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Neurodegenerative disorders are a group of diseases characterized by progressive 
degeneration of the nervous system, leading to a gradual loss of previously 
acquired motor, sensory and/or cognitive functions. Leukodystrophies are 
amongst the most frequent childhood-onset neurodegenerative diseases and 
primarily affect the white matter of the brain, often resulting in neuro-motor 
disability. Notably, gastrointestinal (GI) symptoms and complications, such as 
gastroesophageal reflux disease (GERD) and dysphagia, significantly impact 
patients’ quality of life, highlighting the need for comprehensive management 
strategies. Gut dysbiosis, characterized by microbial imbalance, has been 
implicated in various GI disorders and neurodegenerative diseases. This narrative 
review explores the intricate relationship between GI symptoms, Gut Microbiota 
(GM), and neurodegeneration. Emerging evidence underscores the profound 
influence of GM on neurological functions via the microbiota gut-brain axis. 
Animal models have demonstrated alterations in GM composition associated 
with neuroinflammation and neurodegeneration. Our single-centre experience 
reveals a high prevalence of GI symptoms in leukodystrophy population, 
emphasizing the importance of gastroenterological assessment and nutritional 
intervention in affected children. The bidirectional relationship between GI 
disorders and neurodegeneration suggests a potential role of gut dysbiosis in 
disease progression. Prospective studies investigating the GM in leukodystrophies 
are essential to understand the role of gut-brain axis dysfunction in disease 
progression and identify novel therapeutic targets. In conclusion, elucidating 
the interplay between GI disorders, GM, and neurodegeneration holds promise 
for precision treatments aimed at improving patient outcomes and quality of life.
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1 Introduction

Neurodegenerative disorders are a group of diseases characterized by progressive 
degeneration of the structures composing the central and/or peripheral nervous system, leading 
to a gradual loss of previously acquired motor, sensory and/or cognitive functions. Most 
common neurodegenerative disorders are typical of adulthood, such as Parkinson disease, and 
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some forms of dementia (i.e., Alzheimer disease, Lewy body dementia, 
etc), while they are rarer entities in children. Childhood-onset 
neurodegenerative diseases pose unique challenges for paediatric 
neurologists as they may show overlapping symptoms with other 
neurological conditions; loss of motor skills, cognitive deterioration, 
feeding difficulties, and vision and/or hearing impairment are common 
features of different neurological diseases, and often the same disease 
may display different clinical presentations. An algorithm for the 
management of children with suspected neurodegenerative disorders 
and a classification system for these conditions, based on the 
prominently involved structures (i.e., disorders with prominent 
involvement of cerebral grey matter, leukoencephalopathies, etc.) has 
been developed (1). Leukodystrophies make up a significant proportion 
of pediatric-onset neurodegenerative conditions (2).

2 Leukodystrophies

Leukodystrophies are a heterogeneous group of rare genetic 
neurodegenerative disorders that affect children, primarily involving the 
white matter of the brain (3). Leukodystrophies can be classified upon 
the white matter component primarily involved and can be distinguished 
in myelin disorders, astrocytopathies, leukoaxonopathies, 
microgliopathies and leukovasculopathies (4). According to the 
neuroradiological patterns we  can define hypomyelinating forms, 
characterized by an arrest of the formation and maturation of myelin, 
and other disorders, mainly represented by demyelinating forms, 
characterized by progressive degeneration of the white matter (4). A 
consensus has been built among a panel of leukodystrophy specialists 
regarding the definition of the term leukodystrophy. The panel 
comprehensively identified disorders that align with the established 
definition, creating a list of known leukodystrophies. Additionally, the 
group introduced the term ‘genetic leukoencephalopathy (gLE)’ to 
describe hereditary disorders causing white matter abnormalities that 
do not strictly meet the criteria for leukodystrophies (3). Although 
aetiology varies across conditions, an alteration in metabolic/
cytohistological processes commonly represents the disease cause, and 
neuroinflammation might boost disease progression (5).

