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Introduction: This investigation leverages advanced machine learning (ML) 
techniques to dissect the complex relationship between heavy metal exposure 
and its impacts on osteoarthritis (OA) and rheumatoid arthritis (RA). Utilizing a 
comprehensive dataset from the National Health and Nutrition Examination Survey 
(NHANES) spanning from 2003 to 2020, this study aims to elucidate the roles specific 
heavy metals play in the incidence and differentiation of OA and RA.

Methods: Employing a phased ML strategy that encompasses a range of 
methodologies, including LASSO regression and SHapley Additive exPlanations 
(SHAP), our analytical framework integrates demographic, laboratory, and 
questionnaire data. Thirteen distinct ML models were applied across seven 
methodologies to enhance the predictability and interpretability of clinical 
outcomes. Each phase of model development was meticulously designed to 
progressively refine the algorithm’s performance.

Results: The results reveal significant associations between certain heavy metals 
and an increased risk of arthritis. The phased ML approach enabled the precise 
identification of key predictors and their contributions to disease outcomes.

Discussion: These findings offer new insights into potential pathways for early 
detection, prevention, and management strategies for arthritis associated with 
environmental exposures. By improving the interpretability of ML models, this 
research provides a potent tool for clinicians and researchers, facilitating a 
deeper understanding of the environmental determinants of arthritis.
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1 Introduction

Arthritis is a debilitating disease characterized by joint inflammation, synovial swelling, 
stiffness, and potential cartilage damage. It has two common types: osteoarthritis (OA) and 
rheumatoid arthritis (RA) (1). Arthritis represents a significant global health concern. In the 
United States alone, 54 million people suffer from arthritis, and projections indicate that by 
2040, nearly half of the population (49%) will be affected by this condition (2). Globally, the 
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age-standardized point prevalence rates for osteoarthritis (3) and 
rheumatoid arthritis (4) in 2017 were 3.75 and 0.25%, respectively.

In recent years, the potential contributory role of heavy metals 
(HMs) in the exacerbation of arthritic conditions, particularly RA, has 
garnered research interest. A growing body of evidence suggests that 
heavy metals, such as cadmium (Cd) and lead (Pb), may exacerbate 
oxidative stress, leading to sustained inflammation (5)—a recognized 
factor in the pathogenesis of RA (6). Several epidemiological studies 
have corroborated a positive correlation between cadmium exposure 
and the incidence of RA (7, 8). However, the investigation into OA, 
another subtype of arthritis, and its association with heavy metal 
exposure remains underexplored in population-based epidemiological 
studies. While limited research has suggested possible links between 
heavy metal levels and OA, these are often confounded by factors such 
as aging and body mass index (BMI). Although limited studies have 
suggested a potential link between heavy metal levels and OA, these 
studies have either relied on traditional statistical methods or chosen 
a limited sample size (9). Additionally, approaches based on machine 
learning have not focused on the interpretability of the models (10). 
Moreover, considering OA as a critical differential diagnosis from RA, 
there is a conspicuous absence of studies examining the differential 
impact of heavy metals on these two arthritic subtypes, an area that 
warrants comprehensive investigation.

Research into the correlation between heavy metals and arthritis 
remains nascent, and existing studies predominantly rely on 
traditional statistical methods (11). These conventional approaches 
often necessitate extensive data requirements, incorporate numerous 
presumptions, and are subject to stringent application constraints, 
which restricts their capacity to derive insights from voluminous 
datasets. However, the dawn of the big data era, coupled with the swift 
advancement of computational technologies, has paved the way for 
the burgeoning application of machine learning (ML) techniques 
across various domains, including medical research. Machine 
learning, in particular, holds immense promise for enhancing disease 
prediction, diagnosis, and treatment paradigms. By processing and 
analyzing large datasets, ML algorithms are adept at uncovering 
intricate patterns and relationships that might otherwise remain 
undetected, thereby bolstering medical decision-making and 
advancing clinical practices.

In our investigation, we  utilized a dataset from the National 
Health and Nutrition Examination Survey (NHANES) spanning from 
2003 to 2020 to examine the link between heavy metal exposure and 
the prevalence of OA and RA. We  employed seven distinct ML 
techniques, designed to discern the presence of arthritis attributable 
to heavy metal exposure, and assessed the predictive performance of 
each model. Furthermore, our study integrates the use of SHapley 
Additive exPlanations (SHAP)-based methodologies (12) to quantify 
the contribution of individual heavy metals to the accurate detection 
of arthritis. This approach not only elucidates the impact of heavy 
metals on the disease but also opens avenues for early 
intervention strategies.

Due to the unresolved issues highlighted above, this article 
investigates whether machine learning methods can effectively 
identify arthritis patients and distinguish between OA and 
RA. Additionally, it explores the correlation between heavy metal 
exposure and the incidence of arthritis, as well as determining which 
heavy metals play a crucial role in differentiating between OA and 
RA patients.

