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Advances in nutritional metabolic 
therapy to impede the 
progression of critical illness
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With the advancement of medical care and the continuous improvement of 
organ support technologies, some critically ill patients survive the acute phase 
of their illness but still experience persistent organ dysfunction, necessitating 
long-term reliance on intensive care and organ support, known as chronic 
critical illness. Chronic critical illness is characterized by prolonged hospital 
stays, high mortality rates, and significant resource consumption. Patients with 
chronic critical illness often suffer from malnutrition, compromised immune 
function, and poor baseline health, which, combined with factors like shock or 
trauma, can lead to intestinal mucosal damage. Therefore, effective nutritional 
intervention for patients with chronic critical illness remains a key research 
focus. Nutritional therapy has emerged as one of the essential components 
of the overall treatment strategy for chronic critical illness. This paper aims to 
provide a comprehensive review of the latest research progress in nutritional 
support therapy for patients with chronic critical illness.
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Definition of chronic critical illness

The term Chronic Critical Illness (CCI) was first introduced by Girard (1) in 1985 to 
describe a group of patients who have survived the acute phase of their illness but continue to 
experience persistent organ dysfunction, necessitating prolonged reliance on intensive care 
and organ support (2). This condition is an inevitable outcome of modern medical 
advancement. With the progress in healthcare standards and the exacerbation of population 
aging, the prevalence of CCI is on the rise globally, particularly in high-income countries (3), 
garnering significant attention in the academic community.

Previously, CCI has been described using various terms such as critical illness 
polyneuropathy, critical illness myopathy, ICU-acquired weakness, and post-intensive care 
syndrome (4–7). Gardner et al. (8). proposed the latest diagnostic criteria for CCI, defined as 
an ICU stay exceeding 14 days with ongoing organ dysfunction on the 14th day (SOFA 
score ≥ 1 or any other organ system score ≥ 2).

Epidemiology of chronic critical illness

Although the incidence of CCI is increasing year by year, its epidemiological 
characteristics are still unclear, and there is limited reliable information about the 
incidence and outcomes of this syndrome. Previous epidemiological assessment data only 
come from a few hospitals and limited geographic regions, lacking strong 
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representativeness. Previous studies have also used different 
definitions of CCI, reflecting a lack of consensus on this 
complex syndrome.

Kahn et  al. (9). conducted a retrospective cohort study using 
discharge data from five states in the United States from 2004 to 2009. 
The inclusion criteria for CCI were ICU stay ≥8 days and meeting at 
least one of the following conditions: (1) mechanical ventilation; (2) 
tracheostomy; (3) sepsis and other severe infections; (4) severe 
trauma; (5) stroke (including ischemic stroke and intracerebral 
hemorrhage). In the study sample, CCI accounted for 7.6% of all ICU 
admissions, with an overall population incidence rate of 34.4 per 
100,000. The incidence rate of elderly chronic critical illness patients 
aged 65 and above gradually increased with age, peaking at 
75–79 years, reaching 82.1 per 100,000. This indicates that chronic 
critical illness is particularly common in the elderly, although the 
incidence decreases in the population aged 80 and above, partly due 
to early death (within 8 days).

Ohbe et al. (10). used hospitalization data from 679 hospitals in 
Japan from 2011 to 2018, using the same CCI diagnostic criteria. 
Similar to the results of Kahn’s study, the overall population incidence 
rate of CCI was 42.0 per 100,000, and the prevalence of elderly chronic 
critical illness increased steadily with age, reaching 109.6 per 
100,000 in the population aged 85 and above.

The above results indicate that the incidence of CCI sharply 
increases with age, posing a threat not only to patients’ health but also 
imposing a heavy burden on their families, healthcare systems, and 
society due to the significant utilization of ICU resources (8). However, 
despite such huge expenses, the prognosis of CCI patients remains 
poor. The in-hospital mortality rate is 30% (9), and the 5-year 
mortality rate is approximately 81%, much higher than most 
malignancies (20–49%) (11). Therefore, research also emphasizes the 
necessity of preventing CCI and reducing related care costs. In recent 
years, with the development of nutritional support technology, 
nutritional therapy has become one of the strategies used in the overall 
treatment of elderly chronic critical illness.

