
Frontiers in Nutrition 01 frontiersin.org

Current approach to the 
diagnosis of sarcopenia in 
cardiovascular diseases
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Muscle wasting syndrome, also known as sarcopenia, is an age-related geriatric 
condition characterized by a gradual loss of muscle mass, strength, and function. 
Sarcopenia can be classified into primary and secondary types. Primary sarcopenia 
is primarily associated with aging, while secondary sarcopenia is caused by systemic 
diseases such as cancer, diabetes, liver cirrhosis, musculoskeletal disorders, and disuse 
changes. In recent years, increasing evidence suggests that cardiovascular diseases 
can promote the occurrence of sarcopenia through various pathophysiological 
mechanisms. Additionally, sarcopenia increases the risk of adverse outcomes 
in patients with cardiovascular disease such as rehospitalization and mortality. 
Therefore, screening and diagnosing sarcopenia are particularly important for 
patients with cardiovascular diseases. This article provides a brief overview of 
the research progress on diagnostic methods for sarcopenia in patients with 
cardiovascular diseases.
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1 Introduction

The initial definition of sarcopenia was proposed by Irwin Rosenberg in 1989, referring 
to the age-related decrease in muscle mass and strength (1). In 2010, the European Working 
Group on Sarcopenia in Older People (EWGSOP) reached a consensus that defined it as an 
age-related syndrome characterized by decreased muscle mass, reduced muscle strength, and/
or a decline in physical function (2). Later on, the Asian working group for sarcopenia (AWGS) 
published their own consensus on sarcopenia in Asia (3). Sarcopenia is associated with 
physical disabilities, a decreased quality of life, and an increased risk of mortality (4). In 2016, 
muscular dystrophy was officially recognized as a muscle disease and the ICD-10-MC 
diagnostic code was released (5). According to the EWGSOP standards, the prevalence of 
sarcopenia ranges from 8 to 36% in individuals under 60 years old and between 10 and 27% 
in those aged 60 and above (6). Cardiovascular diseases (CVD) include hypertension, coronary 
artery disease (CAD), acute myocardial infarction, arrhythmia, cardiomyopathy, valvular heart 
disease, congenital cardiovascular disease, and heart failure (HF). They are the leading cause 
of death and disability worldwide (7). Approximately 17.8 million people die from CVD each 
year, which accounts for one-third of global deaths (8). Myocardial infarction is present in 
many types of CVD (9). The prevalence of sarcopenia among patients with various CVD varies 
from 10.1 to 68.9% (10). Sarcopenia has emerged as a frequent complication in individuals 
suffering from CVD, and reduced muscle mass independently contributes to the risk of 
mortality associated with such conditions (11), thereby significantly impacting both the quality 
of life and prognosis for these patients (12, 13). Therefore, in the clinical diagnosis and 
treatment of CVD patients, accurately assessing and intervening in muscle wasting is becoming 
increasingly important.
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2 The relationship between 
cardiovascular disease and sarcopenia

Sarcopenia is closely related to cardiovascular diseases. They 
interact with each other to accelerate the process of the disease. 
Sarcopenia and CVD share common pathogenesis, including 
hormonal changes, immunosenescence, impaired autophagy, 
oxidative stress, and mitochondrial dysfunction. The degree of muscle 
loss can be exacerbated by a sedentary lifestyle, prolonged bed rest, 
smoking and alcohol intake and obesity, and these factors are well 
established risk factors for cardiovascular disease.

Lack of physical activity, changes in body hormones, 
inadequate intake of nutrients, and imbalances in protein synthesis 
and utilization can easily lead to damage to mitochondrial 
structure and function as well as increased oxidative stress. 
Ultimately, this can result in the development of sarcopenia in 
patients with HF (14, 15). The prevalence of elderly patients with 
HF combined with sarcopenia is as high as 31%, and it is associated 
with reduced exercise capacity, poor quality of life, and adverse 
outcomes (16).

Hypertension and sarcopenia share similar underlying biological 
mechanisms, namely, low-grade chronic systemic inflammation. 
Hypertension is currently recognized as an inflammation-related 
disease. Many studies have found that proinflammatory cytokines 
such as CRP (C-reactive protein), IL-6 (interleukin 6), and TNF-α 
(tumor necrosis factor-alpha) increase abnormally in hypertensive 
patients (17, 18). In addition, chronic inflammation can accelerate 
protein breakdown and promotes sarcopenia by activation of the 
ubiquitin proteosome cascade (19). Accordingly, sarcopenia is 
common among adults with hypertension; the prevalence of 
sarcopenia among patients with hypertension ranges from 20.2 to 
25.8%, which is significantly higher compared to the general 
population (20, 21).