2 Methods

2.1 Participants of study

The dataset for our study was sourced from the NHANES, which 
employs a combination of questionnaire administration and physical 
examinations to collect comprehensive health data from the US 
population. The methodologies pertaining to these survey strategies 
have been extensively delineated in prior literature (13). For the 
purposes of our analysis, we included data from eight consecutive 
cycles of NHANES, covering the period from 2003 to 2020, to ensure 
a robust longitudinal perspective of the association between heavy 
metal exposure and arthritis.

Our study established the following inclusion criteria:

 (1) Participants must be at least 20 years old.
 (2) Participants must have taken part in the NHANES sub-study 

focusing on heavy metal analysis through blood and urine tests.
 (3) Participants must have confirmable arthritis status information 

derived from the NHANES questionnaire data.

Conversely, the exclusion criteria were:

 (1) Participants with missing data for more than two heavy metals 
out of a panel of 19.

 (2) Participants with an arthritis status coded as 7 or 9 according 
to the NHANES questionnaire, indicative of an uncertain 
arthritis diagnosis, where 7 represents “Refused” and 9 
represents “Do not know” in response to the question about 
arthritis status in the questionnaire.

After applying these criteria, the final cohort for analysis 
comprised 14,319 participants.

2.2 Data collection

2.2.1 Demographic characteristics of the study 
participants

In our analysis, demographic and socioeconomic characteristics 
of the study participants were gleaned from the questionnaire data 
provided by NHANES. The collected characteristics encompass a 
broad spectrum, including gender, age, body mass index (BMI, 
expressed as kg/m2), racial/ethnic background (categorized broadly, 
including Hispanic and non-Hispanic classifications), educational 
attainment (categorized as college or above, high school or equivalent, 
and below high school), and the poverty income ratio (PIR), which 
was segmented into three groups for analytical purposes: below 1, 
between 1 to 4, and above 4. This diverse array of variables enables a 
comprehensive evaluation of the participants, facilitating a nuanced 
understanding of how demographic and socioeconomic factors may 
interact with heavy metal exposure to influence arthritis prevalence.

2.2.2 Heavy metals
In our study, we conducted an analysis of 19 heavy metals present 

in the blood and urine samples of participants. The quantification of 
heavy metal concentrations was performed at the National Center for 
Environmental Health Laboratory, utilizing the highly precise method 
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of inductively coupled plasma dynamic reaction cell mass 
spectrometry (ICP-DRCMS) (14). This technique is renowned for its 
sensitivity and accuracy in detecting trace levels of metals in biological 
samples. The application of such rigorous analytical steps ensures the 
reliability of the heavy metal exposure data, forming a crucial 
foundation for subsequent analyses examining the association 
between heavy metal exposure and the incidence of arthritis.

2.2.3 Outcome ascertainment
In NHANES, the identification of arthritis among participants 

was based on self-reported data obtained from questionnaires. 
Initially, participants were asked to confirm whether they had been 
diagnosed with arthritis. Subsequently, for those who reported a 
diagnosis, the questionnaire data were used to ascertain the specific 
type of arthritis they had. This approach allowed for the differentiation 
between various forms of arthritis, such as RA, OA, and other 
subtypes, thereby facilitating a more nuanced analysis of the 
relationship between heavy metal exposure and specific 
arthritic conditions.

2.3 Pre-processing and extraction of ML 
features

The dataset underpinning our study comprised 25 features, with 
21 being continuous variables and the remaining four categorized as 
categorical variables. To address missing values, we employed different 
strategies for each data type: median values were used to fill in missing 
continuous variables, while a nearest fill method was applied to 
categorical variables. This preparatory step ensured that the dataset 
was complete for subsequent analyses.

Our analysis leveraged the minimum absolute shrinkage and 
selection operator (LASSO) regression technique. LASSO (15) is 
particularly adept at handling datasets with numerous potential 
predictors, as it incorporates a penalty mechanism that reduces the 
regression coefficients of less significant variables towards zero. This 
feature of LASSO is instrumental in streamlining model complexity 
and mitigating the risk of overfitting, which is especially valuable 
when dealing with high-dimensional data. The intrinsic capability of 
LASSO to perform variable selection automatically is among its core 
strengths, enhancing both the model’s simplicity and its interpretive 
clarity while also potentially increasing prediction accuracy.

A crucial step in the application of LASSO regression in our study 
involved the standardization of variables (i.e., centralization and 
normalization), which is a prerequisite for the method to function 
optimally. Subsequently, the optimal penalty parameter, λ, was 
identified through a 5-fold cross-validation process. This approach to 
parameter tuning is critical for balancing the model’s complexity 
against its performance, ensuring that the selected variables are 
genuinely predictive of the study’s outcomes while minimizing the 
likelihood of incorporating spurious associations.

Through the application of LASSO regression analysis, our study 
has effectively pinpointed a suite of pivotal predictors. These key 
variables play an instrumental role in elucidating the underlying 
dynamics of our research phenomenon, thereby providing a solid 
foundation for both the formulation of subsequent experimental 
designs and the refinement of data analysis strategies. The process of 
identifying these predictors is critical, as it enables a focused 

investigation into the factors most relevant to the development of 
arthritis, ensuring that the research efforts are both efficient and 
directed towards areas of greatest potential impact.