Characteristics of nutritional metabolism in 
chronic critical illness

In 2019, the Sepsis and Critical Illness Research Center in the 
United States proposed a theoretical framework for CCI centered 
around damage-associated molecular patterns (DAMPs). This theory 
elucidates the molecular mechanisms underlying the development of 
CCI. DAMPs are non-microbial molecules released from cells upon 
tissue damage, effectively activating the immune system and initiating 
sustained non-infectious inflammatory responses. This process results 
in systemic inflammation, organ damage, and potentially mortality. 
Analogous to other endogenous alarm signals, an increase in local 
tissue damage and systemic inflammation leads to sustained 
inflammatory responses (12). Some studies indicate that muscle 
breakdown metabolism can result in the release of DAMPs (including 
mtDNA, HMGB1, and TFAM) into the systemic circulation, thus 
perpetuating inflammation and impacting patient prognosis (13).

Currently, the academic community considers Persistent 
Inflammation Immunosuppression Catabolism Syndrome (PICS) as 
the primary pathophysiological mechanism underlying CCI (14, 15). 
Prolonged inflammation leads to abnormal myelopoiesis 

(myeloid-derived suppressor cells, MDSCs), T cell atrophy, T cell 
exhaustion, and expansion of inhibitory cell function.

Furthermore, sustained inflammation and oxidative stress impact 
nutritional status, resulting in anorexia, reduced food intake, and 
muscle catabolism (16, 17). The interplay between malnutrition, 
oxidative stress, and inflammation exacerbates muscle loss, affecting 
muscle structure, and increasing the risk of sarcopenia and weakness 
(18, 19). Moreover, autophagy deficiency is recognized as another 
mechanism underlying critical illness. Autophagy, a selective cellular 
process for organelle quality control, facilitates the clearance of 
damaged organelles and molecules. Although autophagy typically 
occurs post-muscle injury and is pivotal for muscle function recovery, 
its activation appears inadequate in critical illness, despite various 
triggers such as hypoxia, oxidative stress, and endoplasmic reticulum 
stress, thereby exacerbating muscle atrophy (20). Consequently, 
elderly individuals with chronic critical illness are particularly 
susceptible to malnutrition, sarcopenia, weakness, and autophagy 
deficiency, precipitating disease progression.

The metabolic characteristic of CCI is marked protein breakdown, 
which is due to decreased protein synthesis, uncontrolled muscle 
breakdown, and the release of potential pro-inflammatory degradation 
products (21, 22). Insulin resistance and breakdown reactions lead to 
the consumption of energy stores such as liver glycogen (glucose), fat 
(free fatty acids), and muscle (amino acids) (23). Within a few days of 
admission, protein breakdown in critically ill patients can reach 
nitrogen levels of 12–16 g/day, and in some cases, it can increase to 
nitrogen levels of 30 g/day (24). Previous studies have shown that 
muscle protein synthesis capacity in the elderly decreases by 
approximately 10–20% (25), it has been proposed that the diminished 
response to protein intake on muscle protein synthesis (MPS) in the 
elderly may be a contributing factor (26). Which has been confirmed 
in frail populations (27, 28). This is undoubtedly a vicious cycle for 
elderly chronic critical illness patients, leading to severe cachexia.

Based on the pathophysiology of CCI, adequate nutrition can 
potentially prevent it by modulating immunity, supporting autophagy, 
and preventing muscle catabolism.

Assessment indicators of nutritional 
metabolism

Sarcopenia, weakness, and malnutrition often reciprocally 
influence each other. Sarcopenia manifests as progressive and 
widespread loss and alterations in skeletal muscle mass and strength. 
As a component of catabolic syndrome, sarcopenia is prevalent in the 
ICU, particularly among elderly critically ill patients.