From a clinical point of view, the involvement of white matter tracts 
almost always impacts motor abilities, leading to various degrees of 
motor impairment usually related to pyramidal signs and/or ataxia. 
Other variable symptoms may include extrapyramidal movement 
disorders (mainly dystonia), seizures, delays or changes in cognitive 
development over time, visual and auditory impairment, extra 
neurological signs and symptoms depending on the specific disorder (6).

The hereditary nature of leukodystrophies, combined with their 
monogenic origin, has facilitated the development of some animal 
models. These are extensively employed in biomedical research because 
of their potential to replicate some aspects of human diseases, thus 
enabling an in-depth investigation of pathophysiological processes. 
Rutherford and Hamilton (7) provided a review of animal models of 
some of the most common leukodystrophies, such as X-linked 
adrenoleukodystrophy (X-ALD), metachromatic leukodystrophy (MLD), 
Krabbe’s disease (KD), Alexander disease (AxD), and Aicardi-Goutières 
syndrome (AGS) and highlighted their usefulness in identifying new 
cellular drivers and their potential target for new therapeutic strategies 
(7). Though, despite their significant contribution in understanding 
leukodystrophies pathogenesis, reliability on disease progression and 

response to experimental treatments remain scarce, largely due to the lack 
of animal models that fully and adequately mimic human disease, 
particularly white matter pathology. The translational gap necessitates the 
use of complementary methodologies, such as computational models, 
human cell-based systems, and clinical studies, to enhance the relevance 
and applicability of preclinical findings to human health and disease.

3 GI disorders in leukodystrophies and 
nutritional interventions: insights from 
literature

Leukodystrophies often entail life-challenging gastrointestinal (GI) 
complications, with gastroesophageal reflux disease (GERD), recurrent 
vomiting, and bowel dysfunction being the most frequent concerns, 
often affecting appetite and growth patterns (8). In addition, dysphagia 
is a very frequent, disabling and sometimes fatal symptom. It is linked 
with the risk of malnutrition and exposes patients to the dangers of 
aspiration pneumonia or airway obstruction (9). It recognizes a 
multifactorial origin (neurogenic, postural, iatrogenic, upper 
gastrointestinal tract dysfunction) and can cause dehydration, chronic 
malnutrition, failure to thrive, and depletion of essential nutrients (10). 
Anorexia has also been described in leukodystrophies (11).

GI disorders represent a challenging problem and significantly 
increase the burden of disease in these patients. They can primarily 
be related to disease pathogenesis, such as in AxD (12), or can be a 
consequence of severe neurological disability, like what is usually 
observed in cerebral palsy (13). Sometimes, an earlier onset of GI 
complications has been related to an earlier disease onset, as described 
in MLD (14). A proper nutritional assessment and intervention can 
ameliorate the nutritional status of children with leukodystrophies (10). 
Given the extreme phenotypic variability, nutritional intervention must 
be directed to meet the individual patient’s needs, usually targeting the 
specific symptoms and complications to improve patients’ quality of life. 
Specific dietetic approaches have been explored as therapeutic 
intervention for some leukodystrophies. Ketogenic diet has shown to 
promote myelination in mouse models of Pelizaeus Merzbacher Disease 
(15), and has been administered in isolated cases of leukodystrophy (16, 
17). Additionally, it is well known that dietary intervention plays a 
significant role in X-ALD, with a diet that is primarily characterized by 
the restriction of Very Long Chain Fatty Acids (VLCFA) and the 
augmentation of peroxisomal beta-oxidation through the administration 
of a combination of antioxidant compounds, conjugated linoleic acid 
(CLA), and Lorenzo’s oil (LO) [a 4:1 mixture of glyceryl trioleate (GTO) 
(C18:1 n-9) and glyceryl trierucate (GTE) (C22:1 n-9)], conjugated 
linoleic acid (CLA), and antioxidants (18).