The variables selected via the LASSO method were subsequently 
incorporated into a machine learning model. This step served a dual 
purpose: firstly, to validate the predictive power and relevance of these 
variables in the context of arthritis development, and secondly, to 
assess their contribution to the overall accuracy and performance of 
the predictive model. The integration of LASSO-selected variables into 
the machine learning framework not only confirms their significance 
but also enhances the model’s ability to make accurate predictions. 
This iterative process of variable selection and validation underscores 
the robustness of the methodology employed in our study, ensuring 
that the findings are both reliable and grounded in a rigorous 
analytical framework.

2.4 SMOTE sampling

In our study, we  tackled the challenge of data imbalance—a 
common issue in medical datasets—using the synthetic minority 
oversampling technique (SMOTE) (16). This method is renowned for 
its effectiveness in addressing imbalances by artificially augmenting 
the size of the minority class through the generation of new instances. 
These instances are created via linear interpolation between existing 
minority class samples and their nearest neighbors, thus enriching the 
dataset without altering the majority class size. The application of 
SMOTE is not exclusive to our research; it has been extensively 
utilized across various medical studies, where it has consistently 
demonstrated its capability to enhance model performance by 
improving the recognition accuracy of underrepresented classes 
(17, 18).

The utility of SMOTE is particularly pronounced in our 
investigation into the development of arthritis, as it facilitates a more 
balanced distribution of classes within our dataset. By implementing 
SMOTE during the model’s training phase, we significantly boost the 
model’s ability to identify less prevalent categories. This improvement 
is pivotal for enhancing both the accuracy and the generalizability of 
our predictive model. It is important to note that SMOTE was 
exclusively applied to the training dataset to maintain the integrity and 
realism of the model evaluation process. The validation set was left in 
its original state, ensuring that the model’s performance could 
be accurately assessed on an untouched, representative sample of real-
world data. This methodological choice underscores our commitment 
to ensuring the validity and reliability of our predictive model, 
enabling a faithful evaluation of its efficacy in novel contexts.

2.5 Machine learning strategy

In this study’s machine learning strategy, we  employed the 
AutoGluon framework to construct and refine our predictive model 
through a phased approach. Initially, we  developed 13 distinct 
machine learning models without leveraging advanced features such 
as auto-stacking, dynamic stacking, or hyperparameter optimization. 
As shown in Figure 1, these models included algorithms like K-Nearest 
Neighbors (KNN), RandomForest, ExtraTrees, LightGBM, CatBoost, 
XGBoost, and neural networks (19–24), each applied with various 
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configurations and methodologies. This preliminary phase aimed to 
quickly generate a diverse set of models to explore the initial 
compatibility of our dataset with different machine learning algorithms.

Following the creation of these prototype models, we undertook 
a rigorous evaluation of their performance based on key metrics—
accuracy, recall, and F1 score—using the validation set. Models 
exhibiting suboptimal performance were excluded from further 
consideration. For those models demonstrating promise, we  then 
activated features such as auto-stacking, dynamic stacking, and 
engaged in hyperparameter optimization for retraining. Although this 
step entailed higher computational demands, the benefits in terms of 
enhanced prediction accuracy and model robustness were substantial, 
leading to the development of a suite of finely-tuned, high-quality 
machine learning models.

Ultimately, the model that showcased superior performance on the 
test set was selected as our predictive model. This process not only 
confirmed the model’s exceptional predictive accuracy but also 
validated the efficacy of our phased machine learning strategy. Through 
this methodical and iterative approach, we were able to systematically 
identify and optimize the most effective machine learning solution for 
predicting arthritis development, underscoring the strategic advantage 
of employing a phased methodology in machine learning projects.

2.6 Statistical analysis

In this study, we  meticulously detailed the demographic 
characteristics of the participants. Continuous variables were 
summarized using the median and interquartile range, while 
categorical variables were presented as counts and percentages. To 
discern differences in characteristics based on arthritis status, 

we employed the Wilcoxon two-sample test for continuous variables 
and the chi-square test for categorical variables. Heavy metal exposure 
levels across eight NHANES data release cycles were reported using 
geometric mean and geometric standard deviation, with the Mann–
Kendall test applied to assess trend significance over time.

The performance of our machine learning model was evaluated 
using several metrics, including the area under the curve (AUC) as 
described by Pruessner et al. (25), accuracy score, average precision 
score (APS), sensitivity/recall, and the F1 score. Given the imbalance in 
our dataset—marked by significant discrepancies in the prevalence of 
positive and negative samples—the average precision (AP) metric was 
deemed more appropriate for evaluating the binary classification 
model’s performance regarding arthritis status. The AP provides a 
nuanced measure of sensitivity and discriminative ability in unbalanced 
settings, hence its prioritization in our analysis. For the arthritis 
classification, which involves multiple classes, the F1 macro score was 
selected as the primary evaluation criterion due to its capacity to offer a 
balanced view of precision and recall rates across an unbalanced dataset.