Various imaging assessment methods exist for sarcopenia, which 
is regarded as one of the nutritional metabolic indicators. 
Ultrasonography (US) is a portable, non-invasive, and ionizing 
radiation-free technique extensively employed in musculoskeletal 
studies. It exhibits a robust positive correlation with CT and MRI; 
however, most investigations concentrate on the quadriceps femoris 
muscle, with limited exploration of other muscles like the psoas 
muscle, and ultrasound outcomes are subject to operator proficiency. 
CT, serving as a standard diagnostic tool for assessing muscle quantity 
and quality, boasts advantages in disease staging and longitudinal 
monitoring, characterized by reduced variability and standardized 
measurements. MRI offers insights into muscle composition via 
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diverse sequences, delivering superior soft tissue imaging, particularly 
for muscles, compared to CT, albeit at a higher cost (29).

Furthermore, bioelectrical impedance analysis (BIA), a practical 
and portable technique for estimating body composition through 
predictive equations, involves applying low-intensity currents to the 
body to measure the impedance of fluids within and outside cells, as 
well as the capacitive component reflecting the cell membrane’s 
impedance. However, BIA’s reliability is significantly affected by factors 
such as fever and fluid shifts, particularly edema, which are prevalent 
in critically ill patients (30, 31). Currently, the devices employed for 
BIA are not widely available for clinical use (29).

In addition to imaging indicators, clinical assessment commonly 
incorporates physiological indicators to comprehensively evaluate the 
nutritional metabolism of chronic critically ill patients. With increased 
breakdown metabolism in elderly chronic critically ill patients 
resulting in elevated muscle breakdown, urea, a metabolic byproduct, 
also rises. Conversely, creatinine production diminishes with 
decreasing muscle mass. In a heightened breakdown state, the urea to 
creatinine ratio (UCR) increasingly reflects the characteristics of 
breakdown metabolism in critical illness.

Volbeda et al. (32). discovered that patients hospitalized in the 
ICU for 30 days or more exhibited a daily decrease in urinary 
creatinine excretion of 1% or more, with the urea to creatinine ratio 
(UCR) as an indicator of breakdown metabolism showing a 
continuous increase during the first 30 days of ICU admission. Zhang 
et  al. (33). conducted a retrospective cohort study indicating that 
among septic patients in the ICU, those with Persistent Critical Illness 
(PCI) experienced more significant changes in UCR compared to 
non-PCI patients, notably increasing from day 4 to day 10. Despite 
limitations in the database, such as the absence of reasons for 
prolonged ICU stays, this data provides compelling evidence of 
biochemical markers of chronic critical illness. In 2021, Flower et al. 
(34). examined the impacts of intermittent versus continuous feeding 
on UCR, revealing that intermittent enteral nutrition may mitigate the 
rise in UCR among critically ill patients. Although urea and creatinine 
levels are subject to influences from heart failure, dehydration, upper 
gastrointestinal bleeding, and acute kidney injury, their ratio remains 
less impacted. Additionally, UCR serves as a discriminant for patients 
with Persistent Critical Illness, PICS, and postoperative muscle 
atrophy (35, 36).

In addition to UCR, clinical indicators utilized to ascertain 
heightened breakdown metabolism encompass serum albumin levels 
below 30 g/L, prealbumin levels under 100 mg/L, creatinine height 
index below 80%, weight loss exceeding 10% during hospitalization, 
or a BMI below 18 kg/m2 (37). Nevertheless, these indicators, such as 
albumin and prealbumin levels, prove unreliable owing to the 
influence of inflammation, heightened vascular permeability, and 
plasma protein leakage, which fail to accurately portray the patient’s 
metabolic state (38). Consequently, there exists an imperative to 
devise novel biomarkers for early monitoring of breakdown 
metabolism in critically ill patients.

