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Marine sourced tripeptide SRP 
and its sustained-release 
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exhibiting antihypertensive effect 
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Miaoen Huang 1,2†, Tianji Wang 1,2†, Yinghao Wang 1,3, 
Qingyan Deng 1,2, Jinjun Chen 1,3, Li Li 1,2, Hui Luo 1,2,3 and 
Yingnian Lu 1,2,3*
1 Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical 
University, Zhanjiang, China, 2 College of Pharmacy, Guangdong Medical University, Zhanjiang, China, 
3 Zhanjiang Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China

Biopeptides from Sipunculus nudus were reported with good ACE inhibitory 
activity, and the tripeptide SRP was one with the highest ACE inhibition rate. 
However, the disadvantage of short half-life limited the development of peptide 
drugs. Moreover, the distinct mechanism of the peptide inhibiting ACE remained 
unknown. Thus, in this study, a sustained release formulation of SRP-PLGA-MS 
was designed and prepared. Its long-lasting antihypertensive effect as well 
as improvement of vascular pathomorphology was verified in spontaneously 
hypertensive rat (SHR). In addition, the anti-oxidant activity of SRP in human 
umbilical vein endothelial cells (HUVECs) was evaluated. The results showed 
that SRP inhibited the production of ROS and NO, which involve the NADPH 
oxidase, and Keap1/Nrf2 signaling pathway. This study demonstrated that SRP-
PLGA-MS had the potential to develop sustained-release drugs for hypertension 
treatment.
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1 Introduction

Hypertension can cause serious cardiovascular disease and irreversible damage to organs (1, 
2), and its etiology is complex and involves multiple systems. In particular, vascular endothelial 
dysfunction is considered a direct factor of hypertension (3). Endothelial dysfunction is caused 
by the excessive expression or production of extracellular stimulating factors such as AngII, ROS, 
RNS, ONOO− and other pro-inflammatory cytokines. Therefore, oxidative stress may be a 
potential factor. Oxidative stress is stimulated by the excessive production of ROS, which impairs 
vascular function, cardiovascular remodeling, and other damages in hypertensive patients (4, 5).

AngII is one of the strongest vasoconstrictor (3). In the RAS, ACE converts inactive AngI 
to active AngII (6). Therefore, ACE is a key regulator of blood pressure, and ACE inhibitors 
are generally considered a strategy for designing antihypertensive drugs. Currently, synthetic 
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ACE inhibitors, including captopril, benazepril, and enalapril, are 
used as antihypertensive agents. However, these agents can also cause 
serious side effects such as dry cough, edema and even serious kidney 
damage (7). Thus, safer and more effective natural products with 
ACE-inhibitory and antioxidant properties may improve the 
treatment of hypertension.

SRP, a tripeptide with the amino acid sequence Ser-Arg-Prp, was 
hydrolyzed and extracted from the sandworm Sipunculus nudus L. In 
our previous study (8), SRP was found to be an ACE inhibitor with an 
inhibition rate of 88.56% and an IC50 value of 0.046 mmol/L. Molecular 
docking experiments showed that SRP inhibited ACE activity by 
forming hydrogen bonds with the ACE active site. The structure of 
SRP is similar to Captopril, a commercial antihypertensive agent. 
Therefore, SRP is considered a potential antihypertensive agent.

Recently, ACE inhibitory peptides have been extracted from 
natural seafood, such as sea cucumbers and marine microalgae 
(9–11). However, all these inhibitory peptides have the disadvantage 
of short half-lives. After administration, the drug concentration in 
the blood decreases quickly, leading to large fluctuations in the 
blood concentration. A new drug delivery system (DDS) has been 
developed to solve this problem. This system allowed for slow 
sustained release or maintained a constant release rate of the drug. 
Microspheres made of polylactic acid co-glycolic acid (PLGA) were 
the most common DDS. PLGA is biodegradable and biocompatible. 
The products of PLGA degradation in the body are non-toxic to 
humans and do not require the secondary elimination of residues 
(12, 13). In our previous study, DSPE-PEG-SRP formulation was 
attempted; however, the product purity was not satisfactory (14).