4 GI disorders in leukodystrophies: an 
Italian single center experience

Out of 175 patients referred to our Centre for Diagnosis and Care 
of Leukodystrophies and Associated Conditions (C.O.A.L.A.) at 
V. Buzzi Children’s Hospital in Milan, Italy, who were diagnosed with 
either a leukodystrophy or a genetic leukoencephalopathy 
(Supplemenatry Table S1), data on gastrointestinal symptoms were 
available for 133 (76%). More than half of our cohort (75 patients, 
56.4%) had GI manifestations. 35 individuals (26.3% of the cohort) 
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reported one GI symptom, 15 (11.3%) were diagnosed with 2 
gastrointestinal symptoms, while 3 or more manifestations were 
observed in 25 individuals (18.8%) (Table 1).

Dysphagia or feeding intolerance was the most reported 
manifestation, accounting up to 37.1% of our cohort, with a mean age 
at onset of 5.7 years (median 3.7). Failure to thrive (according to WHO 
or CDC growth charts)1 was observed in more than a quarter of our 
patients (27.5%) and was reported at a mean age of 1.7 years, even if half 
of these patients had growth failure noted within the first year of life 
(median 0.75 year). GERD was also diagnosed early in life (mean age at 
onset 1.5 years, median 0.4 years) in 22.1% of our patients. 20 patients 
(15.3%) required feeding tube placement at a mean age of 6.3 years 
(median 3.25 years) and 12 (60%) had a complete reliance on gastric 
feeds (9.2% of the whole cohort). Recurrent vomiting (6.1%), liver 
dysfunction (3.1%), and inflammatory bowel disease (1.5%) were also 
reported. Other gastrointestinal abnormalities (e.g., stypsis, recurrent 
diarrhoea, abdominal pain, vomiting, nausea) were noted in 6.2% of 
patients (Table 1).

Our series highlights the relevance of GI disorders in patients 
affected by leukodystrophies. Emerging evidence underscores the 
intricate interplay between GI disorders and Gut Microbiota (GM), 
highlighting the bidirectional nature of this relationship, wherein 
GI disorders can perturb the delicate balance of GM composition 
(19). Alterations in GM, in turn, have been implicated in 
influencing the pathophysiology of neurodegenerative diseases 
(20). These findings underscore the critical importance of 
understanding and potentially modulating GM in the context of 
both GI and neurological health, thereby modulating the clinical 
outcomes (21). However, no studies have been conducted so far on 
GM and disease outcomes in patients with leukodystrophies.

5 Gastrointestinal disorders and gut 
microbiota

The human GI tract is one of the biggest interfaces between the host 
and the environment, with symbiotic microorganisms that offer many 
benefits to the host. The GM composition varies between individuals 

1 https://www.cdc.gov/growthcharts/clinical_charts.htm

and evolves through the host’s lifespan, and it is influenced by intrinsic 
and extrinsic factors (22). Among the major factors able to influence 
GM composition are the composition of maternal microbiota, maternal 
health and nutrition status before and during pregnancy, lactation, type 
of childbirth and diet. Geographic area of residence, antibiotic use, 
smoking exposure, as well as the health of immune system are also 
proven to impact GM (23, 24). Diet represents one of the main variables 
that affect the composition of GM, possibly leading to diversification of 
the microbial populations. The microbial composition of the small 
intestine plays an important role in modulating gastrointestinal 
processes such as secretion and motility and digestive functions, in 
addition to maintaining a tight communication with the CNS via the 
microbiota-gut-brain axis (MGBA) (25, 26).

The association between gastrointestinal disorders and microbiota 
alterations has been analysed in animal models. Kashyap et al. (27) 
utilized controlled mouse models to investigate the relationship 
between diet, transit time and GM. They demonstrated changes in gut 
microbial communities associated with variations in gut transit time 
by either speeding up or slowing down host gastrointestinal transit, 
administering polyethylene glycol or loperamide, respectively. These 
alterations in microbiota returned to normal levels after discontinuing 
the treatments. In contrast, introducing a diverse fecal microbiota 
from healthy humans into germ-free mice significantly reduced 
gastrointestinal transit time and enhanced colonic contractility. The 
different response depended on the quality and quantity of 
carbohydrates consumed with diet, as fermentable polysaccharides 
alter the composition of gut microbiota and the production of 
metabolites, i.e., short chain fatty acids (SCFAs) (27).