Nutritional support

Enteral nutrition (EN)
Chronic critically ill patients often encounter difficulties with oral 

intake, wherein nutritional support assumes a pivotal role, 

encompassing both enteral and parenteral nutrition. Typically, CCI 
patients opt for enteral nutrition (EN), which can ameliorate nutrition 
and overall condition, safeguard the integrity of the intestinal mucosa, 
uphold intestinal barrier function, mitigate inflammatory responses, 
and bolster immune function. It proves advantageous in diminishing 
the risk of complications such as gastrointestinal infections and 
ventilator-associated pneumonia, thereby positively influencing 
disease outcomes (39–41). Relative to parenteral nutrition support, 
enteral nutrition manifests as more physiologically compatible.

European Society for Clinical Nutrition and Metabolism (ESPEN) 
guidelines underscore the importance of initiating early enteral 
nutrition (EEN) within 48 h if patients are unable to orally intake food, 
barring instances of uncontrolled shock, hypoxemia, or acidosis. The 
fundamental principle is rooted in the observation that alterations in 
the intestinal barrier can manifest within 24 h, evidenced by signs of 
intestinal ischemia, heightened permeability, bacterial translocation, 
and dysbiosis (42). Concerning the total energy provision via enteral 
feeding, the American Society for Parenteral and Enteral Nutrition 
(ASPEN) contends that in adult critically ill patients, there exists no 
significant disparity in patient outcomes between high-energy and 
low-energy intake. It is recommended to administer 12–25 kcal/(kg·d) 
of energy during the initial 7–10 days in the ICU (40). Nonetheless, 
the European Society for Clinical Nutrition and Metabolism (ESPEN) 
advocates employing methods such as indirect calorimetry (IC), 
pulmonary artery catheter VO2 assessment, predictive equations, etc., 
to tailor nutrient intake recommendations to each patient’s 
specific needs.

However, it should be  recognized that both overfeeding and 
underfeeding are associated with poor outcomes, and the study by 
Zusman et al. (43). reached a similar conclusion that both overfeeding 
and underfeeding are harmful. Critical patients have significant 
changes in daily energy expenditure (44–46), and the optimization of 
nutritional support is hampered at both the group and individual 
levels due to a lack of observations of changes in nutrient requirements 
during ICU stay in critically ill patients. Among them, IC is a clinical 
measurement method used to measure energy expenditure (EE) and 
monitor patients’ energy fluctuations, and optimize energy 
prescription with a personalized medicine orientation (47).

Both ESPEN and ASPEN tend to use IC to assess a patient’s actual 
energy expenditure. The prediction equation is associated with 
significant inaccuracies, leading to over- or underestimation of 
demand and inducing over- or under-feeding (48). In the early stages 
of the disease, low-calorie nutrition (no more than 70 percent of the 
EE) should be  given, but after the third day, energy delivery can 
increase to 80 to 100 percent of the EE, reflecting a gradual increase 
in energy supply (42).

Intolerance to enteral nutrition poses a significant challenge to 
its smooth progression, with an average incidence of 33%. This 
issue is especially prevalent in mechanically ventilated patients in 
the ICU, with an incidence as high as 80.2–85.0% (49). 
Gastrointestinal intolerance not only causes discomfort but also 
frequently interrupts enteral nutrition, hindering the achievement 
of target supply volumes. Only about 40–60% of patients reach 
recommended nutritional targets (50). The delivery mode of enteral 
nutrition, whether continuous or intermittent, is a subject of debate. 
Some studies suggest that continuous feeding may reduce diarrhea 
and aspiration (51). Hong-Yeul et  al. (52). conducted an RCT 
comparing intermittent and continuous enteral feeding, with the 
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continuous group achieving significantly higher nutritional targets 
(≥80%) than the intermittent group. However, intermittent EN may 
facilitate intermittent secretion of gastrointestinal hormones, which 
supports the physiological environment of gastrointestinal 
digestion and absorption. As mentioned earlier, autophagy 
deficiency, which eating can activate and nutritional supply can 
reverse, may be exacerbated by continuous feeding in critically ill 
patients, although the specific mechanism remains unclear (20). 
Therefore, more high-quality RCTs and basic research are necessary 
to validate the efficacy and safety of continuous versus 
intermittent feeding.