In the present study, we designed and prepared SRP-PLGA-MS 
(Figure 1) and compared its sustained-release effects in vitro and in 
vivo to evaluate its antihypertensive effects in SHR. The antioxidant 
related molecular mechanism of SRP has been explored in HUVECs.

2 Materials and methods

2.1 Materials

All the chemicals and reagents used were of analytical grade. 
AngiotensinII (AngII) was purchased from Sigma-Aldrich Chemical 
Co. DA-FM DA and diphenyltetrazolium (MTT) were purchased 
from Beyotime Biotechnology. DCFH-DA and PLGA 
(lactide:glycolide = 50:50, 5 kDa) were purchased from MCE. Primary 
human umbilical vein endothelial cells (HUVECs; CP-H082) and an 
endothelial growth medium (CM-H082) were obtained from Procell 
Life Sciences & Technology Co. Inducible nitric oxide synthase (iNOS, 
#33424), Nrf2(#41731), Keap1(#41626), GADPH (#52902), NADPH 

oxidases 4 (#48244), ACE (#49627), Goat Anti-Rabbit lgG (H&L) 
HRP (#L35009-1) were products of SAB.

2.2 Animals

Ten-week-old male SHR (n = 16) and SD rats (n = 4) were 
purchased from Guangzhou RAGE Biotechnology Co. (no. 
110324231104930174 and no. 44827200007727, respectively). The 
study strictly adhered to the requirements of animal ethics and welfare 
(Animal Ethics Certificate No. 20230915-001).

2.3 Preparation of SRP-PLGA-MS

SRP-PLGA-MS was prepared using a reported double emulsion 
method, and the formulation parameters were optimized using two 
vital indicators of encapsulation efficiency (EE)and drug loading 
(DL) (15–18). Briefly, PLGA was dissolved in dichloromethane to 
form the oil phase. Under ultrasonic conditions, an SRP aqueous 
solution (5 mg of SRP in 0.01% PVA) was added to the oil phase and 
emulsified to obtain a primary w/o emulsion. The aqueous solution 
(0.01%PVA) was added dropwise to this primary emulsion with 
stirring to form a w/o/w double emulsion. The mixture was stirred 
for 3 h to eliminate dichloromethane and then centrifuged to collect 
the solid microspheres. After centrifugation, the supernatant was 
used as the uncoated SRP.

The concentration of uncoated SRP was detected by HPLC, as our 
previous literature (14), and EE% and DL% were calculated according 
to the following equations (19, 20):

 
( ) weight of uncoated SRP /EE % 1 100total weight of SRP

 = − ×  

 
( ) weight of encapsulated SRP /DL % 100total weight of microspheres

 = ×  

Freshly prepared SRP-PLGA-MS was washed 3 times with 
distilled water and used for analysis and characterization. The 
appearance, average particle size, and zeta potential were measured 
using scanning electron microscopy SEM (TESCAN MIRA LMS, 
Czech Republic) and a PSS particle size meter (PSS Particle Sizer Inc., 
United States).

2.4 In vitro drug release

The in vitro release of SRP-PLGA-MS was measured as follows: 
SRP-PLGA-MS (50 mg) and SRP were suspended in 2 mL deionized 
water, respectively. The two suspensions were stirred at 100 rpm at 
37°C. At designated time, 1 mL of release medium was collected and 
replaced with 1 mL fresh medium. The amount of SRP released was 
measured using HPLC (14, 21). Cumulative amount of drug released.

