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APOE4 under adverse environments

Apolipoprotein E (apoE) is a 299 amino acid protein with vital functions in

transporting plasma cholesterol from peripheral tissues to the liver to be metabolized

(1). The human apolipoprotein E gene (APOE) is polymorphic, carrying three common

alleles that encode distinct apoE isoforms (apoE4, apoE3, and apoE2), displaying differing

biological functions and binding affinities to LDL receptors. ApoE4 is primarily expressed

in the liver, functioning as a ligand during the receptor-mediated endocytosis of lipoprotein

particles (2, 3), resulting in increased total cholesterol and LDL levels, whereas apoE2 has

opposite effects (4). ApoE4 has immunomodulatory roles in different experimental models

(5, 6) andmay have distinct effects under adverse and privileged environments. In the CNS,

apoE is the primary apolipoprotein regulating lipid metabolism, being mainly produced

by astrocytes. ApoE is involved in brain cholesterol recycling and redistribution, affecting

membrane maintenance, organelle biogenesis, and synaptogenesis, which are essential for

neuroplasticity (7). ApoE4 is highly expressed in glial cells and is recognized to bind to

brain amyloid plaques and is a culprit of unbalanced neuroinflammatory responses in

Alzheimer’s disease (AD) patients and declining health status (8). APOE4 carriers have a

significantly increased risk of acquiring late-onset Alzheimer’s and cardiovascular diseases

(9). Following cerebral focal ischemia, apoE4 was found to exacerbate infarction size

and hemiparesis in transgenic mice, as well as increased peri-infarct GFAP-associated

reactive astrocytosis when compared to apoE3 and apoE2 (10, 11). Although much is

known about how apoE-cholesterol-derived from astrocytes affects the build-up of synaptic

circuits (12) and impairment in AD (the latter according to apoE2 < apoE3 < apoE4)

(13), a gap of knowledge remains on apoE role on brain synapses following stroke under

adverse environments.

Despite the adverse effects of APOE4 in modern Western societies, the prevalence

of APOE4, considered the ancestral APOE allele, is higher in hunter-gatherer remote

populations (4). A reason for APOE4 prevalence in populations with less access to

health services may be the high exposure to endemic infectious pathogens (14). APOE4
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may behave as an antagonistic pleiotropic gene that may benefit

reproductive fitness and better coping against environmental

pathogens to improve population growth under famine and high

infectious disease rates (1, 15), with a trade-off toward enhanced

innate immunity against enteric pathogens for immediate

survival and thriving, however with sustained up-regulation of

inflammatory responses, which may be harmful for long-term

chronic diseases under more privileged environments. Indeed, the

E4 allele is highly prevalent in tropical populations that endure

higher parasite burdens in adverse environments. Interestingly,

APOE4 occurrence was associated with less cognitive decline in

individuals with eosinophilia, a proxy of helminthic infections (16).

The double burden of malnutrition
crisis and the COVID-19 pandemic

The double burden of malnutrition (DBM) is a phenomenon

that may occur when undernutrition and overnutrition afflict

individuals during their lifespan or societies with troublesome

consequences for health, predisposing individuals to other chronic

diseases, such as atherosclerosis, stroke, diabetes, and non-alcoholic

liver steatosis (17–19). DBM has been recognized in developing

countries with emerging economies, such as Brazil, South Africa,

and India, and is expected to be associated with the rise of diabetes

in close association with cardiovascular diseases in poverty-

troubled settings (20). Recently, the COVID-19 pandemic has

exacerbated the global malnutrition crisis along with staggering

rates of poverty and food insecurity, undermining essential public

health and social programs (17, 21).

The multinational lockdowns and the resulting home

confinement of over 2.6 billion people (22) were responsible

for a change in lifestyle from outdoor to indoor activities,

instigating sedentary lifestyles accompanied by a range of

metabolic and endocrine stressors arising from unhealthy eating

habits, dysfunctional sleep patterns, smoking, and alcohol intake

(23), all of which are important risk factors for the development

of atherosclerosis and stroke (11). Stroke has been a public

health concern following the COVID-19 pandemic, with a rise

in cases and mortality in all age groups, especially those with

comorbidities (24).