Parenteral nutrition(PN)
Parenteral nutrition (PN) is a form of intravenous nutritional 

support that circumvents the gastrointestinal system. When enteral 
nutrition proves insufficient or impractical, PN serves as a 
commonly employed alternative to ensure adequate nutrition. PN 
comprises amino acids, glucose, and lipids to fulfill energy and 
protein requirements. Its primary drawback lies in infectious 
complications, as traditionally believed, with PN linked to an 
elevated overall infection risk, including pneumonia and intra-
abdominal abscesses (53). Elke et al.’s (54) meta-analysis of 18 RCTs 
compared clinical outcomes between enteral and parenteral 
nutrition in ICU patients. The infection rate significantly differed 
between the EN and PN groups, particularly notable in patients with 
notably increased calorie intake in the PN group (54). Thus, it can 
be  inferred that calorie overload (and overfeeding) heightens 
infection risk, rather than PN per se. Jean et al.’s RCT also supports 
this notion: in ICU settings, when PN and EN provide equal energy, 
clinical outcomes, including mortality and complications, exhibit no 
significant variance between the groups (55). The latest ASPEN 
guidelines advocate initiating PN when gastrointestinal tract 
contraindications or inadequacies hinder nutrient delivery, rather 
than postponing EN.

PN can function as either a sole source of nutrition or an 
additional source (supplemental PN, SPN) when oral intake or EN 
proves insufficient to meet complete nutritional needs. The latest 
ASPEN guidelines (40) underscore that for critically ill patients, 
comparable energy intake can be achieved through PN or EN during 
the initial week of illness, with no substantial disparities in clinical 
outcomes. Consequently, short-term PN supplementation is deemed 
safe, efficacious, and yields outcomes akin to EN. Nonetheless, ASPEN 
contends that early supplemental parenteral nutrition does not confer 
significant benefits and advocates commencing SPN after 7 days in 
the ICU.

The composition of parenteral nutrition formulations significantly 
impacts patient prognosis. Andrew et  al.’s study revealed that 
compared to adequate fat-high glucose (ALHD) nutrition, patients 
receiving high-fat-low-glucose (HLLD) parenteral nutrition 
experienced a 42.6% decrease in CRP levels ([11.5 ± 6.8] vs. [6.6 ± 6.0]; 
p = 0.028), a 40.6% increase in prealbumin levels ([13.0 ± 5.8] vs. 
[21.9 ± 8.6]; p < 0.001), and a 64.1% decrease in the incidence of blood 
glucose levels >180 mg/dL ([35.1 ± 31.2] vs. [12.6 ± 21.8]; p = 0.003) 
while maintaining similar calorie targets (56). However, discussions 
on the types of nutritional formulations are less prevalent in chronic 
critically ill patients, and further randomized controlled trials (RCTs) 
are necessary in the future to inform the use of parenteral nutrition in 
this population.

Protein supplementation and 
immunonutrients

Proteins play a pivotal role during critical illness. In chronic 
critically ill patients, diminished synthetic metabolism, insulin 
resistance, inflammation, and reduced satellite cell count 
contribute to weakened synthetic metabolic responses (38). 
Simultaneously, the body shifts towards catabolic metabolism, with 
proteins rapidly breaking down as the primary energy substrate, 
leading to heightened infectious complications and prolonged 
recovery (57). However, it is important to note that protein intake 
in the first week of the ICU is not associated with loss of muscle 
mass (58).