Our analysis was conducted using Python version 3.9.18 and R 
version 4.3.2, provided by The R Foundation for Statistical Computing. 
Results achieving a p-value less than 0.05 were considered statistically 
significant. This methodological framework, as depicted in Figure 1, 
outlines our comprehensive approach to understanding the impact of 
heavy metal exposure on arthritis development, supported by robust 
statistical and machine learning analyses.

2.7 SHAP interpretation

SHAP (SHapley Additive exPlanations) (12) is an advanced 
model interpretation tool that draws upon the principles of 

FIGURE 1

Overview plot.
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cooperative game theory, specifically utilizing the concept of 
Shapley values, to elucidate the decision-making processes of 
machine learning models. The foundational theory behind SHAP 
posits that each feature within a model can be seen as a “player” in 
a cooperative game, where the “payout” or impact of each player is 
determined by their contribution to the predictive accuracy of the 
model. SHAP operates on the principle of “fair distribution,” akin to 
“more work, more gain,” ensuring that the contribution of each 
feature to the model’s prediction is accurately quantified 
and allocated.

This method demystifies the predictive judgments of complex 
models by detailing the exact contribution of each feature to the final 
prediction, thereby rendering the model’s decision-making process 
transparent. One of the hallmark characteristics of SHAP is its 
versatility and compatibility; it can be applied post hoc to virtually any 
machine learning model regardless of its underlying architecture. This 
is achieved by decomposing the model’s output into a linear sum of 
the individual contributions of all features. By converting the predicted 
value into the aggregated sum of these attributions, SHAP facilitates a 
deeper understanding of the model’s behavior, highlighting which 
features are most influential in driving predictions and providing 
insights into the dynamics underlying the model’s predictions.

3 Results

3.1 Population characteristics of the study 
participants

Table 1 in our study encapsulates the demographic and health-
related characteristics of participants enrolled in the U.S. National 
Health and Nutrition Examination Survey (NHANES) between 2003 
and 2020, focusing specifically on individuals with and without 
arthritis. The analysis included a cohort of 14,319 participants, with a 
gender distribution where 49% were male. The average age across the 
cohort was 49.0 years, with an interquartile range from 34.0 to 
63.0 years. Within this population, a significant number, 3,900 
participants, were identified as suffering from arthritis.

The comparative analysis between participants with arthritis and 
those without highlighted several notable demographic and 
socioeconomic distinctions. Specifically, individuals diagnosed with 
arthritis were predominantly female, tended to be older, and were 
more likely to identify as non-Hispanic white. Additionally, this group 
was characterized by a moderate household income. These differences 
between the two groups were statistically significant, with all 
comparisons yielding a p-value of less than 0.05.

3.2 Data of heavy metal exposure

Table  2 in our study presents a detailed analysis of the 
concentrations of various heavy metals detected in urine or blood 
samples across each data release cycle from the U.S. National Health 
and Nutrition Examination Survey (NHANES). The heavy metals 
examined include total arsenic, arsenite, arsenic acid, dimethylarsinic 
acid, monomethylarsonic acid, barium, cadmium, lead, antimony, and 
tungsten, in addition to the specific analysis of cadmium and lead 
levels in blood samples.

The analysis reveals a significant trend in the concentration levels 
of these heavy metals over the data release cycles, with a p-value of less 
than 0.05 indicating statistical significance. This suggests that there 
has been a consistent and noteworthy variation in the exposure levels 
to these metals among the U.S. population during the study period.

3.3 Training and testing of machine 
learning models

In the initial phase of our study, we  focused on developing 
machine learning models capable of identifying the presence of 
arthritis. To refine the feature set for our machine learning (ML) 
models, we employed the LASSO regression technique for feature 
selection. This approach enabled us to identify 21 variables that 
exhibited non-zero coefficients after LASSO’s regularization process, 
indicating their significance in predicting arthritis.

The training outcomes of this first stage are documented in figures 
within the Supplementary material. Figure 2 illustrates the receiver 
operating characteristic (ROC) curves of the various ML models 
trained, plotted together for comparative analysis. It is important to 
note that certain models, such as K-nearest neighbors (KNN), 
demonstrated notably inferior performance in this specific task. As a 
result, models performing suboptimally were subsequently excluded 
from further analysis in favor of those that could be optimized with 
more effective settings.

Among the various models evaluated, XGBoost emerged as 
particularly effective in predicting arthritis, showcasing an area under 
the curve (AUC) of 0.81, an accuracy of 0.77, an average precision 
score (APS) of 0.59, a precision of 0.61, a recall of 0.50, and an F1 score 
of 0.54. These results, depicted in Figure 3, underscore the superior 
performance of XGBoost in this context.