Abbreviations: PLGA, Polylactic acid co-glycolic acid; ACE, Angiotensin-I-

converting enzyme; AngII, Angiotensin II; AT1R, Angiotensin type 1 receptor; 

NADPH, Nicotinamide Adenine Dinucleotide Phosphate; NOX, NADPH Oxidases; 

Nrf2, Nuclear erythroid 2-related factor 2; Keap1, Epoxy chloropropane Kelch 

sample related protein 1; iNOS, Inducible nitric oxide synthase; ROS, Reactive 

oxygen species; NO, Nitric oxide; GADPH, Glyceraldehyde-3-phosphate 

dehydrogenase; PVA, Polyvinylalcohol; SHR, Spontaneously hypertensive rats; 

SDR, Sprague–Dawley rats; SBP, Systolic blood pressure.
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2.5 In vivo study

2.5.1 Measurement of blood pressure
In the SHR with a systolic blood pressure (SBP) above 170 mmHg, 

each group contained four 10-week-old male rats weighing 200–240 g. 
SHRs were raised on a standard laboratory diet and maintained at 
room temperature (24°C). Captopril, SRP (30 mg /kg body weight) 
and SRP-PLGA-MS (10 mg SRP/kg body weight) were dissolved in 
saline and orally injected into SHRs. The same volume of saline was 
orally administered to the SD rats. After oral administration, SBP was 
measured using a fully automated non-invasive blood pressure 
measurement system (BP-300A, Chengdu Taimeng Software Co., 
China) at designated times (22).

2.5.2 Hematoxylin and eosin staining
Thoracic aortic segments from each rat were fixed in 4% 

paraformaldehyde. They were then embedded in paraffin. These 
tissues were cut into sections–3-4 μm in size, and stained with 
hematoxylin and eosin. The media thickness (distance from the inner 
lamina to the outer lamina) and inner diameter (12 to 6, 3 to 9 o’clock 
positions) of the thoracic aorta were measured (11, 23). The data were 
analyzed using Image-Pro Plus 6.0.

2.6 Immunohistochemical staining

IHC was performed according to the manufacturer’s 
instructions. After deaffinity and rehydration, the 
paraformaldehyde-fixed paraffin-embedded tissue sections were 
washed twice with PBS and blocked with hydrogen peroxide for 
10 min. Antigen extraction was performed. After three washes, 
sections were blocked for 10 min and incubated with ACE and 
NADPH oxidase 4 primary antibodies overnight at 4°C. After three 
washes, the cells were incubated with the secondary antibodies. 
DAB staining was used to observe the signals and hematoxylin 
counterstaining was used to observe the nuclei. Strong positive 
staining was observed under the microscope (23, 24).

2.7 Cell culture and cytotoxicity assay of 
SRP

HUVECs were purchased from Procell (China) and incubated 
in an endothelial growth medium (CM-H082, Procell) containing 
5% FBS and 1% penicillin/streptomycin. The cells were grown at 
37°C under 5% CO2. HUVECs were seeded at a density of 1 × 104 
cells/well in 96-well plates and treated with SRP (312.5, 625, 1,250, 
and 2,500 μM) for 24 h. Each well was treated with 30 μL MTT for 
4 h. The absorbance was measured at 570 nm using a microplate 
reader (25).

FIGURE 1

Scheme. Created by Figdraw.com.
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2.8 Measurement of intracellular ROS and 
NO

HUVECs were treated with SRP (50,100 and 200 μM)and Ang II 
(20 μM) for 24 h. After washing, DCFH-DA (10 μM), Hoechst 
(10 μM), and DA-FM DA (10 μM) were added and the cells were 
incubated for 30 min. After 3 times washed, the fluorescent signal 
(NB-X800LE) was observed and the images were analyzed using 
ImageJ software (22).

2.9 Western blot analysis

Cellular proteins of HUVECs were lysed on ice for 30 min by 
adding cell lysates containing the enzyme inhibitors. Protein 
quantification was performed using a bicinchoninic acid (BCA) kit. 
The quantified samples were then transferred to an electrophoresis gel. 
Proteins were then transferred onto the NC membranes. The 
membranes were incubated with 5% defatted milk for 2 h, washed, and 
incubated with antibodies (iNOS, Nrf2, Keap1, and GADPH) at 4°C 
overnight. After binding to the secondary antibodies, imaging results 
were obtained using automated chemiluminescence image analysis.