Post-COVID-19 Syndrome, also known as “long COVID,” is

a post-viral syndrome characterized by symptoms persisting after

the end of a COVID-19 infection that cannot be better explained

by an alternative diagnosis (9, 25), affecting between 32.6% to

87% of patients that underwent hospitalization as well as some

non-hospitalized patients (9). It is a multifactorial condition with

hundreds of possible symptoms and affects various tissues, organs,

and systems (25). According to the US Household Pulse Survey

and corroborated by Robertson et al., around 7.3% of the U.S.

population above 18 years were experiencing long COVID as of July

2022, and a proportion of 2.8% has been documented in the UK for

those above 2 years of age (26). Neuropsychiatric symptoms appear

to be related to neuroinflammation and blood-brain barrier (BBB)

disruption, caused by exaggerated immune responses to SARS-

CoV-2, symptomatically resembling post-viral fatigue syndrome

(also known as chronic fatigue syndrome), all of which may be

aggravated by malnutrition states (9). Females, the elderly, and

people with chronic conditions are at a higher risk of developing

long COVID (27).

The interplay between APOE4,
COVID-19, and the global stroke crisis

An emerging body of evidence implicates the cumulative

burden of lifelong infections, termed Chronic Infectious Burden,

to an increased risk of atherosclerosis and stroke, to which both

chronic and acute infections are significant contributors. During

the COVID-19 pandemic, a rise in stroke cases was recognized,

with the highest risk seen during the first 3 days after COVID-

19 diagnosis and decreasing over several weeks (28). The etiology

for this increased risk is multifaceted, potentially varying between

different conditions; however, pre-existing comorbidities, such as

aging, obesity, and diabetes, were strong co-drivers (29).

One of the main features of COVID-19 is the advent of a

heightened, dysregulated immune response brought about by the

virus’ modulation of the adrenergic and hypothalamic-pituitary-

adrenocortical axis, inducing a hyperactive innate immune

response, leading to neutrophilia and elevated cytokine production,

directly followed by immunosuppression and lymphopenia, with

these effects and the degree of the viral load—and, therefore,

the graveness of the prognosis. COVID-19-associated systemic

infection biomarkers include IL-6, erythrocyte sedimentation rate

(ESR), TNF, IFN-γ, IP-10, MCP-3, and HGF (28, 30). In addition,

vascular cell adhesion molecules (VCAMs), plasmatic levels of free

DNA, fibrinogen-to-albumin ratio, CRP, PCT, and ferritin are also

increased. A decrease in CD3+, CD4+, CD8+ T cells, and NK cells

is observed proportionally to disease severity (30).

The COVID-19-associated inflammatory storm has been linked

with an increased risk of ischemic stroke through the formation

of thrombi as a by-product of pro-coagulant and peripheral pro-

inflammatory responses, as well as by worsening two stroke-

related risk factors: atherosclerosis and atrial fibrillation (31, 32).

Atherosclerosis is potentiated through elevated macrophage and

T-cell responses, which begin to form a lipid-rich core due to the

accumulation of apoptotic cell debris and lipid pools in the vessel

wall throughout the local inflammation, followed by the release of

destabilizing factors such as IFN-γ and TNF, as well as lytic enzymes

such as metalloproteinases, that expose the atheromatous plaque’s

core and potentiate its rupture and thromboembolism (11, 31).

Pneumonia-associated hypoxia that often accompanies COVID-19

may also contribute toward a prothrombotic state (32).

COVID-19 can induce microvascular injury, directly inflicting

endothelial cell damage, by a viral protease to cleave the NF-

kB essential modulator, ultimately leading to BBB disruption and

brain neuroinflammation. BBB damage and subsequent increased

capillary permeability may compromise CNS perfusion, potentially

amplifying the risk and severity of hypoxic insults, such as those

caused by stroke (28). Hospital stroke incidence was 7–8 times

higher in COVID-19 than influenza patients (31). COVID-19 may

induce a particularly hypercoagulable state via increased D-dimer,

fibrinogen, factor VIII, von Willebrand factor, antiphospholipid

antibodies, and lupus anticoagulant concentrations (11). Such a

cascade of pro-coagulant events is triggered and amplified by a

cytokine release storm, endothelial injury, complement system,
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and neutrophil activation (28). COVID-19-driven platelet-rich

thrombosis in alveolar capillaries and small vessels has been

evidenced in post-mortem lung tissue (31).

SARS-CoV-2 has been found in thrombi of brain arteries

from acute ischemic stroke patients, who also showed systemic

high neutrophil-to-lymphocyte ratio as well as higher angiotensin-

converting enzyme 2 (ACE2) expression (32), and COVID-19 has

also been implicated in causing acute cardiac injury, arrhythmias,

and atrial fibrillation, which are commonly found in COVID-19

patients, with increased risk of thromboembolism and subsequent

stroke (25, 28).