Furthermore, sarcopenia is prevalent among critically ill elderly 
populations and may exacerbate during hospitalization (59), resulting 
in significant immobilization in ICU settings. Muscle wasting can 
be classified into qualitative or quantitative loss, with quantitative 
depletion occurring due to alterations in protein metabolism, 
increased amino acid oxidation, reduced caloric and protein intake, 
inflammatory status, diminished peripheral perfusion, and prolonged 
immobility, leading to both a quantitative decline and compromised 
muscle quality (60). Zudin et al. (61) reported a significant decrease 
in the cross-sectional area of the quadriceps femoris in critically ill 
patients, with a 12% drop in the first week and a more substantial 
decline of up to 17.7% by day 10.

Therefore, administering exogenous protein stands as the most 
direct approach to offsetting protein loss in the body. Nevertheless, 
controversy persists regarding the optimal dosage of protein 
supplementation. Several large observational studies have indicated 
that higher protein intake correlates with improved survival rates (62).

Recent studies, such as PROTINVENT (63), have revealed a 
higher mortality rate among patients treated with high protein doses 
during the first 3 days. The EPaNIC post-hoc analysis underscores the 
potential negative impact of excessive nutrition, as it can disrupt 
autophagy, thereby hindering the degradation of damaged cellular 
proteins and organelles, which in turn prolongs organ dysfunction 
(64). Recent findings indicate that the conversion rate of amino acids 
improves over time, with a significant increase in overall protein 
synthesis occurring during the acute phase’s early stages and persisting 
even after (65, 66). This body of evidence supports the notion of a 
gradual increase in protein intake, as low and gradual dosages of 
protein can prevent excessive consumption during periods of 
heightened endogenous energy production, while also mitigating the 
risk of refeeding syndrome by suppressing autophagy (67, 68).

Numerous studies tend to link higher protein provision with 
lower incidence and mortality rates compared to lower protein intake 
levels (69, 70). However, current evidence does not unequivocally 
support the notion that elevated average protein intake [1.31 ± 0.48 vs. 
0.90 ± 0.30 g/(kg·d)] confers benefits for critically ill patients (71). The 
latest ASPEN guidelines (40) suggest that, due to a paucity of high-
quality evidence trials, adherence to the 2016 guidelines 
recommending an intake of 1.2–2.0 g/(kg·d) of protein is prudent. 
Similarly, ESPEN (42) has issued analogous recommendations, 
indicating no significant disparities in outcomes between protein 
intakes of 1.6 ± 0.5 g/(kg·d) and 0.9 ± 0.3 g/(kg·d), albeit higher protein 
intake has been associated with increased mortality in acute kidney 
injury patients. Some studies propose a protein intake of 2.5 g/(kg·d) 
for critically ill elderly patients in a hypercatabolic state (72), thus, a 
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unified standard for protein intake in elderly chronic critically ill 
patients remains elusive.

In addition to proteins, various immunonutrients such as arginine 
and leucine exert a beneficial impact on the prognosis of critically ill 
patients. Arginine, beyond its typical amino acid functions, also acts 
as a substrate for intracellular nitric oxide (NO) and is intricately 
linked to patients’ immune function. A study suggests that 
supplementing arginine may counteract the continuous arginine 
deficiency caused by the persistent expansion of MDSCs during PICS, 
thereby promoting lymphocyte proliferation and enhancing tissue 
repair (73). It can also improve muscle strength and physical function 
in older adults with low protein consumption, frailty, and sarcopenia, 
and increase postprandial MPS (74). Furthermore, supplementation 
of leucine and other branched-chain amino acids (BCAAs) can 
stimulate protein synthesis and inhibit protein breakdown via the 
mTOR pathway, thereby enhancing nutritional and immune 
parameters such as nitrogen balance, prealbumin levels, and 
lymphocyte counts (3, 24). For critically ill elderly patients, 
supplementation with immunomodulators like ω-3 fatty acids and 
γ-linolenic acid can significantly reduce mechanical ventilation 
duration and mortality risk (75).