2.10 Statistical analysis

Data are presented as mean ± SD. The One-way analysis of 
variance (ANOVA) was used for statistical analysis, p < 0.05.

3 Results

3.1 Microsphere preparation and 
characterization

Different mass ratios of SRP and PLGA were used for the preparation 
of SRP-PLGA-MS. The EE and DL values are listed in Table 1. The 
optimal formulation with a mass ratio of 1:5 (SRP/PLGA, w/w) exhibited 
the highest encapsulation rate (47% ± 8%) and drug load (16% ± 2%).

The overall morphology of SRP-PLGA-MS appeared as regular 
spheres with a low surface porosity (Figure 2). The particle size of 
SRP-PLGA-MS was 41.32 ± 15.19 μm (Figure  3A), and the zeta 
potential was 0.47 ± 0.27 mA (Figure 3B).

3.2 In vitro drug release

The release kinetics of SRP-PLGA-MS in deionized water was 
compared with those of free SRP. As shown in Figure 4A, more than 
90% of free SRP was released within 4 h of administration. Conversely, 
the cumulative release of SRP-PLGA-MS reached 96% within 14 d 

(Figure  4B). Within the period of 0–120 h, the amount of 
SRP-PLGA-MS released was approximately 20%. After 120 h, the 
amount released increased slowly, which may be attributed to the 
progressive degradation of the PLGA microspheres. Therefore, the 
entire process of drug release in SRP-PLGA-MS was slow and 
sustained. These results indicated that SRP-PLGA-MS had a slower 
sustained release than free SRP, which made it effective in overcoming 
the disadvantage of a short half-life.

3.3 Sustained and stable blood pressure 
reduction in vivo with SRP-PLGA-MS

In vivo antihypertensive effects were evaluated in SHR by 
monitoring the systolic blood pressure (SBP). As shown in Figure 5, 
after a single oral administration, SBP in control group was 
maintained at 180.17 ± 4.26 mmHg, with barely fluctuated in 48 h. 
SBP in Captopril group and SRP group was rapidly decreased 
within 2 h, their antihypertensive effect at 2 h was similar (Captopril: 
132.50 ± 4.21 mmHg; SRP: 140.13 ± 5.96 mmHg), and then their 
blood pressure kept climbing. The SBP in SRP-PLGA-MS group 
slowly decreased to 154.85 ± 3.17 mmHg within 6 h and stabilized 
for 48 h. Obviously, the lowest point of SBP in SRP-PLGA-MS group 
was higher than that in SRP group, due to the SRP dosage in 
SRP-PLGA-MS group was about one third in SRP group. The results 
showed that after the concentrated release of Captopril and SRP, 
SBP fluctuated dramatically, which was unfavorable to blood 
pressure homeostasis. In contrast, the drug release of SRP-PLGA-MS 
was sustained in vivo and its antihypertensive effect was long-acting 
and smooth.

3.4 SRP-PLGA-MS improved vascular 
pathomorphology

The rat aortic vessel sections of all experimental groups were stained 
by hematoxylin and eosin (HE) to observe the vascular pathomorphology, 
their lumen diameter and media thickness were measured (Figure 6). In 
Figures 6A,B, the lumen diameter in SRP-PLGA-MS group was larger 
more than that in SHR group, and almost the same as that in SDR group. 
The results showed that the vascular lumen of SHR was narrow resulting 
in blood pressure high. After administration with SRP-PLGA-MS, the 
vascular lumen became enlarged to almost the same as the SDR. In 
Figures 6C,D, the media thickness in SRP-PLGA-MS group was almost 
the same as that in SHR group, yet larger more than that in SDR group. 
The results showed that the blood vessel wall of SHR was compensatory 
thickening due to long-term pressure of hypertension (26). As shown in 
Figure  6C black arrow, the vascular elastic fibers in SHR tensed to 
straight, while in SDR and SRP-PLGA-MS group, the vascular elastic 
fibers relaxed to bend. Our previous studies had confirmed that SRP was 
a good ACE inhibitor (IC50 = 0.046 mmol/L), in this research, the results 
indicated that ACE activity was inhibited in vivo leading to angiotensin 
decreased after administration with SRP-PLGA-MS, thus the vascular 
elastic fibers relaxed and the lumen of vessel expanded, thereby the blood 
pressure lowering (27). Other researcher found that ACE-inhibiting 
peptides altered the pathological morphology of the vessel wall when 
administered continuously for more than 1 week (11, 23). However, in 
this study, due to the short duration of administration, the media 