ACE2 is expressed in many tissues and catalyzes the

degradation of angiotensin II into angiotensin 1–7, which

contributes to anti-hypertensive effects. Dysfunction of ACE2

expression has been implicated in a variety of pathological

conditions, ranging from hypertension, diabetes mellitus, acute

lung injury, and Alzheimer’s disease (33, 34). ACE2 is a well-

recognized gateway for SARS-CoV-2 entry into the host cells—

indeed, this likely plays a role in low lymphocyte and leukocyte

counts in patients due to the protein’s expression on their surface

(30). However, APOE4 has been found to downregulate ACE2

protein expression, leading to a dysregulation of the renin-

angiotensin system (33). The ACE2 polymorphism rs2285666

was associated with the risk of developing stroke in patients

with type 2 diabetes mellitus (34). This finding was corroborated

by Liu et al., who showed that another ACE2 polymorphism

(rs4240157) correlated with an increased risk of stroke in these

patients in a Chinese population (35). Further research is necessary

to better elucidate the relationship between APOE and ACE2

polymorphisms associated with COVID-19 outcomes and stroke

risk. Interestingly, an in vitro study found that incubation with

recombinant apoE3 and apoE4 partially inhibited COVID-19 virus’

entry into cells stabling expressing human ACE2; however, due to

apoE4′s more compacted structure, it was less effective at inhibiting

viral entry compared to apoE3 (36).

Long COVID-19 also seems to increase the risk of stroke,

particularly in genetically prone individuals, and has been found to

negatively impact stroke patients and the health services they rely

upon (37), yet long COVID-driven stroke has not been sufficiently

investigated amidst a context of an aging-related global rise in

cardiovascular diseases that has been taking place for the last 30

years (38). According to a report by the British Heart Foundation,

excess deaths resulting from cardiovascular diseases, including

cerebrovascular diseases, remained high in the UK even as fatalities

associated with COVID-19 have fallen, raising questions about

other potential causes, with disruptive healthcare services that may

be aggravated by COVID-19 post-pandemic effects (39).

APOE alleles were not found to predispose ischemic or

hemorrhagic strokes, though the E2 and E4 alleles were

overrepresented in brain amyloid angiopathy-related hemorrhage

(40). APOE4 was found to affect prognoses, with a small positive

effect on ischemic events and strokes more pronounced in

homozygotes. Nevertheless, the E4 allele appears to lower survival

rates for hemorrhagic stroke but improve it for ischemic stroke

(40, 41). Following ischemic and hemorrhagic insults, an increased

expression and neuronal apoE uptake are seen. Furthermore, apoE-

deficient mice develop a larger infarct volume following such

insults (40), suggesting that apoE plays essential roles in CNS

repair depending on the isoform (38, 42). ApoE4 appears to have

a less effective anti-inflammatory function, even being a pro-

inflammatory factor, when compared to other apoE isoforms (2),

aggravating the neurological damage and clinical outcomes in

various conditions, such as Alzheimer’s disease and stroke.

BBB disruption and vulnerability have been found in

APOE4-targeted replacement mice compared to APOE2 and

APOE3, leading to postsynaptic interactome dysfunction and

behavioral deficit (43). APOE4 occurrence in mice has been

associated with an increased reduction in brain pericyte number

and coverage surface; such pericyte impairment has been

observed in AD (44). Cerebral pericytes display beneficial roles

following stroke, with a multifaceted role in angiogenesis and

subsequent neurogenesis (45). SARS-CoV-2 may infect brain

pericytes, and increased pericyte ACE2 expression has been

associated with the severity of neurological symptoms in infected

patients (46).

ApoE4 has been found to increase cerebral microhemorrhages

in COVID-19 patients, likely through perivascular damage and/or

microglial activation. This worsens the infection’s outcomes and

serves as a risk factor for lasting mental fatigue following

severe COVID-19 (47). ApoE4’s compact structure and low

spatial interference have been found to facilitate the SARS-

CoV-2 virus entry into the cell compared to other apoE

isoforms. Lastly, the APOE single nucleotide polymorphisms

rs428358 and rs7412 were also linked to ischemic cerebral

infarction (48).

Conclusion

This opinion paper calls attention to the potential compound

effects of DBM and long COVID-19 in APOE4 carriers to

substantially increase the risk for stroke, particularly in

adverse and poor settings, where the mitigation of the

problem is hampered by difficult access to urgent and

specialized healthcare.
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