Coronary artery disease (CAD) interacts with and influences 
sarcopenia. CAD promotes the occurrence of sarcopenia, as indicated 
by a meta-analysis that shows the prevalence of sarcopenia in CAD 
patients to be approximately 22.3% (10), and it is an independent risk 
factor for poor prognosis in CAD patients (22, 23). Sarcopenia can 
also contribute to the occurrence of CAD, as it results in a reduction 
in muscle mass and an increase in relative fat content caused by the 
substitution of muscle cells with adipocytes (24). On the contrary, the 
increase in muscle mass or muscle strength can decrease the risk of 
CAD (25, 26).

The incidence of sarcopenia after aortic valve replacement ranges 
from 21.0 to 70.2% (27). Low muscle mass is a significant predictor of 
increased mortality rates, prolonged hospital stays, and decreased 
functionality in patients after undergoing aortic valve replacement. 
Multiple studies have demonstrated a strong association between 
reduced muscle mass and higher mortality rates among post-aortic 
valve replacement patients (28, 29).

PAD leads to reduced blood flow in the lower limbs, which 
restricts the supply of energy and oxygen to the leg muscles, thereby 
affecting their function and quality. This may further result in 
sarcopenia. The incidence of sarcopenia in patients with 
atherosclerotic occlusive disease of the lower extremities can be as 
high as 35% (30). Patients with PAD who have sarcopenia experience 
significantly higher rates of mortality and amputation compared to 
those without sarcopenia (31).

3 Diagnosis methods for sarcopenia in 
cardiovascular diseases

The most widely used diagnostic criteria for sarcopenia currently 
are the consensus revised by EWGSOP in 2018 (32), which refer to 
low muscle mass accompanied by poor muscle strength or physical 
performance. Muscle mass was measured using either BIA or DXA, 
muscle strength was assessed through grip strength, and physical 
performance was evaluated by gait speed. By using DXA to measure 
the appendicular skeletal muscle mass (ASM) and converting it 
through a formula, appendicular skeletal muscle mass index (ASMI) 
is calculated. The cutoff values for ASMI are <7.0 kg/m2 for males 
and < 6.0 kg/m2 for females. The cutoff values for grip strength are 
<27 kg for males and < 16 kg for females, while the cutoff value for 6 m 
gait speed is ≤0.8 m/s for both males and females. The more suitable 
diagnostic criteria for sarcopenia in Asian populations proposed by 
AWGS (2019) include the following cutoff values: ASMI for muscle 
mass  - DXA: males <7.0 kg/m2, females <5.4 kg/m2; BIA: males 
<7.0 kg/m2, females <5.7 kg/m2; grip strength - males <28 kg, females 
<18 kg; and usual gait speed - both males and females at a cutoff value 
of 1.0 m/s (3).

3.1 Physical methods

The SARC-F questionnaire, developed by Malmstrom et al. (33) 
is a screening tool for sarcopenia that consists of five items: walking 
ability, rising from a chair, stair climbing and experiences with falls. A 
score of ≥4 indicates a positive screening result for sarcopenia and 
predicts a poor prognosis. The SARC-F questionnaire demonstrated 
low sensitivity and high specificity in diagnosing sarcopenia among 
elderly individuals residing in the community (34), suggesting that 
this questionnaire may not be  effective for early screening of 
sarcopenia. The greater value of this questionnaire may lie in 
predicting prognosis, as the SARC-F questionnaire can effectively 
screen for sarcopenia in patients with acute and chronic CVD and 
serve as a predictive factor for adverse outcomes (35, 36). Studies have 
suggested using a cutoff score of ≥2 on the SARC-F questionnaire to 
diagnose sarcopenia in CVD patients, aiming to improve its sensitivity 
(with sensitivities of 0.635 for males and 0.758 for females) (37).