TABLE 1 Effect of mass ratio of SRP to PLGA on microsphere 
encapsulation rate and drug loading capacity (Mean  ±  SD, n  =  3).

SRP: PLGA 1:4 1:5 1:8 1:10

EE (%) 31 ± 6 47 ± 8 47 ± 3 40 ± 6

DL (%) 16 ± 3 16 ± 2 13 ± 1 6 ± 1
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thickness of the vessel wall was not pathologically altered within 48 h of 
a single administration.

3.5 SRP-PLGA-MS effectively inhibits ACE 
and NADPH oxidase 4

ACE was a key regulator of blood pressure, and NADPH 
oxidase 4 was an activator to induce ROS. Excess ROS caused 
oxidative stress and organ damaged. To further demonstrate the 
antihypertensive mechanism of SRP-PLGA-MS, the expression of 
ACE and NADPH oxidases 4 in the thoracic aorta was detected 
using IHC. In SHR group, ACE and NADPH oxidase 4 was highly 
expressed, while in SRP-PLGA-MS group, the expression of ACE 
and NADPH oxidases 4 significantly reduced, which were almost 

consistent with that of SDR group (Figures  7A–D). The results 
suggested that the formulation had the dual bioactivities of ACE 
inhibition and antioxidant.

3.6 Cytotoxicity assay of SRP

The cytotoxicity of SRP in HUVECs was assayed using the 
MTT assay. This method was used to measure the activity of 
mitochondrial dehydrogenases in living cells. HUVECs were 
incubated with SRP for 24 h. All the concentrations showed 
similar trends. At high concentrations, the cell viability remained 
constant at approximately 80% (Figure  8). Therefore, it can 
be concluded that SRP had no toxic effect on HUVECs after 24 h 
in this study.

FIGURE 2

SEM of SRP-PLGA-MS.

FIGURE 3

Size distribution of SRP-PLGA-MS (A); Zeta-potential of SRP-PLGA-MS (B).
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3.7 SRP effectively inhibits NO and ROS 
production in AngII-stimulated HUVECs

In the fluorescence assay, HUVECs treated with AngII (20 μM) 
showed intense green fluorescence compared to untreated cells 
(Figures  9A,C). SRP treatment significantly reduced the mean 
optical density of ROS and NO from 71.97 to 24.75 and 80.89 to 
8.72, respectively (Figures 9B,D). The results demonstrated that Ang 
II treatment produced more ROS and NO than in untreated 
HUVECs. The SRP treatment effectively inhibited ROS and 
NO production.

3.8 SRP regulates AngII-stimulated Nrf2 
pathway expression in HUVECs

WB was used to examine the expression levels of a range of 
proteins (iNOS, Nrf2, and Keap1) in HUVECs. In AngII-induced 

HUVECs, SRP enhanced the expression of Nrf2, while reduced the 
expression of iNOS and Keap1. The results were showed in Figure 10, 
it indicated that SRP leaded to an increase of antioxidant components 
and decrease of NO, both of them were benefit to reducing 
oxidative stress.

