with 
health benefits due to its anti-inflammatory properties (55) and 
regulatory effects on glucose metabolism (56). However, links to 
pathological states such as thyroid cancer have been observed (57). 
Different Holdemanella taxa have been positively associated with 
android-type obesity in men and negatively in women (58). Lastly, the 
Christensenellaceae_R7 group, more prevalent in the CC genotype, is a 
heritable microbiota component (59) associated with metabolic health 
in children (60) and adults (61). It has also been linked to lower visceral 
fat and lean mass in several studies (62–64).

In the comparative analysis of metabolic profiles between genotypes 
CC and TT, the TT group showed an overexpression of the 
KDD-NAGLIPASYN-PWY pathway. This pathway is involved in the 
biosynthesis of lipid A, a key component of lipopolysaccharides (LPS) 
present in Gram-negative bacteria’s the outer membrane. This suggests a 
higher presence of Gram-negative bacteria or a specific immunological 
response in the TT group (16). When analyzing metabolic differences 
between genotypes CC and TC, pathways related to coenzyme Q (CoQ) 
biosynthesis, particularly the UBISYN-PWY pathway, were associated 
with the TC group. Ubiquinol-8, essential for the electron transport 
chain and cellular energy production, was significantly overexpressed in 
the TC group, indicating potential implications in metabolism and 
inflammation (65). In the comparison of CC vs. TT_TC genotypes, CoQ 

biosynthesis pathways (PWY-6708, PWY-5857, and PWY-5856) were 
also prominent in the TC group, emphasizing the importance of CoQ 
biosynthesis in this context. Furthermore, the TT_TC group showed 
overexpression of the PWY-7013 pathway (nivalenol biosynthesis and 
propane 1,2 diol degradation) indicating an increased degradation of this 
compound, potentially affecting energy metabolism or substrate 
utilization. In the TC_CC vs. TT comparison, pathways associated with 
menaquinone biosynthesis (PWY-5853) were also overexpressed in the 
TC group. Menaquinones, types of vitamin K produced by certain 
bacteria, are involved in electron transport. These observed differences 
may reflect alterations in the presence or metabolic activity of vitamin 
K-producing bacteria.

The results reveal substantial differences in metabolic pathways 
among the studied groups (CC, TT, TC, TT_TC), emphasizing the 
significance of lipid A and CoQ biosynthesis, as along with changes in 
the degradation of specific compounds and the biosynthesis of 
menaquinones. These findings suggest potential associations with 
specific VDR gene profiles.

Polymorphisms in the VDR gene can lead to significant differences 
in gut microbiota composition and diversity through several key 
mechanisms. The VDR gene encodes the vitamin D receptor, which 
regulates the immune system by influencing the expression of 
antimicrobial peptides that maintain the gut barrier and control 
pathogenic bacteria (66). VDR polymorphisms can alter immune 
responses, affecting gut inflammation levels and creating environments 
that favor certain microbial communities. Additionally, the VDR gene 
is expressed in gut epithelial cells, where it regulates cell proliferation, 
differentiation, and apoptosis processes vital for maintaining gut 
barrier integrity (5). Disruptions in VDR activity can influence which 
microbial species thrive, as evidenced by VDR knockout mice 
exhibiting distinct microbial profiles (20, 67). Furthermore, VDR 
polymorphisms may affect vitamin D status, impacting nutrient 
absorption and metabolism, which in turn alters the gut environment 
and influences microbial growth (68).

The VDR gene TaqI polymorphism can directly affect the 
composition and functionality of the gut microbiome due to the 
critical role that vitamin D signaling plays in immune regulation and 
gut health. Changes in microbiota due to differences in the TaqI 
genotypes could be related to different gene transcription associated 
with the genotypes. However, there are inconsistent results regarding 
which genotypes produce higher levels of mRNA expression, although 
there appears to be  a general trend indicating that the C allele 
demonstrates a more favorable response than the T allele (7).

The TT genotype of the TaqI polymorphism may be associated 
with differential modulation in vitamin D levels or VDR activity which 
could favor an environment that benefits certain bacterial genera. This 
could be an environment that promotes the production or utilization 
of SCFAs, thereby benefiting the proliferation of bacteria involved in 
butyrate production and other SCFAs such as Butyricimonas and 
Parabacteroides. VDR is also involved in the regulation of bile acid 
metabolism. Thus, alterations in VDR signaling due to the TT 
genotype could modify bile acid composition in the gut, facilitating 
the growth of genera like Parabacteroides, with capability to metabolize 
bile acids. Moreover, for the TT genotype, there could be differential 
modulation of cytokines and other immunomodulatory molecules, 
creating an intestinal environment that favors the proliferation of 
specific bacteria such as Butyricimonas and Parabacteroides.

Overall, VDR gene polymorphisms can lead to altered vitamin D 
signaling, which impacts immune regulation, gut barrier integrity, and 
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the gut environment, ultimately influencing the composition and 
diversity of the gut microbiome. These changes can have significant 
consequences for host health, including impacts on immune function, 
inflammation, nutrient absorption, and susceptibility to various diseases.

A limitation of the present study is that although we used a well-
defined sample of healthy participants, the study had a relatively small 
sample size, which may limit the generalizability of the findings to 
larger populations. However, studying the association between genetic 
variants and the microbiota in healthy volunteers facilitates the 
examination of the direct influence of genetic variants on microbiota 
composition without confounding pathological factors. Moreover, in 
our study potential confounding factors, such as sex, dietary habits 
and smoking has been considered.

5 Conclusion

Our research work suggests that polymorphisms in the VDR 
gene may be linked to specific microbiota genera compositions 
and functionalities. This study highlights the importance of 
considering genetic variations, like VDR gene polymorphisms, to 
grasp the intricate interplay between host genetics and gut 
microbiota, which may have implications for personalized 
nutrition and health interventions. Further research is essential to 
unravel the precise mechanisms by which VDR gene 
polymorphisms influence gut microbiota composition and 
function, thereby setting the stage for future investigations and 
potential therapeutic approaches.

Knowledge of how VDR polymorphisms impact gut microbiota 
can contribute to the development of personalized medical 
approaches. Individuals with certain VDR gene variants might 
benefit from tailored probiotic or dietary interventions to optimize 
gut health.
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