The Ishii score was first proposed by Shinya Ishii based on the 
two-step method recommended by EWGSOP (38). A scoring table 
was developed to assess the risk of sarcopenia in older adults living in 
the community. The final model includes three variables: age, grip 
strength, and calf circumference, with a threshold value for sarcopenia 
set at 120 for females and 105 for males in the elderly community 
population. However, the effectiveness of this rating in patients with 
CVD remains uncertain. A post-analysis provided the critical values 
of Ishii score for predicting sarcopenia in HF patients. For females, the 
value was 165 with a sensitivity of 70.9% and specificity of 68.5%. For 
males, the value was 141 with a sensitivity of 88.4% and specificity of 
69.7% (39). The higher sensitivity suggests that this questionnaire is 
beneficial for early screening of sarcopenia, thereby guiding early 
clinical intervention to delay disease progression. In addition, in 
patients with HF, mid-upper arm circumference and arm muscle 
circumference may be  more reliable than calf circumference as a 
variable (40), possibly due to the presence of lower limb edema in 
HF patients.
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Barbosa-Silva et al. combined the SARC-F questionnaire with calf 
circumference to create SARC-CalF, which addresses the lack of 
muscle mass assessment in SARC-F (41). Studies have been conducted 
on patients with hemodialysis and type 2 diabetes (42, 43). Further 
research is needed to determine the effectiveness of the SARC-CalF 
questionnaire for CVD patients.

Research has shown that the ratio of serum creatinine (Cr) to 
cystatin C (CysC) can be  utilized in diagnosing sarcopenia. Cr, a 
derivative of skeletal muscle protein phosphocreatine, is excreted by 
the kidneys and serves as a routine serum marker for estimating 
GFR. Its value reflects both muscle mass and kidney function (44). In 
contrast, Cys is produced by all nucleated cells with limited impact on 
its levels compared to Cr due to its dependence primarily on renal 
function (45). Considering the differences in metabolism between 
these two biomarkers, Cr/CysC is considered as a promising 
alternative marker for muscle mass (46, 47). Kashani et al. (46) initially 
coined the term sarcopenia index (SI) to refer to the product of Scr/
CysC×100, and they validated a linear positive correlation between SI 
and muscle mass measured by abdominal CT scan at L4 level. Shi et al. 
(48) provided the optimal cutoff values for diagnosing low skeletal 
muscle mass based on the Cr/CysC ratio (men <1.0, women <0.8). 
They further developed an estimated ASM equation that incorporates 
age, gender, height, weight, Cr, and CysC parameters. Compared to 
actual ASM measured by DXA, this equation demonstrates a 
sensitivity and specificity of over 80% in diagnosing low muscle mass 
(49). In patients with HF, aortic valve replacement surgery, and 
hypertension, SI can also serve as an alternative indicator for muscle 
mass (50–52). A retrospective study established a model that combines 
human measurement data and SI to estimate ASMI in HF patients and 
obtained cutoff values (male ASMI <7.0 kg/m2, female <5.4 kg/m2) 
(53). The model corrects the influence of edema on simple human 
measurement models (including age, weight, and height), providing 
higher reliability and accuracy.

If the screening tool suggests probable sarcopenia, the next 
recommended step is assessing muscle strength as the primary 
parameter of sarcopenia. EWGSOP2 recommends using handgrip 
strength or 5-time chair stand test to indicate skeletal muscle strength.

3.2 The visualization methods

3.2.1 Computed tomography
The cross-sectional area analysis of CT is utilized for evaluating 

the cross-sectional area (CSA) of muscles through both axial CT scans 
(abdomen or mid-thigh) and peripheral CT scans (lower leg) (54). 
Currently, measuring the CSA of the skeletal muscle using CT images 
at the level of the third lumbar vertebra (L3) is considered the gold 
standard for assessing muscle mass. Therefore, in many studies, a 
decrease in muscle mass is defined by the CSA of muscles at the L3 
level (55). However, in practical clinical work, since routine imaging 
of many patients does not include the L3 level, alternative skeletal 
muscle indices from other levels need to be used as substitutes. For 
healthy subjects, Moon et  al. first reported gender-specific cutoff 
values for diagnosing sarcopenia in most Asians using the area of the 
fourth thoracic (T4) level muscle group: 100.06 cm2 for males and 
66.93 cm2 for females (56). Additionally, recent studies have also 
suggested that levels such as the first lumbar vertebrae (L1), fourth 
lumbar vertebrae (L4), twelfth thoracic vertebrae (T12), and upper 