Following the successful determination of arthritic status among 
participants, our study’s next objective was to differentiate between 
osteoarthritis (OA) and rheumatoid arthritis (RA) and to explore the 
specific influence of heavy metal exposure on these forms of arthritis. 
Leveraging the arthritis patient data initially selected, we proceeded 
with a similar two-stage machine learning model training approach. 
This process began with the extraction of relevant features from the 
dataset comprising identified arthritis patients, aiming to refine and 
select the most effective models through a rigorous two-stage training 
regimen. This strategy was designed to isolate the models that 
exhibited the strongest performance on the test set, with the ultimate 
goal of utilizing the optimized model to investigate the relationship 
between heavy metal exposure and the different types of arthritis. 
Such an approach not only aids in the precise categorization of 
arthritis types but also in understanding their potential associations 
with environmental factors.

In the final analysis, the LightGBM_Large model emerged as 
particularly effective for this task, achieving a macro area under the 
curve (AUC) of 0.76, an accuracy of 0.70, a balanced accuracy of 0.53, 
and a macro F1 score of 0.85. These outcomes are detailed in Figure 4.

3.4 Feature importance visualization

In our study, we utilized SHAP (SHapley Additive exPlanations) 
to illuminate the impact of each variable within the XGBoost model 
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TABLE 1 Characteristics of the study participants from 2003–2020 in US NHANES.

Characteristic Arthritis status Arthritis type

Overall, 
N =  14,319 

(100%)a

Without, 
N =  10,419 

(73%)a

With, 
N =  3,900 

(27%)a

p-valueb Overall, 
N =  1,536 
(100%)a

Osteoarthritis, 
N =  904 (59%)a

Other or 
unknown, 

N =  248 (16%)a

Rheumatoid 
arthritis, N =  384 

(25%)a

p-valueb

Age (years) 49 (34, 64) 43 (31, 58) 63 (53, 73) <0.001 63 (54, 72) 65 (56, 73) 59 (48, 69) 62 (53, 71) <0.001

Sex <0.001 <0.001

  Male 7,020 (49%) 5,357 (51%) 1,663 (43%) 628 (41%) 331 (37%) 115 (46%) 182 (47%)

  Female 7,299 (51%) 5,062 (49%) 2,237 (57%) 908 (59%) 573 (63%) 133 (54%) 202 (53%)

BMI 28.0 (24.3, 32.5) 27.4 (24.0, 31.8) 29.4 (25.6, 34.4) <0.001 29.5 (26.0, 34.6) 29.9 (26.1, 34.6) 29.2 (25.6, 34.6) 29.3 (26.1, 34.6) 0.8

Race <0.001 <0.001

  Mexican American 2,283 (16%) 1,868 (18%) 415 (11%) 133 (8.7%) 70 (7.7%) 13 (5.2%) 50 (13%)

  Other Hispanic 1,304 (9.1%) 985 (9.5%) 319 (8.2%) 136 (8.9%) 72 (8.0%) 26 (10%) 38 (9.9%)

  Non-Hispanic White 6,087 (43%) 4,036 (39%) 2,051 (53%) 765 (50%) 514 (57%) 115 (46%) 136 (35%)

  Non-Hispanic Black 3,099 (22%) 2,250 (22%) 849 (22%) 346 (23%) 158 (17%) 63 (25%) 125 (33%)

  Other 1,546 (11%) 1,280 (12%) 266 (6.8%) 156 (10%) 90 (10.0%) 31 (13%) 35 (9.1%)

Education Level <0.001 0.011

  Less than high school 3,591 (25%) 2,474 (24%) 1,117 (29%) 338 (22%) 185 (20%) 49 (20%) 104 (27%)

  High school 3,358 (23%) 2,358 (23%) 1,000 (26%) 367 (24%) 205 (23%) 73 (29%) 89 (23%)

  More than high school 7,361 (51%) 5,581 (54%) 1,780 (46%) 830 (54%) 514 (57%) 126 (51%) 190 (50%)

PIR Level <0.001 <0.001

  Low 2,680 (21%) 1,913 (20%) 767 (22%) 301 (22%) 153 (19%) 53 (24%) 95 (28%)

  Medium 7,085 (54%) 5,118 (54%) 1,967 (56%) 746 (54%) 443 (54%) 120 (54%) 183 (53%)

  High 3,284 (25%) 2,475 (26%) 809 (23%) 345 (25%) 231 (28%) 49 (22%) 65 (19%)

aMedian (IQR); n (unweighted) (%).
bWilcoxon rank-sum test for complex survey samples; chi-squared test with Rao & Scott’s second-order correction. 
The bold values indicate significant differences in demographic and health characteristics by arthritis status.
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TABLE 2 Means and standard deviations of heavy metals by each cycle of US NHANES (2003–2020).