4 Discussion

Poly-(lactic-co-glycolic acid) microspheres have been developed 
as controllable drug delivery carrier for active ingredients including 
some small molecules, peptides, and proteins, which generally have 
sustained release properties, and the duration of sustained release 
varies from a few days to several months (28). In this study, the 
formulation SRP-PLGA-MS was prepared and characterized 
(Figures  1–3), its morphology appeared as regular spheres with 
particle size approximately 41.32 ± 15.19 μm, and the zeta potential 
was 0.47 ± 0.27 mA. The drug release from PLGA-based formulations 

FIGURE 4

In vitro release rate of SRP (A); In vitro drug release of SRP-PLGA-MS (B).

FIGURE 5

Systolic blood pressure changes in SHRs after a single oral administration (n  =  4). The oral administration dose was 30  mg/kg body weight in Captopril 
group and SRP group, 10  mg SRP/kg in SRP-PLGA-MS group. SBP was measured at 0, 2, 6, 18, 36, and 48  h after administration. *p  <  0.05 in all groups 
compared to the control group.
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FIGURE 6

Immunohistochemical analysis and representative pathomorphology images of all groups (n  =  4). (A) Representative photomicrograph of thoracic 
aorta sections stained with hematoxylin and eosin (H and E, ×4). (C) Representative photomicrograph of thoracic aorta sections stained with 
hematoxylin and eosin (H and E, ×40). Black arrows point to vascular elastic fibers. (B) The lumen diameter. (D) The media thickness. Values are 
expressed as the mean  ±  standard deviation. *p  <  0.05, **p  <  0.01, ***p  <  0.001 compared with the model group (SHR).

FIGURE 7

Effect of SRP-PLGA-MS on the ACE and NADPH oxidase 4 expression in thoracic aortic (n  =  5). (A) Representative photomicrograph of the ACE 
expression in thoracic aortic by immunohistochemistry (×40); (C) Representative photomicrograph of the NADPH oxidase 4 expression in thoracic 
aortic by immunohistochemistry (×40); (B) Mean intergrated optical density of ACE; (D) Mean intergrated optical density of NADPH oxidase 4. 
###p  <  0.001 (), ####p  <  0.0001 compared with the blank group normal control (SDR). ***p  <  0.001, ****p  <  0.0001 compared with the model group 
(SHR).

https://doi.org/10.3389/fnut.2024.1423098
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Huang et al. 10.3389/fnut.2024.1423098

Frontiers in Nutrition 08 frontiersin.org

was extensively investigated, and the release mechanism was mainly 
defined as tri-phasic release (burst, lag, and erosion) (29). In this 
study, the duration of sustained release in vitro was more than 300 h 
(Figure 4). SRP release from the formulation showed a tri-phasic 
release profile, with an initial burst release (0–100 h), followed by a 
lag phase (100–300 h) and then an erosion release phase (beyond 
300 h). Such tri-phasic release profiles are typical of PLGA 
microspheres (30).

Hypertension is a serious cardiovascular disease and vascular 
endothelial dysfunction is one of its important features (31–33). 
Endothelial dysfunction is attributed to chronic stimulation by 
vascular irritants, such as AngII, ONOO− and other stimuli (34). 
ACE converts AngI to AngII, and then binds to AT1R, which 
produces a strong vasoconstrictor effect (6). Therefore, ACE 
inhibition is a potential pathway for antihypertension. An increasing 
number of natural ACE-inhibitory peptides have been studied (9, 10, 
22). Our previous studies had confirmed that SRP was a good ACE 
inhibitor (IC50 = 0.046 mmol/L) (8, 35). In this study, the 
antihypertensive effect of SRP-PLGA-MS was verified in SHR animal 
experiments (Figure 5). The present study confirmed that vascular 
lumen was narrow due to vasoconstriction in spontaneously 
hypertensive rats, while SRP, similar to captopril, could reduce elastic 
fiber tightness to vasodilation (Figure 6), meanwhile, the expression 
of ACE in experimental animal was inhibited by administration with 
SRP-PLGA-MS formulation (Figures  7A,C). It indicated that the 
formulation possess sustained and smooth antihypertensive effect by 
inhibiting ACE activity.