thigh can be  used to assess sarcopenia (57–59). CT-derived 
quantitative body composition analysis methods and cutoff values 
vary for the assessment of sarcopenia in patients with different 
CVD. A prospective study has confirmed that low skeletal muscle 
mass, identified by CT at the level of the first lumbar vertebra (L1), is 
an independent predictor of adverse prognosis in patients with 
CAD. Furthermore, a specific diagnostic threshold applicable to East 
Asian populations has been introduced at the L1 level, with a skeletal 
muscle mass index (SMI) of 31.00 cm2/m2 for males and 25.00 cm2/m2 
for females (60). The unilateral pectoralis muscle mass indexed to 
body surface area (PMI) and attenuation (approximated by mean 
Hounsfield units; PHUm) can quantify muscle loss in HF patients 
(61). Additionally, the CT-derived fatty muscle fraction (FMF) is a 
potential new biomarker for sarcopenia, providing additional 
information for risk stratification in patients undergoing transcatheter 
aortic valve replacement (62). The subcutaneous fat index (SFI) and 
SMI, measured at the L3 vertebral level, can serve as biomarkers for 
sarcopenia in patients undergoing endovascular aneurysm repair 
surgery (63). Accurate manual segmentation of different body 
compositions is of great significance for measuring body composition, 
but this task takes 10 to 30 min. Therefore, AI-based image analysis 
techniques, such as automated deep learning technology, have been 
developed for quantitative assessment of body composition (such as 
muscles, visceral fat, subcutaneous fat, etc.) (64–67). Compared to 
manual segmentation, AI-based image analysis significantly reduces 
the required time and offers higher effectiveness and reliability. 
Weston et  al. developed a fully automated technique using deep 
convolutional neural networks for abdominal segmentation, which 
can achieve even higher accuracy than manual segmentation (68). 
Subsequently, LEE et al. utilized this technique to evaluate the level of 
the L3 skeletal muscle area (SMA) in patients after aortic valve 
replacement surgery and found that low SMA was significantly 
associated with poor prognosis. They also obtained gender-specific 
Z-score cutoff values for male and female SMAs at 41.2 cm2/m2 and 
33.0 cm2/m2, respectively (69). In general, CT can directly reflect the 
muscle mass of specific parts of the human body and, by calculating 
muscle density, it can more accurately evaluate the quality and 
structural characteristics of muscles. Therefore, CT is considered to 
be the most accurate method for assessing muscle mass (70). However, 
due to difficulties in performing CT measurements, relatively high 
costs, certain radiation exposure risks, lack of normal reference ranges 
and diagnostic thresholds at present, it is not suitable for screening 
large samples of populations and thus has not been widely used in 
clinical practice.

3.2.2 Magnetic resonance imaging
MRI is also a measurement method that can accurately assess 

muscle mass. Due to the presence of varying degrees of decreased size 
and quantity of type II muscle fibers, as well as intramuscular and 
intermuscular fat infiltration in patients with sarcopenia (71), 
water-fat separation MRI based on Dixon imaging technology 
achieves high soft tissue contrast, allowing for precise measurement 
of muscle tissue and fat infiltration (72). Therefore, compared to BIA, 
MRI can accurately identify tissues such as muscles, tendons, fibers, 
and fats without being affected by intramuscular fat. With the 
advancement of technology, not only conventional MRI sequences 
such as T1 but also techniques like diffusion tensor imaging, ultra-
short echo time imaging, T2 mapping, and diffusion-weighted 
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imaging are gradually being applied for evaluating muscle status (73–
75). The CSA of muscle measured using MRI at the L3 can effectively 
predict total body muscle mass (76). Kiefer et al. proposed the use of 
standardized manual segmentation-algorithm for quantitatively 
evaluating total muscle mass and fat-free muscle mass, calculating the 
indices of total abdominal muscle mass and fat-free abdominal muscle 
mass to assess muscle quality (77). Recently, studies have found that 
measuring the chest muscles using cardiac magnetic resonance 
imaging (CMR) may hold potential in assessing sarcopenia. One study 
discovered that unilateral chest muscle measurement under CMR 
demonstrated a strong predictive value for postoperative mortality 
among patients who underwent surgical aortic valve replacement (78). 
Furthermore, the utilization of bilateral SMI based on heart MRI has 
emerged as a novel approach to evaluate sarcopenia in HF patients 
(79). Consequently, opportunistic screening for sarcopenia becomes 
feasible during cardiac MRI examinations. However, the manual 
segmentation of muscles based on MRI is also time-consuming and 
may take several days, which limits its application and promotion in 
clinical work. Therefore, we need to explore new probabilistic methods 
such as deep learning for muscle segmentation. The previous studies 
have developed automatic segmentation technology for the three-
dimensional structure of the quadriceps, enabling quantitative 
evaluation of quadriceps volume (80). Additionally, a fast whole-body 
MRI method has been developed to automatically quantify total 
skeletal muscle volume and volumes of individual muscle groups (81). 
However, there is currently a lack of widely available segmented MRI 
datasets for skeletal muscles, and the use of artificial intelligence-based 
MRI techniques for assessing muscle mass reduction in sarcopenia 
remains limited. It should be noted that MRI is expensive and time-
consuming for whole-body scans, lacks normal reference ranges and 
diagnostic thresholds, and its application in populations is greatly 
restricted due to limitations on subjects with metallic implants (82).