Variable Overall, 
N =  14,319 

(100%)a

Cycles of US NHANES p for 
trendb

2003–2004, 
N =  1,496 

(10%)a

2005–2006, 
N =  1,453 

(10%)a

2007–
2008, 

N =  1711 
(12%)a

2009–2010, 
N =  1946 

(14%)a

2011–2012, 
N =  1,627 

(11%)a

2013–2014, 
N =  1735 

(12%)a

2015–2016, 
N =  1707 

(12%)a

2017–2020, 
N =  2,644 

(18%)a

In urine

Total arsenic (μg/L) 21.60 (58.40) 19.97 (52.35) 24.43 (70.39) 18.82 (53.08) 23.89 (61.45) 20.75 (53.06) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.001

Arsenous acid (μg/L) 0.65 (1.51) 0.85 (0.39) 0.90 (0.63) 0.97 (3.76) 0.92 (0.73) 0.56 (1.68) 0.50 (0.48) 0.38 (0.45) 0.32 (0.46) <0.001

Arsenic acid (μg/L) 0.68 (1.33) 0.75 (0.29) 0.76 (0.44) 0.80 (3.56) 0.75 (0.65) 0.67 (1.06) 0.58 (0.26) 0.58 (0.15) 0.59 (0.20) <0.001

Arsenobetaine (μg/L) 10.77 (46.71) 9.68 (41.69) 13.60 (56.85) 8.71 (38.56) 11.60 (41.61) 12.08 (45.41) 9.36 (39.83) 10.04 (32.77) 11.18 (61.72) <0.001

Arsenocholine (μg/L) 0.31 (1.15) 0.42 (0.21) 0.45 (0.30) 0.44 (0.31) 0.55 (2.83) 0.25 (0.43) 0.15 (0.53) 0.17 (0.47) 0.17 (0.77) <0.001

Dimethylarsonic acid (μg/L) 5.52 (7.86) 5.46 (6.20) 5.83 (9.37) 5.52 (8.71) 6.02 (9.08) 6.40 (8.50) 4.94 (5.97) 5.11 (6.51) 5.14 (7.66) <0.001

Monomethylarsonic acid 

(μg/L)
0.81 (1.88) 0.97 (0.80) 0.98 (1.18) 0.98 (1.43) 1.07 (4.26) 0.93 (1.89) 0.62 (0.75) 0.54 (0.54) 0.53 (0.63) <0.001

Barium (μg/L) 1.91 (3.25) 2.13 (3.49) 2.23 (3.29) 2.16 (4.10) 2.11 (3.37) 1.75 (2.97) 1.69 (2.99) 1.75 (2.77) 1.64 (2.92) <0.001

Cadmium (μg/L) 0.39 (0.47) 0.45 (0.51) 0.41 (0.43) 0.43 (0.49) 0.40 (0.47) 0.38 (0.51) 0.32 (0.42) 0.34 (0.38) 0.37 (0.48) <0.001

Cobalt (μg/L) 0.54 (1.56) 0.53 (3.39) 0.60 (1.60) 0.49 (0.63) 0.53 (1.20) 0.47 (1.00) 0.55 (1.17) 0.59 (1.14) 0.54 (1.25) <0.001

Cesium (μg/L) 5.32 (6.73) 6.52 (17.61) 5.78 (4.31) 5.43 (4.34) 5.01 (3.22) 4.85 (3.35) 4.88 (3.24) 5.07 (4.28) 5.29 (3.60) <0.001

Lead (μg/L) 0.69 (1.17) 0.96 (0.93) 0.95 (1.23) 0.85 (1.62) 0.81 (1.65) 0.64 (1.23) 0.51 (0.87) 0.51 (0.75) 0.48 (0.66) <0.001

Antimony (μg/L) 0.09 (0.22) 0.10 (0.10) 0.11 (0.16) 0.09 (0.17) 0.08 (0.15) 0.07 (0.12) 0.07 (0.16) 0.09 (0.47) 0.08 (0.21) <0.001

Thallium (μg/L) 0.19 (0.15) 0.18 (0.13) 0.19 (0.13) 0.18 (0.15) 0.18 (0.13) 0.19 (0.14) 0.18 (0.13) 0.20 (0.23) 0.20 (0.15) <0.001

Tungsten (μg/L) 0.12 (0.37) 0.11 (0.21) 0.14 (0.32) 0.16 (0.32) 0.12 (0.24) 0.14 (0.84) 0.10 (0.21) 0.11 (0.24) 0.10 (0.22) <0.001

Molybdenum (μg/L) 53.40 (52.23) 54.73 (57.24) 59.23 (52.38) 60.47 (56.87) 57.16 (55.02) 52.95 (51.72) 47.75 (53.08) 49.96 (44.10) 48.30 (47.26) <0.001

In blood

Cadmium (μg/L) 0.51 (0.58) 0.55 (0.59) 0.52 (0.57) 0.55 (0.62) 0.53 (0.57) 0.53 (0.59) 0.48 (0.54) 0.48 (0.54) 0.50 (0.58) <0.001

Lead (μg/dL) 1.58 (1.56) 2.08 (1.56) 1.89 (1.54) 1.88 (1.81) 1.69 (1.71) 1.50 (1.79) 1.34 (1.45) 1.30 (1.30) 1.23 (1.12) <0.001