The intricate relationship between GI disorders and the GM is also 
the focus of several recent clinical studies, that explore the complex 
interplay between different microbial communities and various GI 
conditions. Irritable Bowel Syndrome (IBS) is a prevalent functional 
GI disorder characterized by recurrent abdominal pain and altered 
bowel function. It represents a good example of GI disorder, given the 
complex pathogenesis, that potentially involves genetic predisposition, 
environmental factors, and gut dysbiosis (28, 29). Through 
metagenomic analyses and 16S rRNA gene sequencing, a dysregulated 
GM composition has been unveiled in these patients, characterized by 
alterations in microbial diversity, abundance, and metabolic function 
(29). Dietary interventions have emerged as promising avenues for 
modulating gut microbial composition and alleviating IBS symptoms, 

TABLE 1 Distribution of GI symptoms in the population affected by leukodystrophies or genetic leukoencephalopathies referred to the centre for 
diagnosis and care of leukodystrophies and associated conditions (C.O.A.L.A.) at V. Buzzi Children’s Hospital in Milan, Italy.

N (%) Mean age (y) at onset (range) Age at onset (median, y)

Dysphagia/Feeding intolerance 49 (37.12) 5.77 (0–24) 3.67

Failure to thrive 36 (27.48) 1.66 (0–10) 0.75

GERD 29 (22.14) 1.47 (0–13) 0.40

Feeding tube placement 20 (15.27) 6.34 (0.13–21) 3.25

Complete reliance on feeding tube 12 (9.16)

Recurrent vomiting 8 (6.11) 1.46 (0–6) 1

Liver dysfunction 4 (3.10)

IBD 2 (1.54)

Other GI symptoms 8 (6.2)
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underscoring the bidirectional relationship between diet, GM, and 
clinical outcomes (28, 29).

GM has been extensively studied in GERD as well. Indeed, 
intestinal dysbiosis has been described in cohorts of patients with 
GERD and seems to be associated not only to the pathogenesis of this 
condition itself (30), but also to the specific pharmacological treatment 
to which these patients are subjected (31). A recent review by Kiecka 
et al. provides an overview of the most important effects of long-term 
proton pump inhibitors (PPIs) use (32). Among them, gut dysbiosis, 
probably due to their mechanism of function, is reported. In fact, PPIs 
exert profound effects on gastric acid secretion, thereby altering the 
luminal pH and perturbing microbial equilibrium within the GI tract. 
To support this evidence, probiotic supplementation has emerged as a 
promising strategy for restoring gut microbial homeostasis and 
ameliorating adverse sequelae associated with PPI-induced dysbiosis 
by replenishing beneficial microbial strains and enhancing mucosal 
barrier function (32). Indeed probiotic strains, such as Lactobacillus 
reuteri (DSM 17938), have appeared promising, showing mitigating 
efects in children on PPIs therapy. Other interesting strains with 
potential protective function include L. rhamnosus LR06 (DSM 21021) 
or L. pentosus LPS01 (DSM 21980) (32).

Finally, numerous microbial products have been recognized as 
regulators of GI motility and are implicated in the pathogenesis of 
colonic motility disorders. These include short-chain fatty acids 
(SCFAs), bile acids, tryptamine, as well as various gaseous byproducts 
such as methane, hydrogen sulfide, and hydrogen gas (33, 34).

6 Gastrointestinal function and 
microbiota-gut-brain axis (MGBA): the 
bidirectional communication

The well-known close and bidirectional communication between 
brain and intestine happens via the microbiota-gut-brain axis 
(MGBA). GM can influence the systemic health by contributing to the 
signaling along the GBA, whereas the Central Nervous System (CNS), 
Enteric Nervous System (ENS), neuroendocrine and neuroimmune 
pathways are all involved in the bidirectional communication between 
the CNS and the GI tract (35, 36). Top-down communication refers 
to the transmission of information from brain-to-gut whereas the 
bottom-up to the one from gut-to-brain (37) (Figure 1).

