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Objective: Numerous studies emphasize the pivotal role of inflammation in 
metabolic dysfunction-associated steatotic liver disease (MASLD) development. 
Some link specific systemic immune biomarkers (e.g., systemic immuno-
inflammatory index [SII], neutrophil-to-albumin ratio [NPAR] and neutrophil-
to-lymphocyte ratio [NLR]) to hepatic steatosis risk. However, the relevance 
of other markers like systemic immune-inflammation index [SIRI], platelet-
to-lymphocyte ratio [PLR] and lymphocyte/monocyte ratio [LMR] in MASLD 
remains unclear. Limited literature covers all six markers together. This study 
aims to investigate the association between SII, SIRI, LMR, NLR, PLR, and NPAR 
and MASLD, assessing their predictive value.

Methods: In this cross-sectional analysis of adults from NHANES (2007–2018), 
we  investigated the relationship between six systemic immune biomarkers, 
stratified by quartiles: quartile1 (Q1), quartile2 (Q2), quartile3 (Q3) and quartile4 
(Q4), and the outcome of MASLD assessed by Fatty Liver Index (FLI) and 
United States Fatty Liver Index (USFLI). Logistic regression and restricted cubic 
splines (RCS) were employed to assess the association between systemic 
immune biomarkers and MASLD risks. Propensity score matching controlled for 
potential confounders, and receiver operating characteristic (ROC) curve analysis 
evaluated the biomarkers’ predictive performances for MASLD. Subgroup and 
interaction analysis were conducted to explore the effects of systemic immune 
biomarkers on MASLD risks. Multicollinearity was quantified using the variance 
inflation factor.

Results: In total, 14,413 participants were included and 6,518 had MASLD. 
Compared with non-MASLD, participants with MASLD had higher SII, SIRI, NLR, 
PLR, and NPAR (p  <  0.001). SII, SIRI, NLR, and NPAR were further validated in 
the restricted cubic splines (RCS) regression model and identified as positive 
linear relationships (p for nonlinear >0.05). The prevalence of MASLD increased 
with the Q4 of SII [OR  =  1.47, 95%CI (1.24, 1.74)], SIRI [OR  =  1.30, 95%CI (1.09, 
1.54)], NLR [OR  =  1.25, 95%CI (1.04, 1.49)], PLR [OR  =  1.29, 95%CI (1.09, 1.53)] 
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and NPAR [OR  =  1.29, 95%CI (1.09, 1.54)] compared to the Q1 after adjusting 
for the bias caused by potential confounders. However, the propensity score 
matching analysis only supported an association between the highest SII, SIRI, 
NLR NPAR and the risk of MASLD. The results of the subgroup analysis showed 
considerable robustness in the relationship.

Conclusion: Higher SII, SIRI, NLR and NPAR were positively associated with a 
heightened risk of MASLD. NPAR showed the superior predictive value, followed 
by SII, SIRI and NLR. This needs to be validated in additional longitudinal studies 
and clinical trials.

KEYWORDS

systemic immune biomarkers, inflammation, metabolic dysfunction-associated 
steatotic liver disease, NHANES, cross-sectional study

1 Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) 
constitutes a clinicopathologic syndrome characterized by diffuse 
steatosis (≥5%) (1), including simple fatty liver disease and its 
evolution steatohepatitis (NASH), liver fibrosis, cirrhosis and even 
liver cancer (2). The intricate pathogenesis of MASLD is intimately 
linked to factors such as insulin resistance, obesity, dyslipidemia, and 
genetic predisposition (3, 4). With the escalating incidence of obesity 
and diabetes, MASLD has emerged as a formidable public health 
challenge (5). Estes et  al. (6) predicted that the global burden of 
MASLD will continue to increase based on a mathematical prediction 
model, which will be  an important global health problem. The 
prevalence of MASLD in the United States has increased significantly 
over the past few decades, with approximately 30% of the population 
now affected by it (7). In view of the increasing risk and incidence of 
adverse outcomes of MASLD, early diagnosis, effective prevention and 
treatment of MASLD are necessary.

Many studies have shown that inflammation is a key factor in 
hepatic steatosis (8). Hepatic steatosis can manifest as a benign 
condition or progress to hepatocyte injury, triggering inflammation 
that activates immune cells. Infiltrating macrophages, T lymphocytes, 
neutrophils, and dendritic cells have the potential to induce liver 
inflammation and stimulate hepatic stellate cells, contributing to the 
progression of liver fibrosis (9). A cohort study conducted by Plessis 
demonstrated that heightened levels of TNF-α, IL8, and CCL3 were 
correlated with the severity of steatohepatitis. Moreover, the release of 
pro-inflammatory cytokines and chemokines by CD11c+ CD206+ 
macrophages and adipose tissue macrophages (ATM) significantly 
contributes to the pathogenesis of MASLD (10). A prior animal study 
suggested that the hepatocyte inflammasome could serve as a crucial 
link between non-alcoholic steatohepatitis (NASH) hepatocyte death 
and fibrotic stimulation. It may also function as a noninvasive 
indicator of inflammation (11). Participants with non-alcoholic 
steatohepatitis (NASH) exhibit elevated levels of inflammatory 
cytokines, potentially contributing to chronic inflammation and 
fostering disease progression. Furthermore, systemic inflammation is 
widely recognized as playing a significant role in the pathogenesis of 
advanced cirrhosis (12). The early detection and assessment of 
MASLD are imperative for effective management, monitoring of 

disease progression, and guiding treatment decisions. Although 
traditional liver biopsies are deemed the gold standard for chronic 
liver disease, their invasive, costly, and potentially hazardous nature 
underscores the need for noninvasive methods to identify the presence 
of MASLD. Such noninvasive approaches would offer significant 
benefits in terms of patient safety and cost-effectiveness.