Total Mercury (μg/L) 1.55 (2.54) 1.47 (1.90) 1.55 (2.01) 1.49 (2.18) 1.68 (2.54) 1.73 (3.03) 1.57 (2.69) 1.57 (2.59) 1.43 (2.84) <0.001

aMean (SD).
bWilcoxon rank-sum test for complex survey samples. 
The bold values represent significant trends or variations in heavy metal exposure levels across different NHANES cycles.
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on the status of arthritis in the test dataset. SHAP plots, including a 
decision map and a heatmap, visualize the model’s decision-making 
process and the distribution of SHAP values for each feature, 
respectively, as depicted in Figure 5. The analysis of SHAP values 
revealed that certain heavy metals significantly contribute to the 
model’s predictions. Specifically, tungsten (0.013) in urine and other 
metals such as cobalt (0.007), cadmium (0.007), antimony (0.005), 
total arsenic (0.002), and blood cadmium (0.005) showed positive 
contributions, indicating their association with an increased likelihood 
of arthritis diagnosis. Conversely, molybdenum in urine (−0.007), 
thallium (−0.004), lead (−0.003), and mercury (−0.004) in blood 

demonstrated negative contributions, suggesting their inverse 
relationship with arthritis risk.

Beyond heavy metal exposure, demographic factors like gender, 
age, and ethnicity (non-Hispanic whites) were also identified as 
significant, with these groups showing a higher association with 
arthritis prevalence. This underscores the multifaceted nature of 
arthritis risk, encompassing both environmental and demographic  
influences.

When distinguishing between specific types of arthritis (OA, 
RA, or unspecified arthritis), the SHAP analysis for the multi-
classification task did not yield as straightforward an interpretation 

FIGURE 2

ROC curves, PR curves, and confusion matrices for each model in the binary classification task of diagnosing arthritis.

FIGURE 3

ROC curve, PR curve, confusion matrix of stage II XGBoost in the binary classification task of identifying arthritis. (A) ROC Curve for XGBoost model, 
showing the True Positive Rate against the False Positive Rate with an AUC of 0.81. (B) PR Curve for XGBoost model. (C) Confusion Matrix for XGBoost 
model, displaying the actual vs. predicted values.
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as the binary classification model. Hence, we  resorted to using 
feature importance based on permutation shuffling to ascertain the 
significance of heavy metal exposure in identifying OA and RA, with 
findings presented in Figure 6. Additionally, the development of RA 
was examined as a binary classification issue, exploring how the 
machine learning model discerns RA presence through SHAP 
values, detailed in Figure 7.

4 Discussion

In this investigation, we employed LASSO regression to efficiently 
delineate key variables and adopted explainable machine learning 
methodologies linked to heavy metal exposure. These techniques were 
implemented to ascertain the presence of arthritis within the 
NHANES database spanning 2003 to 2020. In our meticulous analysis 
of heavy metal exposure’s ramifications on OA and RA, the XGBoost 
and LightGBM algorithms demonstrated exceptional prowess in 
managing the complexities of the dataset, with XGBoost attaining an 
AUC of 0.81 and a precision rate of 77%, whereas LightGBM achieved 
an AUC of 0.76 and an accuracy of 70%. Both models were augmented 
by SHAP values, affording profound insights into how heavy metals 
modulate the risk trajectories for OA and RA, thereby enhancing the 
interpretability of our models and informing subsequent 
research trajectories.

ML, an intricate branch of artificial intelligence, leverages 
sophisticated mathematical algorithms to parse and categorize 
patterns across disparate datasets, thereby bolstering decision-
making processes. Despite its efficacy, the opaque reasoning 
mechanisms of ML algorithms and the complexity inherent in their 
interpretability pose significant challenges to their practical 
application in medical decision-making (26). Our machine learning 
strategy boasted several distinctive features. Primarily, it 
circumvented the need for new data acquisition, instead exploiting 
demographic, laboratory, and questionnaire data from the NHANES, 
applying multi-source data to our machine learning models. 
Furthermore, our models underwent training and evaluation on an 
extensive dataset, with a particular emphasis on the blood levels of 
heavy metals in individual participants. Given that the annual 
average levels of heavy metal exposure among the study participants 
were not incorporated into the training data, the decreasing trends 
in metal content did not compromise model stability. Additionally, 

our phased machine learning strategy, which was congruent with 
NHANES’s questionnaire collection methodology, initially 
determined whether participants suffered from arthritis, 
subsequently classifying the type of arthritis. The AUC of XGBoost 
and LightGBM in these phased tasks stood at 0.81 and 0.76, 
respectively, indicative of robust model stability. In addition, our 
study implemented machine learning models configured with 13 
distinct parameter settings, based on 7 different methodologies, to 
evaluate the efficacy of machine learning in our research context. The 
application of SHAP values to the XGBoost and LightGBM models 
was intended to more effectively illustrate the decision-making 
processes of the machine learning models. Positive SHAP values 
indicated a heightened risk of OA and RA during the 18-year survey 
period of the United  States NHANES, whereas negative values 
suggested a reduced risk.