6.1 The top-down communication

Recently, several studies have highlighted the influence of 
modulations in the GM on behavior and disease severity in animal 
models of neurodevelopmental, neurodegenerative, and psychiatric 
disorders (38, 39). It is fully understood that a communication 
between GM and CNS does exist, and it is referred to as MGBA, 
which plays a pivotal role in maintaining homeostasis in the 
gastrointestinal tract, CNS, and microbial systems. This regulation 
is achieved through a complex network of chemical transmitters, 
including endocrine hormones, microbial molecules, and 
metabolites (40). GM plays an important role in the regulation of 
neurodevelopmental processes, including blood–brain barrier (BBB) 
formation and integrity, microglial maturation and function, and 
myelination, whose disruption could have a role in neurodegenerative 

diseases (41). According to recent studies, the MGBA is essential for 
controlling several physiological functions as well as 
pathophysiologic processes (21). It is now evident that the gut has 
direct control over the brain, and the brain exerts an effect over the 
gut functions. Evidence in animal research derives from 
investigations on infections, antibiotics, and fecal transplants, as well 
as from germ-free animal models (21). Via the ENS, the Vagus nerve 
directly regulates different gut processes, many of which have an 
impact on the GM, gut motility, intestinal permeability, bile and 
enzyme secretion, mucus production, nutrient absorption, and 
satiation. In addition, the Vagus nerve regulates inflammation. To 
maintain equilibrium in the human organism, a balanced and 
healthy microbiota is crucial. The disruption of eubiosis (i.e the 
dysbiosis status) causes the loss of homeostasis, richness, and 
evenness of microbial species, favoring disease onset.

6.2 The bottom-up communication

Gut dysbiosis may result in chronic inflammation, which has 
critical effects on the brain. In fact, it promotes the aggregation of 
misfolded proteins around neurons at the CNS level, disrupting 
neuronal function, survival, and hence synaptic integrity. The death of 
neuronal cells leads to the release of misfolded neurotoxic aggregates, 
further exacerbating neuroinflammation (42).

Chronic inflammation and oxidative stress determined by gut 
dysbiosis have been explored in several neurodegenerative disorders, 
such as Parkinson disease (PD), Alzheimer’s Disease (AD), Multiple 
sclerosis (MS) and Amyotrophic Lateral Sclerosis (ALS) (43). In PD, 
gut dysbiosis has been shown to trigger and promote 𝛼-synuclein fibril 
formation and dissemination, and the transplantation of fecal 
microbiota from PD patients to 𝛼-synuclein-overexpressing mice 
worsened inclusion bodies and parkinsonian symptoms compared to 
mice receiving healthy donor microbiota (40).

Research by Raval et al. (43) suggests a connection between GM 
dysbiosis and heightened inflammation and intestinal permeability in 
AD progression. Inflammatory reactions resulting from GM dysbiosis 
contribute to the breakdown of gut epithelial barriers, facilitating the 
entry of gut bacteria, fungi, and their products into the brain. 
Individuals with AD exhibit elevated bacterial levels within the brain 
compared to those without the condition. This invasion of GM 
components into the brain may contribute to both peripheral and 
central innate immune system dysfunction, characteristic of AD 
pathology (44). Furthermore, products derived from GM, such as 
lipopolysaccharides (LPS), microbial amyloid, and neurotoxins, have 
been implicated in neurodegeneration, amyloid-beta aggregation, 
neurofibrillary tangle formation, and neuroinflammation within the 
brain (45, 46).

Perturbations in the GM of children affected by MS compared to 
children without MS (47) and associations between GM and MS 
activity in children have been demonstrated (48). Studies about 
transplantation of MS patients’ microbiota into two different animal 
models of MS have highlighted the importance of interleukin IL10- 
producing CD4 T cells in the immunomodulatory effects of the GM 
(49, 50). Furthermore, the presence of specific Gram-positive bacteria 
in the gastrointestinal tract, which activate Th17 cells, significantly 
affected the severity of the disease in mice (49). In addition, converging 
data from germ-free mice and antibiotic preclinical studies have 
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implicated the microbiota in regulating myelin production in mouse 
prefrontal cortex (50, 51).