The Systemic Immune-Inflammatory Index (SII) and the Systemic 
Inflammatory Response Index (SIRI) serve as crucial indicators of the 
systemic inflammatory response in organisms (13). The study revealed 
that in patients with malignant tumors, the Systemic Immune-
Inflammatory Index (SII) objectively reflects a balance between 
inflammatory and immune responses. Meanwhile, the Systemic 
Inflammatory Response Index (SIRI) is regarded as a reliable indicator 
of the body’s chronic inflammatory state, capable of predicting the 
prognosis of patients with cancer and hypertension (14). In 
conclusion, SII and SIRI have been used as prognostic indicators in 
liver cancer research (15, 16). However, there is limited research on 
the influence of Systemic Immune-Inflammatory Index (SII) and 
Systemic Inflammatory Response Index (SIRI) on chronic 
non-alcoholic steatosis. Neutrophil-to-Lymphocyte Ratio (NLR), an 
easily measurable parameter, serves as a comprehensive reflection of 
two distinct yet complementary immune pathways, encompassing 
innate (neutrophilic) and adaptive (lymphocyte) cellular immune 
responses. NLR is associated with pro-inflammatory cytokines and 
can also function as an inflammatory marker (17). It has been studied 
as a factor related to disease severity and prognosis in many malignant 
and benign diseases (18). Platelet-to-Lymphocyte Ratio (PLR) is a 
novel hematologic inflammatory parameter that may provide insights 
into the development of inflammatory diseases to a certain extent. 
This method has been employed to predict the prognosis and 
incidence of malignant tumors, as well as cardiovascular and 
autoimmune diseases (19). Neutrophil-to-Albumin Ratio (NPAR) 
serves as a potent biomarker utilizing neutrophil counts and albumin 
values to offer an indicator of systemic inflammation. Previous studies 
indicate that NPAR can predict the occurrence of various conditions 
such as acute kidney injury, cardiogenic shock, myocardial infarction, 
and cancer (20). In conclusion, SII, SIRI, NLR, PLR, LMR and NPAR 
collectively serve as crucial indicators reflecting inflammation status. 
These indices hold potential value for predicting disease prognosis 
and morbidity.
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Previous studies have identified a positive association between 
levels of SII (21), NPAR and NLR (22) and the risk of hepatic 
steatosis. However, the association of SIRI, PLR and LMR with 
patients suffering from MASLD remains unclear. Additionally, few 
studies have undertaken a comprehensive examination of all six 
crucial systemic immune biomarkers to delve into MASLD. This 
study aims to assess the correlation between these immune 
biomarkers and the presence of MASLD, comparing the effects of 
SII, SIRI, NLR, PLR, LMR, and NPAR on MASLD within the same 
population to determine their predictive value. Recognizing the 
pivotal roles of gender, age, physical activity (PA), hypertension, 
diabetes, and body mass index (BMI) in the initiation and 
development of MASLD, we further conducted a subgroup analysis 
to investigate the impact of systemic immune biomarkers on 
stratified MASLD. This research endeavors to offer novel insights to 
the scientific community, shedding light on the relationship 
between blood inflammatory markers and MASLD. Such insights 
aim to guide health management and the development of public 
health policies for populations at risk of relevant diseases.

2 Methods

A descriptive, cross-sectional, correlational study was designed for 
this investigation. The study’s reporting adhered to the Strengthening 
the Reporting of Observational Studies in Epidemiology (STROBE) 
checklist for cross-sectional studies (23).

2.1 Study sample

NHANES1 is a comprehensive program assessing the health and 
nutrition of the population. It utilizes a combination of interviews and 
physical examinations to gather demographic, dietary, physical 
examination, laboratory, and questionnaire data. The data for this 
study comes from the 2007–2008, 2009–2010, 2011–2012, 2013–2014, 
2015–2016, and 2017–2018 NHANES survey cycles, all of which can 
be accessed on the official NHANES website. We chose these six data 
periods because they provide the most comprehensive details on FLI 
and USFLI. Additionally, these data periods are publicly available, 
whereas the latest dataset is restricted and inaccessible.

2.2 Definition of MASLD

Fatty Liver Index (FLI) and United  States Fatty Liver Index 
(USFLI) ranged from 0 to 100 using the following formula (24, 25):
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(“non-Hispanic black” and “Mexican American” have a value of 1 
if the participant is of that ethnicity and 0 if not of that ethnicity).

Hepatic steatosis was defined as a FLI ≥60 or a USFLI ≥30 (26). 
MASLD was defined as the presence of hepatic steatosis in the absence 
of (1) hepatitis B (positive hepatitis B surface antigen) or hepatitis C 
infection (positive hepatitis C antibody or HCV RNA); (2) the 
possibility of secondary liver disease caused by excessive alcohol 
consumption (more than 12 drinks in the past year, with all others 
considered non-drinkers; >1 alcoholic drink/day for women or >2 
alcoholic drinks/day for men) and drug; (3) liver cancer; (4) 
autoimmune liver disease.