Application of probiotics

Throughout critical illness, epithelial cells and the intestinal 
mucosal barrier undergo changes, resulting in alterations in the 
abundance and diversity of gut microbiota, a phenomenon termed 
dysbiosis (76). ICU patients demonstrate notable shifts in gut 
microbiota diversity compared to healthy individuals, marked by a 
reduction in obligate anaerobes and an elevation in pathogenic 
bacteria, predisposing them to complications such as sepsis and 
systemic inflammatory response syndrome (SIRS) (77).

As previously mentioned, CCI patients often experience 
prolonged inflammatory responses, necessitating high doses of 
steroids or antibiotics to mitigate inflammation, which further impairs 
the body’s bactericidal and bacteriostatic capacities. This phenomenon 
results in intestinal and mesenteric lymph node enlargement, 
disrupting the intestinal microecological environment and leading to 
disorders in intestinal absorption, infections (78, 79), and increased 
susceptibility to hospital-acquired infections, sepsis, multiple organ 
dysfunction syndrome (MODS), energy imbalance, muscle wasting, 
and cachexia (80). This situation is exacerbated in elderly chronic 
critically ill populations. Victoria et al. (81). investigated the fecal 
microbiota profiles of elderly ICU patients and discovered that 
compared to younger individuals, patients aged over 60 exhibited 
lower bacterial diversity and higher pathogen abundance in the ICU, 
including genera such as Escherichia-Shigella and Hungatella. Hence, 
elderly individuals are more susceptible to dysbiosis, underscoring the 
growing significance of microbial modulators.

Microbial modulators play a crucial role in regulating immune 
dysfunction, enhancing local immune function, preventing damage 
to the intestinal mucosal barrier, maintaining gut microbiota balance, 
and promoting gastrointestinal motility and absorption. Studies have 
shown (82, 83) that probiotics, such as lactobacilli, bifidobacteria, and 
Lactobacillus acidophilus, can colonize various parts of the intestine, 
thereby preventing invasion by pathogenic microorganisms, 
supplementing dominant bacteria, assisting in vitamin synthesis, 

scavenging free radicals, regulating the intestinal microenvironment 
and circulation, and promoting nutrient absorption.

Zhang et al. (84). randomly divided in-hospital chronic critically 
ill (CCI) patients into two groups. The intervention group received 
microbial modulators in addition to enteral nutrition, while the 
control group received only enteral nutrition. The results indicated 
that serum total protein ([69.75 ± 7.48] vs. [62.70 ± 6.33]) g/L, albumin 
([38.91 ± 3.54] vs. [34.83 ± 3.82]) g/L, and prealbumin ([204.24 ± 28.80] 
vs. [187.64 ± 23.73]) mg/L were higher in the intervention group than 
in the control group (p < 0.05). Therefore, the inclusion of microbial 
modulators has a beneficial effect on nutritional improvement in 
elderly chronic critically ill patients.

Exercise and utilization of 
anabolic-androgenic steroids (AAS)

It is well known that exercise improves muscle strength and 
function and reduces inflammation and oxidative stress, and that 
certain physical activity can stimulate MPS, with significant increases 
in aerobic training (AT) and resistance training (RT) regimens (85, 
86), de Azevedo et al. (87). conducted a randomized controlled trial, 
where critically ill patients were allocated to either a high-protein 
supplementation with early exercise intervention group or a control 
group. Both groups employed the IC to monitor EE, with a gradual 
escalation to 80% of their total energy output. The study’s findings 
revealed that after 3 and 6 months, the high-protein group, which 
engaged in resistance training, exhibited significantly higher Physical 
Component Summary (PCS) scores compared to the control group. 
Despite the presence of synthetic metabolic resistance that impedes 
the capacity of RT to achieve a constant positive protein balance 
throughout the day (88), the combination of high protein intake and 
early exercise has been proven to significantly enhance the prognosis 
of critically ill patients. Furthermore, the ongoing Nexis trial by 
Heyland et  al. (89). is examining the combined impact of early 
intravenous amino acid supplementation and bed-based cycle power 
testing exercise on patient outcomes, marking it as the first 
randomized controlled trial to assess the synergistic effects of exercise 
and protein supplementation in the early phase of critical illness.