The relevance of GM has been also demonstrated in animal 
models of neurodegenerative disorders which usually have their onset 
in childhood. For example, autophagic dysfunction and GM dysbiosis 
have been demonstrated to cause chronic immune activation in the 
Drosophila model of Gaucher disease, through chronic activation of 
NF-kB signaling in the Gba1 loss-of-function model. Atilano et al. 
(52) observed that restoring microbiota or stimulating autophagy to 
remove immune mediators, rather than administering prolonged 
immunosuppression, may represent effective therapeutic avenues for 
GBA1-associated disorders. Kovàcs et al. (53) reported that the GM 
of mouse models of ceroid lipofuscinosis is altered as compared to 
wild-type mice. They demonstrated that acidified drinking water 
markedly changed the GM composition of Cln1 mice, reduced the 
abundance of the pro-inflammatory microorganisms, determined a 
decrease in the amount of lysosomal storage material in every brain 
region examined, reduced astrocytosis in the striatum and 
somatosensory cortex, attenuated microglial activation in the 
thalamus, and preserved the ability of Cln1 mice to climb down a 
vertical pole as quickly and proficiently as wild-type mice (53).

The composition of GM in neurodevelopmental disorders (ND) 
and its potential impact on brain functions and behaviors is the topic 

of a recent narrative review (54), which highlighted the role of gut 
microbes and their metabolites in directly or indirectly influencing 
brain function. In particular, it was noted that an increase in 
Clostridium spp. can lead to elevated production of indole, which 
suppresses the growth of beneficial bacteria like Bifidobacteria and 
Lactobacilli, ultimately affecting gamma-aminobutyric acid (GABA) 
levels (55). This mechanism has been associated with occurrences of 
stereotypies, hypersensitivity, and epilepsy. Furthermore, toxins 
produced by Clostridia exacerbate inflammatory responses. In other 
NDs, certain microbial species such as Enterobacteriaceae, Sutturella 
spp., and Erysipelotrichaceae also contribute to inflammation, leading 
to alterations in gut permeability and gastrointestinal symptoms (56). 
Additionally, a high protein diet in ND patients promotes the 
production of branched chain fatty acids (BCFAs) and propionate 
(57), with the latter showing behavioral impairment in animal models, 
suggesting the potential for microbiome-based treatments.

6.3 MGBA in leukodystrophies

Composition in GM has been explored in one adult-onset 
leukoencephalopathy, namely cerebral autosomal dominant 
arteriopathy with subcortical infarcts and leukoencephalopathy 

FIGURE 1

The bidirectional communication between GI disorders in Leukodystrophies and MGBA. Representation of the relationship between gastrointestinal 
symptoms in leukodystrophies and their potential impact on neurological severity. Key GI symptoms may determine alterations in GM, suggesting a 
link between dysbiosis and worsening of neurological symptoms. This implies a possible connection between GI issues in leukodystrophies and 
neurological severity.
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(CADASIL) (58). In the GM from 15 Japanese CADASIL patients, a 
notable rise in the presence of certain bacteria was observed, including 
Lachnospira, Odoribacter, Parvimonas, unidentified genera within 
Barnesiellaceae and Lachnospiraceae families, compared to paired 
controls. Conversely, there was a significant decrease in the presence 
of Megasphaera and Acidaminococcus. When comparing CADASIL 
subgroups, those who had experienced a stroke displayed a significant 
decrease in Phascolarctobacterium and Paraprevotella. Potential 
impact of certain genera on C-reactive protein levels was highlighted, 
as well as their role in stimulating the production of interleukin-10 
(IL-10) and transforming growth factor-beta (TGF-β) (58), suggesting 
that GM composition may not only affect the onset but also the 
progression of CADASIL.