Advanced fibrosis was assessed by serological non-invasive 
fibrosis index, including the FIB-4 and NFS score, calculated using the 
following formula (27, 28):
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A FIB-4 > 2.67 or NFS > 0.676 was defined as the presence of 
advanced fibrosis (29).

2.3 Exposure variable

Hematologic parameters were assessed following the NHANES 
CBC Profile using the Beckman Coulter Automated Hematology 
Analyzer DxH 900 (Beckman-Coulter, Brea, CA, United States). This 
analyzer performs red and white cell counts, and measures 
hemoglobin, hematocrit, and red blood cell indices. The Coulter VCS 
system is utilized for the white blood cell (WBC) differential. The 
Beckman Coulter Analyzer system employs an automatic dilution and 
mixing system for sample processing and a single-beam photometer 
for hemoglobinometry.

Lymphocyte, neutrophil, and platelet counts, expressed as ×103 
cells/μL, were measured using automated hematology analyzing 
devices. The following formulas were used to calculate immune-
inflammatory markers: (1) Systemic Immune-Inflammation Index 
(SII) = platelet count  *  neutrophils count/lymphocytes count; (2) 
Systemic Inflammation Response Index (SIRI) = neutrophils 
count  *  monocyte count/lymphocytes count; (3) Lymphocyte-to-
Monocyte Ratio (LMR) = lymphocytes count/monocyte count; (4) 
Neutrophil-to-Lymphocyte Ratio (NLR) = neutrophils count/
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lymphocytes count; (5) Platelet-to-Lymphocyte Ratio (PLR) = platelet 
count/lymphocytes count; (6) Neutrophil-to-Albumin Ratio 
(NPAR) = neutrophils count (%)/albumin (g/dL).

2.4 Study covariates

We aimed to reduce potential confounding bias in our analysis by 
selecting covariates based on previous research and clinical plausibility. 
The selected covariates can be categorized as follows:

1. Demographic information: Gender (male or female); Age; 
Race/ethnicity (Mexican American, other Hispanic, non-Hispanic 
White, non-Hispanic Black, other including multi-racial); Education 
level (below high school, high school above); Poverty level expressed 
as poverty–income ratio (PIR) (Bounded by 1.3, subjects with 
PIR < 1.3 are defined as poor) (30); Health insurance; Marital status.

2. Clinical measurements: Body Mass Index (BMI) (BMI < 25 kg/m2 
is considered normal/underweight, 25 ≤ BMI < 30 kg/m2 is considered 
overweight, BMI ≥ 30 kg/m2 is considered obesity); Hypertension (defined 
as self-reported high blood pressure, use of antihypertensive medications, 
or mean systolic blood pressure ≥140 mmHg and/or mean diastolic blood 
pressure ≥90 mmHg); Waist circumference (WC).

3. Biomedical test results: Diabetes was based on the fulfillment of 
the American Diabetes Association criteria (31) for diabetes diagnosis 
(fasting plasma glucose concentration ≥126 mg/dL, 2 h plasma glucose 
≥200 mg/dL during an oral glucose tolerance test, or Hemoglobin A1c 
(HbA1c) ≥6.5%) or an answer of “yes” to any of the following 
questions: (1) Other than during pregnancy, have you ever been told 
by a doctor or other health professional that you have diabetes or 
sugar diabetes? (2) Are you taking insulin now? (3) Are you taking 
diabetes pills to lower your blood glucose?

4. Self-reported lifestyle information: Smoking status [defined as 
smoking more than 100 cigarettes in entire life, with all others considered 
non-smokers (32)]; Alcohol consumption [defined as having more than 
12 drinks in the past year, with all others considered non-drinkers (33)]; 
Cardiovascular disease (defined as self-report of coronary heart disease, 
angina, myocardial infarction, stroke, or congestive heart failure). Physical 
activity (PA) patterns were also assessed. NHANES defined exercises that 
cause large increases in breathing or heart rate as vigorous-intensity 
activity, while moderate-intensity activity was defined as exercises that 
cause relatively small increases in breathing or heart rate (34). Moderate-
to-vigorous physical activity (MVPA) minutes per week were calculated 
using the formula: MVPA minutes per week = [moderate-intensity activity 
minutes × moderate-intensity days] + [vigorous-intensity activity 
minutes × vigorous-intensity days] (35). Based on the 2018 Physical 
Activity Guidelines for Americans (36), PA patterns were classified into 
two groups: insufficiently active group (MVPA < 150 min/wk) and 
sufficiently active group (MVPA ≥ 150 min/wk), respectively (37).

2.5 Statistical analysis

Descriptive statistics were employed to compare the clinical and 
demographic characteristics of participants. Continuous variables were 
presented as mean ± standard deviation, while categorical variables 
were expressed as frequency (percentage). The normality of continuous 
variables was assessed using the Kolmogorov–Smirnov normality test. 
Normally distributed variables were described with mean ± standard 

deviation (SD), and non-normally distributed variables were presented 
as median (interquartile range). Student’s t-test was applied to compare 
mean levels between MASLD and non-MASLD group for normally 
distributed variables. The Mann–Whitney U test was employed for 
non-normally distributed variables. Chi-square tests were used to assess 
differences in continuous and categorical variables.