3.2.3 Ultrasound
The ultrasound can assess muscle condition by measuring 

parameters such as muscle thickness, cross-sectional area, muscle 
volume, muscle fiber length, pennation angle, echogenicity, and 
muscle hardness (83). Among them, quadriceps muscle imaging has 
been proven to be a reliable predictor of overall skeletal muscle quality. 
Previous studies have confirmed the diagnostic value of ultrasound 
quadriceps muscle imaging for secondary sarcopenia in diseases such 
as chronic obstructive pulmonary disease, Parkinson’s disease, liver 
cirrhosis, and stroke (84–87). A study has found that the difference in 
cross-sectional area (ΔCSA) and shear wave elastography (ΔSWE) 
between the contracted and relaxed states of the rectus femoris muscle 
can serve as an independent predictor for sarcopenia in elderly 
patients with type 2 diabetes. Furthermore, a model was established 
that combines age, ΔCSA, and ΔSWE, which demonstrated a 
sensitivity and specificity of 83.3% (88). However, there is currently 
limited research on the ultrasound diagnosis of cardiovascular disease 
combined with sarcopenia. A cross-sectional study focused on elderly 
HF patients found that echo intensity of the quadriceps femoris and 
subcutaneous fat thickness in the non-contractile state were associated 
with muscle strength in elderly HF patients (89). Taira et al. used 
ultrasound to measure the anterior femoral muscle thickness of 1,075 
patients with CVD, using the diagnostic criteria of AWGS as the gold 
standard. They found a cutoff value of 2.425 cm for males, with a 
sensitivity and specificity of 68.5 and 77.6%, respectively; for females, 

the cutoff value was 1.995 cm, with a sensitivity and specificity of 70.5 
and 66.0%, respectively (90). There is still significant research potential 
for diagnosing CVD combined with sarcopenia using ultrasound 
examination. Ultrasound examination offers strong portability, 
relative affordability, and no radiation exposure, making it suitable for 
clinical or community screening and follow-up. It can also 
be performed at the bedside. However, obtaining ultrasound images 
and interpreting results rely more on the technical skills of operators.

3.2.4 Dual-energy X-ray absorptiometry
Baumgartner et al. developed a diagnostic method that utilizes 

dual DXA to assess the SMI (91). The DXA scan is a non-invasive, 
easy-to-operate, cost-effective method with relatively low radiation 
dose for measuring muscle mass. It accurately distinguishes between 
whole-body and local muscles, fat, and bones, making it widely used 
in clinical practice. However, DXA allows for a whole-body estimation 
of lean mass, which measurement is actually an estimation of all 
non-fat/non-bone tissues. In addition, it is worth noting that DXA 
measurements may be influenced by the patient’s hydration status 
(92). This effect is particularly evident in the measurement of lower 
limb skeletal muscle mass in HF patients due to fluid retention in the 
lower limbs (93). In contrast, CT and MRI show high accuracy in the 
assessment of muscle and fat CSA/volume with the segmentation of 
muscles on cross-sectional images. CT can measure muscle size and 
attenuation in specific districts. MRI allows measuring the amount of 
muscle and fat tissue due to its high contrast resolution 
and multiparametricity.