SHAP outcomes aligned with prior research, pinpointing 
exposures most closely linked with arthritis development as tungsten 
(0.013), cobalt (0.007), cadmium (0.007), antimony (0.005), and 
arsenic (0.002), significant as potential risk factors. In individuals 
diagnosed with arthritis, the presence of arsenic, lead, molybdenum, 
antimony, thallium, cobalt, cadmium, and tungsten significantly 
differentiated between OA and RA based on levels of heavy 
metal exposure.

Presently, studies on how tungsten, cobalt, and antimony 
catalyze the mechanisms that induce OA and RA remain sparse. 
Our findings offer valuable perspectives for future investigations 
into the impact of these heavy metals on the pathogenesis of 
arthritis. Cadmium (Cd), a known environmental contaminant 
causing renal damage and bone demineralization, has been 
demonstrated to promote the expression of enzymes linked to the 
breakdown of the extracellular matrix in joint cartilage and 
diminish the presence of glycosaminoglycans and proteoglycans 
through the generation of reactive oxygen species (27–29). Recent 
studies have highlighted arsenic as a contributory factor in the 
development of arthritis (29). In a mouse model integrated with 
surgery-induced joint instability (30), arsenic’s presence markedly 
intensified cartilage degradation, consistent with our findings. 
Prior studies correlated mercury with the onset of osteoarthritis, 
noting elevated mercury levels in the anterior cruciate ligaments 
of women under 65 with degenerative spinal conditions (31). The 
presence of mercury in bones may correlate with body mass index, 
anatomical differences, and sex (32). Our classification of the 

FIGURE 4

ROC curve, PR curve, confusion matrix of stage II LightGBM in the multi-classification task of identifying arthritis species. (A) ROC Curves for different 
classes. (B) PR Curves for different classes. (C) Confusion Matrix displaying the actual vs. predicted values for the different classes.
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arthritis-affected populace reaffirmed the linkage between mercury 
and OA. Investigations by Grech (33) have shown that molybdenum 
could counteract iron-deficiency anemia by increasing enzyme 
quantities, revitalizing enzyme activity, and impeding 
inflammatory pathways, suggesting molybdenum’s role as a 
protective agent against arthritis, a finding corroborated by our 
analysis. Although certain studies have explored the relationship 
between blood lead levels and the prevalence and severity of knee 
osteoarthritis (34), our research did not substantiate this 
connection, likely due to the cross-sectional study design’s 
inherent limitations.

Moving forward, continuous monitoring and elucidation of 
selected features will yield invaluable insights for experts, enabling 
them to formulate well-founded conclusions instead of merely 
accepting the algorithm’s outputs. Furthermore, we intend to focus on 
validating the performance of the model by broadening the database 
and augmenting the interpretability of the interface between clinicians 
and the machine learning model.

This study has its limitations, including the absence of 
longitudinal follow-up for the same cohort and the current 
inability to access other datasets of similar scale for validation. 
We plan to address these issues in future research. Additionally, 

FIGURE 5

(A) SHAP plot. Top-to-bottom features are sorted by the average of the absolute shell values, that is, the vertical position shows the importance of the 
features. Each point in the figure represents the SHAP value for each sample, the color represents the feature value (the red high, the blue low), and the 
horizontal position shows whether the effect of this value leads to higher or lower predictions. (B) The features shown in red indicate positive 
contributions to the model, such as urinary tungsten (0.013), cobalt (0.007), cadmium (0.007), antimony (0.005), total arsenic (0.002), and cadmium in 
blood (0.005). The features shown in blue indicate a negative contribution to the model, such as molybdenum (−0.007) in urine, thallium (−0.004), 
lead (−0.003), and mercury in blood (−0.004). (C) SHAP heatmap. (D) SHAP decision diagram.
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the inherent biases of cross-sectional studies, potential 
information bias from self-reported arthritis diagnoses, and biases 
resulting from imputing missing data are also limitations. 
Moreover, disparities in feature importance between permutation 

shuffling and SHAP, with the former concentrating on global 
explanations and the latter on individual prediction contributions, 
may impede replicability due to the complexity entailed in 
model interpretation.

FIGURE 6

Feature importance based on permutation shuffling.

FIGURE 7

(A) SHAP plot. This figure illustrates the application of a machine learning model in a binary classification task for identifying the presence of 
rheumatoid arthritis (RA). (B) Positive (red) SHAP values indicate features that contribute to predicting RA presence, including arsenic metabolites (0.02), 
molybdenum (0.013), tungsten (0.009), antimony (0.009), and thallium (0.007). Negative (blue) SHAP values, such as for mercury (−0.009) and cobalt 
(−0.008), suggest these features are more associated with other types of arthritis or osteoarthritis (OA).
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5 Conclusion

Our study effectively utilized phased machine learning strategies to 
investigate the link between heavy metal exposure and arthritis prevalence 
among NHANES participants from 2003 to 2020. Employing SHAP 
enhanced our understanding of the predictive outcomes of these models, 
providing deep insights into the factors contributing to arthritis. This 
approach combines advanced analytics with improved interpretability, 
overcoming the typical “black box” issue in machine learning and 
enabling a more detailed exploration of the relationship between 
environmental exposures and health outcomes.
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