Restricted cubic spline (RCS) was used to explore dose–response 
relationship between systemic immune biomarkers and MASLD (38). 
Based on Harrell’s recommendation (39), we selected four knots (5th, 
35th, 65th, and 95th) to smooth the curve (40). A logistic regression 
model was employed to assess the association between six systemic 
immune biomarkers and MASLD. Three models were analyzed to 
enhance the robustness of the results. Model 1 was the unadjusted model. 
Model 2 was adjusted for gender, age, race/ethnicity, PIR, education, 
marital status, and health insurance. Model 3 included further 
adjustments for tobacco use, alcohol use, hypertension, diabetes, 
cardiovascular disease, waist circumference (WC), physical activity (PA), 
body mass index (BMI), triglycerides (TG), high-density lipoprotein 
(HDL), alanine aminotransferase (ALT), aspartate aminotransferase 
(AST), and gamma-glutamyl transferase (GGT). The variance inflation 
factor (VIF) was used to test for multicollinearity between variables, the 
values for each variable is less than or equal to 5 was taken as no similarity 
(41). p values for trends were calculated using the tertiles median value as 
a quasi-continuous variable in the model. Missing values (PIR, education, 
marital status, health insurance, tobacco use, alcohol use and BMI) were 
imputed using the Multiple Imputation by Chained Equations (MICE). 
MICE is a general approach for imputing multivariate data, which 
replaces missing values with plausible values drawn from a distribution 
specifically modeled for each missing entry (42). The function generates 
an m number of imputed datasets [m = 5 in this study (43)] which differ 
in the imputed values. Then, a binary logistic regression was conducted 
using the data of all the imputed datasets. We conducted different models 
including all adjusted confounding variables for Model 3, as independent 
predictors, and we chose the model that best adjusted to the data (44).

Additionally, subgroup analysis were performed based on sex (men 
and women), age groups (<45 and ≥45), hypertension (no and yes), 
diabetes (no and yes), high cholesterol (no and yes), BMI (<30 kg/m2 and 
≥30 kg/m2), and PA (insufficiently and sufficiently) to test the robustness 
and explore potential variations. An interaction test was used to assess 
the heterogeneity of the relationship between different subgroups (45). 
To reduce the probability of committing a type I error due to the high 
number of subgroup comparisons, Bonferroni correction was used (46). 
Because multiple comparisons in the 6 subgroups were performed 6 
times respectively, the p value lesser than 0.05/6 (0.0083) was accepted 
for statistical significance after Bonferroni correction (47).

To assess the systemic immune biomarkers as predictors of 
MASLD, receiver operating characteristic (ROC) curves were 
calculated to evaluate their ability to distinguish between participants 
with and without MASLD. ROC curves use continuous variables to 
predict binary outcomes and serve as a useful tool for testing the 
performance of clinical trials in correctly differentiating outcomes 
(48). The area under the ROC curve (AUROC) quantifies the accuracy 
of the test, ranging from 0.5 (discrimination no better than chance) to 
1.0 (perfect discrimination). AUROC values are interpreted as follows: 
non-informative/equal to chance (AUC = 0.5), less accurate 
(0.5 < AUC ≤ 0.7), moderately accurate (0.7 < AUC ≤ 0.9), highly 
accurate (0.9 < AUC < 1.0), and a perfect discriminatory test 
(AUC = 1.0) (49). The calibration of the model was also estimated 
using the Hosmer–Lemeshow goodness-of-fit test. A test statistic 
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greater than 0.05  in the Hosmer–Lemeshow goodness-of-fit test 
indicates that the model is a good fit (50). The optimal cutoff value of 
the inflammation-related index level was determined based on the 
Youden index using the receiver operating characteristics curve (ROC).

Additionally, we conducted a sensitivity analysis, employing multiple 
imputations of chained equations to address missing values for certain 
variables. Propensity Score Matching (PSM) methods were utilized to 
adjust for baseline confounding variables between the MASLD and 
non-MASLD groups, ensuring more accurate conclusions. In this regard, 
a multivariate logistic regression analysis was employed to determine each 
participant’s propensity score based on the aforementioned study 
covariates. The MASLD and non-MASLD groups were then matched in 
a 1:1 ratio using nearest neighbor matching with a caliper width set at 0.2 
logits standard deviation for the propensity score. This specific value was 
chosen as it minimizes the mean square error in estimating treatment 
effects across various cases. Propensity scoring achieved a balanced 
diagnosis, ensuring no significant differences in covariates between the 
two groups (normalized difference of all covariates <0.1).

All statistical analysis were performed using IBM SPSS software 
Version 27 (51) and R software Version 4.2.1 (52). Odds ratio (OR) 
with 95% Confidence Interval (CI) were calculated using logistic 
regression analysis. Statistical significance was defined as p < 0.05.

3 Results

Among a total of 59,842 subjects in the NHANES 2007–2018, 
we included 34,770 subjects aged ≥20 years (53). Of these, 45,129 subjects 

who met the following criteria were excluded: (1) Age < 20 (n = 2,572); (2) 
Missing data of liver (n = 20,000); (3) Missing data of complete blood cell 
(n = 57). Finally, 14,413 subjects were included in the analysis, of which 
6,518 were participants with MASLD, and 7,985 were participants without 
MASLD (Figure 1).