Peroxynitrite (ONOO−) is a potent oxidizing and nitrifying 
agent that causes DNA damage and it was mainly generated by NO 
and superoxide radicals (O2−) (36–39). Thus, inhibition of NO 
and ROS could reduce the production of ONOO− (36, 37, 40). The 
fluorescence data in this experiment confirmed that SRP decreased 
the production of NO and ROS within a safe concentration range 

(Figures  8, 9). The generation of NO and superoxide radicals 
(O2−) was regulated by iNOS and NADPH oxidase 4 (NOX4) 
respectively (37, 41). NOX4 was a human homolog of phagocyte 
NADPH oxidase and highly expressed in endothelial cells. ROS 
generation involved in many important signaling pathways related 
with NOX family (42). In this study, immunohistochemical 
analysis confirmed that SRP inhibited NOX4 expression 
(Figures  7C,D), and western blot analysis proved that SRP 
inhibited the expression of iNOS (Figure 10), which were benefit 
to antihypertension.

In addition, the imbalance between ROS and antioxidant 
enzymes caused oxidative stress, which was one of the etiologies of 
hypertension (43). Therefore, the activation of antioxidant enzymes 
to eliminate ROS was a conceivable therapeutic strategy (43, 44). 
Nrf2 is the primary target for ROS removal (45–49). It is a redox-
sensitive transcription factor and a key therapeutic target for 
oxidative stress-related diseases. Under steady-state conditions, 
Nrf2 is mainly conserved in the cytoplasm by Keap1 (an inhibitor 
of Nrf2) in the cytoplasm. Under oxidative stress, Nrf2 dissociates 
from Keap1, and then translocate to the nucleus and combines with 
antioxidant-responsive elements, leading to the expression of 
antioxidant genes. Ultimately, a lot number of antioxidant 
components were produced to remove the excess ROS and 
alleviated the damage caused by oxidative stress (46, 50). In this 
study, Western blot analysis showed that SRP inhibited Keap1 
expression and enhanced the dissociation of Nrf2 into the nucleus 
to express antioxidant genes (Figure 10), the results demonstrated 
that SRP was an effective agent in hypertension related with 
oxidative stress.

5 Conclusion

In this study, the sustained-release formulation (SRP-PLGA-MS) 
was prepared and characterized the physical and chemical properties. 
Its antihypertensive effect was verified in SHR animal experiments, 
and the antihypertensive mechanism was explored in AngII-induced 
HUVECs model. In conclusion, SRP-PLGA-MS was a potential 
antihypertensive preparation with sustained and smooth blood 
pressure lowing effect. The anti-hypertension mechanism of the agent 
was related with dual bioactivities of ACE inhibition and antioxidant 
involving NADPH oxidase and Keap1/Nrf2 signaling pathways 
(Figure 11).
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Effect of SRP on the viability of HUVECs.
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FIGURE 9

Intracellular total ROS and NO levels in HUVEC were detected by fluorescent probe DCFH-DA and DA-FM-DA (n  =  3). Cells were co-incubated with 
AngII (20  μM), SRP (50, 100, 200  μM) for 24  h. Intracellular total ROS and NO fluorescence pictures were obtained by inverted fluorescence microscopy 
(A,C). Mean fluorescence intensity of the fluorescence pictures (B,D). ###p  <  0.001 compared with the blank group (untreated cells), **p  <  0.01, 
***p  <  0.001, ****p  <  0.0001, compared with the control group (AngII-treated cells).

FIGURE 10

(A) Detection of the expression of iNOS, Nrf2, Keap1 by immunoblotting. (B) The ratios of Nrf2/GADPH, Keap1/GADPH, and iNOS/Tubulin were 
calculated (n  =  3). Cells were co-incubated with AngII (20  μM), SRP (25, 50, 100  μM) for 24  h. ####p  <  0.0001 compared with the blank group (untreated 
cells), **p  <  0.01, ***p  <  0.001, ****p  <  0.0001 compared with the control group (AngII-treated cells).
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FIGURE 11

Antihypertension-related molecular mechanism of SRP (By Figdraw).
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