3.2.5 Bioelectrical impedance analysis
BIA is a widely used non-invasive method for measuring body 

composition. Its principle involves using surface electrodes to 
record the different electrical resistances of various tissues and 
then utilizing image reconstruction techniques to measure muscle 
mass (94). Consensus guidelines published by AWGS and 
EWGSOP have provided recommended cutoff values for 
diagnosing muscle loss based on BIA-measured ASM. However, 
the currently available BIA prediction models have poor accuracy, 
and their measurement methods are easily influenced by factors 
such as body water content and electrolyte imbalances. Due to the 
presence of varying degrees of edema in HF patients, there is a 
significant margin of error when assessing muscle mass using BIA 
(95). BIA is also influenced by obesity, often leading to an 
overestimation of muscle mass in obese patients (77). For 
individuals with sarcopenic obesity, the muscle-to-fat ratio 
measured by BIA may be  a more appropriate biomarker for 
defining and diagnosing sarcopenia (96). In addition to ASM, 
phase angle (PA) is a parameter derived from BIA that predicts 
various clinical outcomes and mortality rates of diseases (97). It 
can be  obtained by measuring the ratio of reactance (Xc) to 
resistance (R) (PA = arctangent Xc/R), providing information on 
muscle mass and function. The magnitude of the PA value mainly 
depends on the size of cell membrane capacitance. A low PA value 
indicates lower cell membrane capacitance and poorer cell 
membrane structure and function (98). A meta-analysis, using the 
European Consensus 2010/2019 and Asian Consensus 2014 
diagnostic criteria for sarcopenia, determined that the cut-off 
range for diagnosing sarcopenia with phase angle was between 
3.55°to 5.05° (99). The phase angle cut-off value for sarcopenia in 
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elderly HF patients was found to be 5.45°, with a sensitivity of 76% 
and specificity of 71% (100). Although BIA is non-invasive and 
easy to use, it cannot be used on individuals with pacemakers due 
to the weak electrical current employed (101).

3.3 Molecular level

Inflammatory factors play a crucial role in the occurrence and 
development of sarcopenia. Inflammaging, characterized by a 
low-grade chronic inflammatory state caused by immune system 
damage that occurs with age, is the main mechanism involved. It 
includes immunosenescence, increased secretion of inflammatory 
mediators from visceral fat inflammation, dysbiosis of the microbiota, 
and accumulation of senescent cells. These mechanisms ultimately 
lead to the infiltration of neutrophils and monocytes/macrophages 
into adipose tissue and other tissues, resulting in excessive secretion 
of pro-inflammatory cytokines (102, 103). As individuals age, there is 
a gradual increase in the expression of pro-inflammatory cytokines. 
Inflammatory factors inhibit myoblast fusion, stimulate excessive 
production of reactive oxygen species by mitochondria, activate the 
ubiquitin-proteasome system, induce autophagy and apoptosis in 
skeletal muscle cells, accelerate skeletal muscle protein degradation. 
This ultimately leads to the occurrence and development of sarcopenia 
(104, 105). Among them, the elevation of inflammatory factors such 
as tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), and 
IL-6 levels is associated with the decline in skeletal muscle strength 
and quality (106). In HF patients with sarcopenia, IL-6 and CRP are 
elevated (107, 108). TNF-α activates the transcription factor nuclear 
factor-κB, thereby increasing protein degradation and promoting 
muscle atrophy (109). Prolonged high levels of IL-6 can contribute to 
muscle wasting in conjunction with other mediators, while CRP is 
associated with insulin resistance, inhibiting muscle function and 
leading to decreased strength (110).

Homocysteine (Hcy) is a sulfur-containing amino acid that plays 
an important role in the remethylation and transsulfuration pathways 
in the human body (111). Elevated blood Hcy levels can lead to 
oxidative stress, protein aggregation and dysfunction, cell apoptosis, 
inflammation, mitochondrial dysfunction, resulting in reduced 
muscle fiber regeneration and decreased energy production. These 
effects partially contribute to the occurrence and development of 
sarcopenia (112, 113). Recent studies have shown a significant 
association between Hcy and decreased muscle strength, including 
among patients with PAD (114, 115).

miRNA-1-3p is primarily produced by skeletal muscles and 
regulates the proliferation and differentiation of muscle cells (116). 
miR-1-3p is also a biomarker associated with the pathogenesis of HF 
(117), which leads to skeletal muscle damage and related cell death, 
resulting in passive release of miR-1-3p into the systemic circulation. 
The study found a significant correlation between the expression of 
miRNA-1-3p and the activation of the Akt/mTOR pathway (118). The 
levels of miRNA-1-3p in HF patients with sarcopenia were 
significantly higher than those without sarcopenia, and there was a 
strong correlation between miRNA-1-3p expression and both ASMI 
as well as grip strength. The cutoff value for predicting muscle wasting 
using miR-1-3p was 1.01, with a sensitivity of 75.0% and specificity of 
62.5%. These findings suggest that this small molecule can serve as a 
predictive marker for sarcopenia in HF patients.