3.1 Characteristics of participants

Table 1 summarizes the baseline characteristics of 14,413 participants 
in this analysis. 54.78% were male, and 45.22% female, average age 
49.76 years. 6,518 had non-MASLD, 7,895 had MASLD. Participants of 
advanced age, with obesity, higher education levels, sociability, and lower 
income, exhibited a heightened risk of MASLD (all p < 0.05). In terms of 
physical health, participants with insufficient physical activity, 
hypertension, diabetes, and cardiovascular history exhibited a heightened 
risk of MASLD (all p < 0.05). Compared to non-MASLD, Participants 
with MASLD had higher SII (492.59 [311.21] vs. 539.77 [474.60]; p < 0.05), 
SIRI (1.10 [0.85] vs. 1.25 [0.96]; p < 0.05), NLR (2.08 [1.15] vs. 2.20 [1.23]; 
p < 0.05), and NPAR (1.34 [0.27] vs. 1.41 [0.27]; p < 0.05).

3.2 Linear relationship between systemic 
immune biomarkers and MASLD

The Restricted Cubic Spline (RCS) analysis, illustrated in Figure 2, 
demonstrated a linear dose–response relationship between SII, SIRI, 
LMR, NLR, PLR, and NPAR and MASLD (p for nonlinear >0.05), with 

FIGURE 1

Flow chart of selecting eligible participants from NHANES 2007–2018.
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TABLE 1 Demographic and general health characteristics of participants with and without MASLD from the 2007–2018 National Health and Nutrition Examination Survey.

Characteristic Total Non-MASLD MASLD p-value

(n  =  14,413) (n  =  7,895) (n  =  6,518)

Age (years, mean ± SD) 49.76 ± 17.51 48.16 ± 18.32 51.70 ± 16.28 <0.001*b

Gender, n (%)

Male 7,008 (48.62) 3,547 (44.93) 3,461 (53.10)
<0.001*a

Female 7,405 (51.38) 4,348 (55.07) 3,057 (46.90)

Race/Ethnicity, n (%)

Mexican American 2,225 (15.44) 965 (12.22) 1,260 (19.33)

<0.001*a

Other Hispanic 1,595 (11.07) 835 (10.58) 760 (11.66)

Non-Hispanic White 5,948 (41.27) 3,239 (41.03) 2,709 (41.56)

Non-Hispanic Black 2,868 (19.90) 1,586 (20.09) 1,282 (19.67)

Other Race 1,777 (12.33) 1,270 (16.09) 507 (7.78)

PIR, n (%)

Poor (<1.3) 9,711 (67.38) 5,455 (69.09) 4,256 (65.30)
<0.001*a

Inpoor (≥1.3) 3,702 (25.69) 1,440 (18.24) 2,262 (34.70)

Education, n (%)

<High school 3,593 (24.93) 1,772 (22.44) 1,821 (27.94)
<0.001*a

≥High school 10,820 (75.07) 6,123 (77.56) 4,697 (72.06)

Marital status, n (%)

Never married 2,567 (17.81) 1,592 (20.16) 975 (14.96)

<0.001*aWidowed/Divorced/Separated 3,151 (21.86) 1,619 (20.51) 1,532 (23.50)

Married/Living with partner 8,695 (60.33) 4,684 (59.33) 4,011 (61.54)

Health insurance, n (%)

Yes 11,273 (78.21) 6,170 (78.15) 5,103 (78.29)
0.839a

No 3,140 (21.79) 1,725 (21.85) 1,415 (21.71)

BMI, n (%)

<24.9 kg/m2 4,218 (29.27) 4,036 (51.12) 182 (2.79)

<0.001*a25–29.9 kg/m2 4,794 (33.26) 3,208 (40.63) 1,586 (24.33)

≥30 kg/m2 5,401 (37.47) 651 (8.25) 4,750 (72.88)

Tobacco use, n (%)

Yes 6,399 (44.40) 3,265 (41.36) 3,134 (48.08)
<0.001*a

No 8,014 (55.60) 4,630 (58.64) 3,384 (51.92)

(Continued)
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Characteristic Total Non-MASLD MASLD p-value

(n  =  14,413) (n  =  7,895) (n  =  6,518)

Alcohol use, n (%)

Yes 7,676 (53.26) 4,347 (55.06) 3,329 (51.07)
<0.001*a

No 6,737 (46.74) 3,548 (44.94) 3,189 (48.93)

WC

<102 for male or <88 for female 6,209 (43.08) 5,354 (67.82) 855 (13.12)
<0.001*a

≥102 for male or ≥88 for female 8,204 (56.92) 2,541 (32.18) 5,663 (86.88)

Cardiovascular diseases, n (%)

Yes 1,0702 (74.25) 6,170 (78.15) 4,532 (69.53)
<0.001*a

No 3,711 (25.75) 1,725 (21.85) 1986 (30.47)

Hypertension, n (%)

Yes 8,406 (58.32) 5,382 (68.17) 3,024 (46.39)
<0.001*a

No 6,007 (41.68) 2,513 (31.83) 3,494 (53.61)

Diabetes, n (%)

Yes 1,1,607 (80.53) 7,102 (89.96) 4,505 (69.12)
<0.001*a

No 2,806 (19.47) 793 (10.04) 2,013 (30.88)

Physical activity, n (%)

Insufficiently 5,681 (39.42) 2,811 (35.6) 2,870 (44.03)
<0.001*a

Sufficiently 8,732 (60.58) 5,084 (64.4) 3,648 (55.97)

TG

Yes 3,018 (20.94) 702 (8.89) 2,316 (35.53)
<0.001*a

No 11,395 (79.06) 7,193 (91.11) 4,202 (64.47)

HDL

Yes 424 (2.94) 368 (4.66) 56 (0.86)
<0.001*a

No 13,989 (97.06) 7,527 (95.33) 6,462 (99.14)