To the authors’ knowledge, no studies have been conducted to 
date on MGBA and disease outcomes in leukodystrophies. Expanding 
upon the work that has been done with CADASIL, it could 
be worthwhile to investigate the potential effects of MGBA on the 
phenotype of other leukodystrophies. Indeed, there is often no clear 
genotype–phenotype association in these diseases, and current 
research has focused on potential phenotypic modifiers. Given the 
significant role that GI disorders play in leukodystrophies and the 
intricate relationships that drive MGBA, unraveling the eventual 
influence of GM on disease phenotype could mark a significant 
advancement in comprehending the remarkable phenotypic 
heterogeneity that has been noted in leukodystrophies.

7 Discussion

Several studies highlight the bidirectional link between gastro-
intestinal disorders and altered GM, and the existence of a gut-brain 
axis is nowadays widely accepted. Thus, a deeper understanding of 
how the gastrointestinal and nervous systems interact together with 
the GM mediation is needed. Studies on the impact of dysbiosis and 
MGBA dysfunction in neurological diseases are increasing, especially 
in the field of neurogenerative disorders. Though, studies on the role 
of gut-brain axis and microbiota alterations in paediatric-onset 
neurodegenerative conditions are scarce.

Basing on these assumptions and focusing on leukodystrophies 
and genetic leukoencephalopathies, which are among the most 
frequent neurodegenerative disease in children, we may speculate that 
GI disorders in patients with leukodystrophies may contribute to 
dysbiosis, leading to altered processes in both the gut and brain, and 
contributing to neurodegeneration. The loss of blood–brain barrier 
integrity, which may also be  influenced by the GM, promotes the 
translocation of gut microbes and their metabolites, potentially 
contributing to inflammation, oxidative stress, pathological protein 
aggregation, abnormal proteolysis, and neuronal death. These 
processes are known to play crucial roles in the pathogenesis of 
various neurodegenerative disorders, including some leukodystrophies 
(59, 60). Furthermore, considering the essential role of the GM in 
immune system development and maturation, it is reasonable to 
suspect its involvement in the pathogenesis of neurodegenerative 
disorders with a significant inflammatory component (61–64).

To our knowledge, the literature lacks systematic studies 
investigating the prevalence of GI disorders in patients affected by 
leukodystrophies. A study conducted by Kay-Rivest et  al. (9) 
reported dysphagia in 7 out of 12 (58%) leukodystrophy patients 

recruited, with 3 (43%) being completely reliant on a gastric tube. 
While these results may be slightly biased due to a small sample size, 
they are consistent with the findings in our cohort. Our results 
underscore the importance of conducting a comprehensive 
gastroenterological and nutritional assessment in children affected 
by white matter disorders. All children with leukodystrophies should 
have their growth patterns monitored using growth charts, and 
accurate dietary data are essential for adjusting food intake to 
promote growth and maintain gut eubiosis. In children affected by 
neurological impairment (NI) with long-term enteral nutrition, a 
significant impact on gut microbiota composition was found, which 
was in turn linked to an aggravation of their nutritional status (65). 
The significant prevalence of GI symptoms, such as dysphagia and 
GERD, underscores the need to deepen our understanding of the 
influence of the gut-brain axis on the clinical phenotype of these 
individuals. Therefore, prospective studies aimed at analysing the 
GM in these disorders are crucial, as our understanding of how gut 
environment affects neurodegenerative disorders may reshape 
treatment approaches. To this aim, it becomes relevant to identify 
adequate biomarkers that confirm and measure the impact of 
dysbiosis and gut-brain axis dysfunction on disease progression and 
examine the efficacy of innovative treatments targeting the GM, 
eventually evaluating the potential role of animal models in 
this process.

Therapies like biotics and faecal transplants offer potential for 
customized treatments to improve gut health and function, potentially 
reducing brain inflammation, limiting protein aggregate formation, 
and slowing disease progression. This shift toward considering the 
gut-brain connection as a potential treatment may represent a 
significant departure from conventional methods and holds promise 
for improving outcomes and quality of life in patients that deal with 
neurodegenerative diseases.
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