Research has found that the expression of HIF-1α and pax7 is 
significantly reduced in sarcopenia (119). HIF-1α, a major regulator 
of oxygen-dependent expression of several target genes involved in 
oxygen transport, metabolic adaptation, angiogenesis, as well as 
various cellular functions such as cell cycle regulation and apoptosis 
(120), shows significant reduction.Pax7 serves as the primary stem cell 
marker for satellite cells, which are regenerative cells in skeletal 
muscle. These cells proliferate in response to physiological stimulation, 
injury, and degenerative diseases, resulting in a significant increase in 
myogenic cell proliferation. Subsequently, these myogenic cells 
differentiate into muscle fibers to facilitate skeletal muscle regeneration 
(121). This indicates that HIF-1α and Pax7 can be  utilized for 
diagnosing sarcopenia.

Wnt signaling is involved in muscle development, muscle 
regeneration, and stem cell renewal during processes of muscle 
atrophy and muscle wasting. Upregulation of Wnt signaling during 
aging can inhibit myogenesis and promote sarcopenia (122). A 
randomized controlled study on HF patients found a significant 
correlation between hand grip strength and three biomarkers of Wnt 
signaling: dickkopf-3 (Dkk-3), sterol regulatory element-binding 
protein-1 (SREBP1), and dickkopf-1 (Dkk-1) (123). This suggests that 
they have significant potential as plasma biomarkers for assessing 
sarcopenia in HF patients.

Some messenger RNAs, such as HERC5, S100A11, and FLNA, 
have also been shown to serve as potential biomarkers for sarcopenia 
(124). Serum meteorin-like protein (Metrnl), a novel myokine with 
protective effects against CVD, has been found to be associated with 
sarcopenia in elderly patients with HF (125). The phylum Synergistetes 
has also been identified as a potential biomarker for sarcopenia in HF 
patients (126). In elderly patients with CVD, the triglyceride-to-high-
density lipoprotein cholesterol ratio (TG/HDL-C) is negatively 
correlated with relative grip strength (127), suggesting that this ratio 
may be used to evaluate sarcopenia in CVD patients. However, these 
serum markers are not specific for diagnosing sarcopenia.

4 Summary and future prospects

Nowadays, the attention to sarcopenia is increasing year by year, 
and different countries have different diagnostic methods and 
thresholds for different populations with sarcopenia. Currently, 
comprehensive diagnosis mainly relies on assessing muscle mass, 
muscle strength, and physical function. Finding a simple and reliable 
alternative diagnostic indicator remains an urgent problem for 
researchers in the field of sarcopenia. Physical methods are simple and 
feasible, but they have low sensitivity and are not conducive to early 
screening. Among them, the estimation equation demonstrates high 
sensitivity and specificity, making it a promising new method for 
assessing muscle mass. In the future, visualization will become a trend. 
CT and MRI are often used in clinical examinations, so there may 
be an opportunity to apply CT and MRI imaging for screening CVD 
in the clinical diagnosis of sarcopenia. However, there is currently a 
lack of standardized diagnostic protocols, and manual segmentation 
is time-consuming. Therefore, research on AI-based fully automated 
segmentation methods may be  the focus. In addition, three-
dimensional imaging techniques based on CT and MRI can directly 
assess the volume of skeletal muscles, which may more accurately 
represent muscle mass than CSA of muscle. Ultrasound examination 
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can be used as a dynamic monitoring method in clinical practice; 
however, there is currently a lack of evaluation for other muscle 
groups besides the quadriceps femoris. Apart from two-dimensional 
ultrasound imaging techniques, other ultrasound technologies such 
as shear wave elastography are also worth further research. Currently, 
there is a lack of specificity in serum biomarkers for diagnosing 
sarcopenia, and more high-quality studies are needed to explore and 
identify a specific serum biomarker as a diagnostic indicator.
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