ALT, (mean ± SD) 25.01 ± 19.47 20.98 ± 12.04 29.89 ± 24.89 <0.001*b

AST, (mean ± SD) 25.35 ± 20.34 23.71 ± 14.07 27.33 ± 25.85 <0.001*b

GGT, (mean ± SD) 29.67 ± 39.44 20.985 ± 21.75 40.36 ± 51.56 <0.001*b

SII, (mean ± SD) 513.93 ± 394.28 492.59 ± 311.21 539.77 ± 474.60 <0.001*b

SIRI, (mean ± SD) 1.17 ± 0.91 1.10 ± 0.85 1.25 ± 0.96 <0.001*b

(Continued)

TABLE 1 (Continued)
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no significant nonlinear turning point observed. We observed that the 
risk of MASLD increased with increasing scores of SII, SIRI, and NPAR 
(p for overall <0.05). However, a significant dose–response association 
between LMR, NLR, and PLR scores and MASLD was not evident (p for 
overall >0.05).

3.3 Logistic regression analysis associations 
between systemic immune biomarkers and 
MASLD

Figure 3 depicts the correlation between different systemic immune 
biomarkers and the prevalence of MASLD. Our findings indicate that 
higher SII, SIRI, LMR, NLR, and NPAR are associated with an increased 
risk of MASLD, regardless of adjustments for confounding factors. In the 
crude model, NPAR exhibited the highest odds ratio (OR) per standard 
deviation change among the six systemic immune biomarkers [OR = 2.04; 
95% CI (1.86, 2.24), Q4 of NPAR vs. Q1]. After fully adjusting for 
potential confounders, SII [OR = 1.47; 95% CI (1.24, 1.74), Q4 of SII vs. 
Q1] was associated with the highest OR per standard deviation increment. 
Multicollinearity was not present for all variables (variance inflation 
factor, VIF < 5), as shown in Supplementary Table S1.

To mitigate potential selection bias due to potential outcomes, a 
1:1 match was conducted using propensity score matching (PSM), 
resulting in the matching of 1,570 participants with non-MASLD and 
1,570 participants with MASLD (Figure 4). Compared to the first 
quartile (Q1), the association of the Q4 of SII [OR = 1.62; 95% CI 
(1.48, 1.78)], SIRI [OR = 1.92; 95% CI (1.75, 2.11)], NLR [OR = 1.48; 
95% CI (1.35, 1.63)], and NPAR [OR = 2.04; 95% CI (1.86, 2.24)] with 
the risk of developing MASLD persisted in the cohort matched for 
propensity scores. However, this association for the full quartile of 
LMR and PLR was not observed (p > 0.05). All statistical results of the 
logistic regression model exploring the association between systemic 
immune biomarkers and MASLD and MASLD-related fibrosis are 
presented in Supplementary Tables S2–S6.

3.4 ROC analysis of the predictive value of 
systemic immune biomarkers for MASLD

Table 2 presents the ROC curves for identifying participants with 
MASLD. The optimal cut-off values, determined using the Youden 
index via the receiver operating characteristic curve (ROC), were as 
follows: 339.27 for SII, 0.863 for SIRI, 5.354 for LMR, 1.649 for NLR, 
0.009 for PLR, and 1.36 for NPAR. NPAR exhibited the highest 
discrimination ability [AUC = 0.711; 95% CI (0.702, 0.719), p for 
DeLong’s test <0.05, p for Hosmer–Lemeshow test >0.05] among all 
six systemic immune biomarkers. Additionally, the AUCs for SII, 
SIRI, LMR, NLR, and PLR were 0.707 [95% CI (0.698, 0.715)], 0.707 
[95% CI (0.698, 0.715)], 0.705 [95% CI (0.696, 0.713)], 0.704 [95% CI 
(0.696, 0.713)], and 0.705 [95% CI (0.697, 0.714)], respectively.

3.5 Subgroup analysis between systemic 
immune biomarkers and MASLD

Figure 5 shows the subgroup analysis of the association between 
systemic immune biomarkers and the risk of MASLD. Our research T
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revealed that there was no dependence on the association between 
SIRI, LMR, PLR and the risk of MASLD. The interaction test revealed 
no significant differences in terms of age, sex, hypertension, diabetes, 
physical activity, and BMI in the association between the above three 
immune biomarkers and MASLD, indicating that these factors had no 
significant influence on this positive relationship (all p for interaction 
>0.05). However, age and BMI have a significant interaction effect on 
the association between SII, NLR, NPAR and MASLD (all p for 
interaction <0.05). A significant association of SII, NLR, and NPAR 
with MASLD risk was revealed in the subgroup with age < 60 and 
BMI > 30. However, after Bonferroni correction, the association of SII, 

NLR, and NPAR in the subgroup of age- and BMI-based controls and 
MASLD risk persisted significantly, while no other associations 
were found.