Therefore, early physiotherapy in the ICU may prevent or reverse 
physical damage. Kayambu et  al. (90). investigated the effect of 
exercise on clinical outcomes in critically ill patients using randomized 
controlled trials, meta-analysis, and systematic reviews, and showed 
that supporting physical therapy in the ICU had a significant positive 
effect on improving peripheral and respiratory muscle strength, 
quality of life, physical function, increasing ventilator-free days, and 
reducing hospital and ICU hospital stays. However, there was no 
significant positive effect on mortality. Cheryl et al. (91). showed that 
critically ill patients who underwent early rehabilitation physiotherapy 
had a significantly higher number of muscle fibers and an increase in 
muscle fiber thickness, which was positively correlated with daily 
activity compared with control groups. Therefore, for CCI patients, 
early exercise physical rehabilitation is very important.

One approach to enhance muscle mass in critically ill patients is 
through creatine supplementation, which increases the availability of 
creatine and phosphocreatine in muscles, thereby promoting insulin-
like growth factor 1 (IGF-1) expression and protein phosphorylation, 
supporting anabolic metabolism (92). It has been shown to improve 
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muscle quality and enhance exercise capacity in older adults, and when 
combined with resistance training, it leads to greater adaptive responses 
in skeletal muscle compared to standalone training. For athletes, long-
term supplementation with a combination of creatine 3–10 g/day and 
calcium β-hydroxy-β-methylbutyrate (HMB) 3 g/day has been shown 
to have a positive effect on athletic performance and body composition 
in athletes (93), However, there is currently no specific research 
focusing on creatine supplementation for critically ill patients.

Furthermore, supra-physiological doses of anabolic steroids have been 
shown to enhance muscle strength in otherwise healthy individuals. A 
catabolic response in the ICU can be counteracted with anabolic therapies 
(93). Testosterone, through its androgenic pathway, can minimize muscle 
wasting and autophagy, as evidenced in severe burn patients. Anabolic 
agents like oxandrolone and IGF-1 have also been found to reduce muscle 
catabolism in burn victims, thereby mitigating the progression of PICS. In 
addition, medications like IL-1 and IL-6 receptor antagonists can alleviate 
chronic inflammation, but the timing of administration is highly 
contentious due to the risk of stimulating or inhibiting other pertinent 
signaling pathways if not appropriately employed (94).

Summary and outlook

CCI is garnering increasing attention, with clinical nutrition 
emerging as an integral component of treating critically ill patients. 
Presently, priority is accorded to oral intake for critically ill patients. 
In cases where oral intake is not feasible, early initiation of enteral 
nutrition support is recommended. In the presence of 
contraindications to enteral nutrition, timely provision of parenteral 
nutrition should be considered rather than discontinuing nutrient 
intake. Additionally, it is advisable for ICU patients to incorporate an 
appropriate amount of probiotics into their regimen to ameliorate gut 
microbiota dysbiosis. As far as the pathogenesis of CCI is concerned, 
improving the process of PICS and alleviating the anabolic resistance 

of patients can be  started from protein intake, nutritional 
supplementation (essential amino acids, creatine, etc.), and exercise 
(aerobic exercise, resistance training) (Figure 1). Artificial feeding has 
transitioned from being an alternative treatment modality to a therapy 
requiring diligent oversight and monitoring. Similar to other 
therapeutic approaches, effective monitoring is essential to ensure 
safety and achieve desired outcomes. Particularly in critically ill 
patients, including the elderly, frail, and malnourished, real-time 
feedback on nutrition delivery proves advantageous for physicians in 
determining the most suitable feeding goals and methods for patients. 
However, research on nutrition in elderly chronic critically ill 
populations remains limited. It is hoped that future randomized 
controlled trials will yield further insights to inform nutritional 
support strategies for these patients.
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Available methods for overcoming anabolic resistance (adapted with permission from Panda).
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