4 Discussion

4.1 Main finding

The escalating incidence of MASLD is a consequence of evolving 
lifestyles, dietary patterns, diminished physical activity, and the 

FIGURE 2

Association Between SII (A) SIRI (B), LMR (C), NLR (D), PLR (E), NPAR (F) and the risk of MASLD using a restricted cubic spline regression model. OR, 
odds ratio; CI, confidence interval. *p  <  0.05 is considered statistically significant. The model was conducted with 4 knots at the 5th, 35th, 65th, and 
95th percentiles of systemic immune biomarkers (reference is the 1st quartile). Data were fitted by a logistic regression model. Solid lines indicate ORs 
and shadow shapes indicate 95% Cis. Graphs show ORs for MASLD adjusted for age, gender, race/ethnicity, PIR, education, marital status, health 
insurance, tobacco use, alcohol use, hypertension, diabetes, cardiovascular disease, WC, PA, BMI, TG, HDL, ALT, AST, GGT.
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accelerated pace of contemporary living, emerging as a global public 
health concern (54). The prevalence of MASLD within each 
country’s general population ranges from 10 to 24%, with a notably 
higher prevalence in women compared to men. In the United States, 
the estimated prevalence of MASLD is between 16 and 23% (6). 
Given the substantial population afflicted by MASLD, there is an 
imperative to prioritize the early detection and treatment of 
this disease.

In this comprehensive study, which scrutinized the most 
representative U.S. population data, our analysis revealed a 
positive correlation between the prevalence of MASLD and all six 
systemic immune biomarkers (SII, SIRI, LMR, NLR, PLR, and 
NPAR). However, following propensity matching, this association 
remained significant only for SII, SIRI, NLR, and NPAR. Moreover, 
the Restricted Cubic Spline (RCS) analysis unveiled that SII, SIRI, 
and NPAR exhibited a linear relationship with the risk of MASLD, 
signifying a proportional increase in MASLD risk with their 

elevation. Notably, NPAR demonstrated the satisfactory predictive 
value, as substantiated by the results of Receiver Operating 
Characteristic (ROC) analysis and subgroup analysis. Additionally, 
SIRI and SII exhibited comparable predictive values to NPAR 
while maintaining the advantage of simpler calculations. These 
findings underscore the nuanced associations between systemic 
immune biomarkers and MASLD prevalence, offering 
valuable insights into the predictive capacities of individual  
biomarkers.

4.2 Comparison with other studies

SII, SIRI, LMR, NLR, PLR, and NPAR serve as effective immune 
biomarkers of immune and inflammatory status in the human body, 
and previous epidemiological studies and meta-analyses have 
demonstrated a correlation between these inflammatory indices and 

FIGURE 3

Association between systemic immune biomarkers and MASLD. For SII, Median [Range]: Quartiles 1, 244.38 [1.53 to 313.50]; Quartiles 2, 374.29 [313.51 
to 440.00]; Quartiles 3, 520.00 [440.01 to 625.73]; Quartiles 4, 804.15 [625.74 to 28397.28]; For SIRI, Median [Range]: Quartiles 1, 0.48 [0.06 to 0.64]; 
Quartiles 2, 0.80 [0.65 to 0.95]; Quartiles 3, 1.14 [0.96 to 1.42]; Quartiles 4, 1.91 [1.43 to 22.92]; For LMR, Median [Range]: Quartiles 1, 2.50 [0.44 to 3.00]; 
Quartiles 2, 3.50 [3.01 to 3.86]; Quartiles 3, 4.40 [3.87 to 5.00]; Quartiles 4, 6.00 [5.01 to 55.4]; For NLR, Median [Range]: Quartiles 1, 1.14 [0.01 to 1.42]; 
Quartiles 2, 1.65 [1.43 to 1.89]; Quartiles 3, 2.17 [1.90 to 2.54]; Quartiles 4, 3.17 [2.55 to 28.66]; For PLR, Median [Range]: Quartiles 1, 0.006 [0.001 to 
0.007]; Quartiles 2, 0.008 [0.007 to 0.008]; Quartiles 3, 0.009 [0.008 to 0.011]; Quartiles 4, 0.012 [0.011 to 1.036]; For NPAR, Median [Range]: Quartiles 
1, 1.08 [0.02 to 1.20]; Quartiles 2, 1.28 [1.21 to 1.36]; Quartiles 3, 1.45 [1.37 to 1.54]; Quartiles 4, 1.67 [1.55 to 3.03] *p  <  0.05 is considered statistically 
significant. Model 1 was the unadjusted model. Model 2 was adjusted for gender, age, race/ethnicity, PIR, education, marital status, health insurance. 
Model 3 was further adjusted for tobacco use, alcohol use, hypertension, T2DM, cardiovascular disease, WC, PA, body mass index (BMI), TG, HDL, ALT, 
AST, and GGT.
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liver disease. In a Chinese population cohort of 376 patients with 
decompensated cirrhosis, higher NPAR was independently associated 
with an increased risk of death in patients with cirrhosis after 
adjusting for confounders [HRQ3vs.Q1 = 1.92; 95% CI (1.04, 3.56)], with 
a one-unit increase in NPAR associated with a 92% increased risk of 
mortality (55). In a cross-sectional analysis of 2017–2018 NHANES 
data, Liu et  al. (22) found that increasing NLR and NPAR were 
significantly linked to a higher risk of developing MASLD. Both NLR 
and NPAR were also associated with an increased likelihood of 
advanced fibrosis. The novel biomarker NPAR demonstrated a strong 
association with MASLD in the national population and participants’ 
clinical characteristics. NPAR can serve as a valuable biomarker for 
MASLD, aiding clinicians in enhancing the diagnosis and treatment 
of chronic liver disease. Zhao et al. (56) found that higher SII levels 
are associated with increased mortality in ultrasound-diagnosed 
MASLD populations. The study reveals a J-shaped curve in SII and 
all-cause death within the MASLD group. These results suggest that 

SII could serve as a useful prognostic indicator for all-cause mortality 
in MASLD, and maintaining SII levels below a certain threshold may 
help reduce the risk of death. Future research should aim for a deeper 
understanding of how interfering with SII impacts the survival of 
those with MASLD. LMR reflects the equilibrium between anti-
tumor immune response and tumor-promoting functions. It holds 
prognostic significance as an indicator of inflammatory response in 
hepatocellular carcinoma. Notably, a statistically significant 
association exists between low LMR expression and hepatocellular 
carcinoma in patients (57). When investigating the relationship 
between different immune markers and MASLD, we observed some 
significant differences. Our results show that there is no significant 
correlation between PLR and the risk of MASLD. However, a study 
showed that the incidence of MASLD was significantly reduced. This 
difference may be  due to different confounding factors, different 
diagnostic criteria of MASLD, and different sample sizes. To further 
explore this phenomenon, we suggest that future research should 

FIGURE 4

Association between systemic immune biomarkers and MASLD after propensity score matching analysis. CDAI, composite dietary antioxidant index; Q, 
quartile. *p  <  0.05 is considered statistically significant. One-to-one matching between MASLD and non-MASLD was conducted based on age, gender, 
race/ethnicity, poverty income ratio (PIR), education, marital status, health insurance, tobacco use, alcohol use, hypertension, diabetes, cardiovascular 
disease, WC, PA, BMI, TG, HDL, ALT, AST, GGT.
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be  carried out under a larger sample size and a more unified 
diagnostic standard, and the potential confounding factors should 
be adjusted more comprehensively. In this way, more robust and 
accurate results can be obtained, and the relationship between PLR 
and MASLD risk can be better understood.

MASLD is the most common steatosis of the liver, which induces 
oxidative stress and inflammation due to lipid accumulation in liver 
cells and may eventually develop into cirrhosis. In the case of lipid 
overload, the activation and recruitment of liver immune cells produce 
inflammatory cytokines and chemokines such as tumor necrosis 
factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), 
which further enhance the inflammatory response and lead to liver cell 
injury and inflammatory necrosis (58). The immuno-inflammatory 
index integrates various types of inflammatory cells, including platelets, 
neutrophils, and lymphocytes, and objectively reflects the balance 
between inflammatory and immune responses. Our study revealed that 
higher SII, SIRI, NLR, and NPLR are independently associated with an 
increased risk of hepatic steatosis. This suggests that these inflammatory 
indices may have significant adverse effects on hepatic steatosis 
independently. Currently, there are no specifically approved drugs for 
the treatment of MASLD, so lifestyle changes and managing risk factors 
are the primary treatments for people with MASLD (2). A high-salt diet 
(HSD), defined as an intake of more than 5 grams of salt per day (59), 
has been shown to trigger a systemic inflammatory response. This 
inflammatory response weakens the immune system by stimulating 
pro-inflammatory T cells (60) and suppressing natural killer cells (61). 
Long-term HSD is associated with a variety of diseases, including 
cardiovascular disease, cancer, chronic inflammation, and autoimmune 
diseases (61). Therefore, given the relationship between HSD and the 
immune inflammatory state of the body, it may be possible to prevent 
or improve the progression of MASLD through anti-inflammatory diets 
(such as low-salt diets) in the future. We expect that future studies will 

further validate these findings and provide support for more 
specific interventions.

4.3 Strengths and limitations

The study comprehensively explored the direct relationship 
between six systemic immune biomarkers (SII, SIRI, NLR, PLR, and 
NPAR) and MASLD, providing valuable insights to improve 
understanding of MASLD and inflammation and develop more 
effective medical strategies. Additionally, this study utilized NHANES 
data from 2007 to 2018, covering six survey cycles, providing a wide 
period, sufficient sample size, and representative samples. However, 
there are some limitations to this study. Firstly, the cross-sectional 
observational design limits its ability to make definitive causal 
conclusions due to the lack of information on the timing of the 
association. Secondly, Residual confounding by unmeasured 
covariates cannot be  disregarded entirely which could affect our 
observed results and introduce some bias. Thirdly, given that a 
significant number of subjects with missing liver and complete blood 
cell data from NHANES were excluded from our observational 
analysis, potential selection bias might have been introduced. Finally, 
the absence of a gold standard for diagnosing MASLD or NASH may 
introduce diagnostic bias. Therefore, further large-scale cohort 
studies are necessary to elucidate the intricate relationship between 
systemic immune biomarkers and MASLD.

5 Conclusion

The study investigated the link between systemic immune 
biomarkers and MASLD in a representative U.S. adult sample. Results 

TABLE 2 ROC curves of different systemic immune biomarkers for MASLD.

Variable Sensitivitya Specificitya AUC (95%) p-valueb Standard errorc p for HL testd

Model 1

SII 0.737 0.334 0.549 (0.539,0.558) 0.000 0.005 0.434

SIRI 0.626 0.483 0.571 (0.561,0.580) 0.000 0.005 0.000

LMR 0.189 0.821 0.501 (0.492,0.511) 0.792 0.005 0.298

NLR 0.665 0.404 0.542 (0.532,0.551) 0.000 0.005 0.000

PLR 0.513 0.562 0.546 (0.537,0.556) 0.000 0.005 0.000

NPAR 0.571 0.546 0.580 (0.570,0.589) 0.000 0.005 0.917

Model 2

SII 0.655 0.654 0.707 (0.698,0.715) 0.000 0.004 0.226

SIRI 0.662 0.642 0.707 (0.698,0.715) 0.000 0.004 0.357

LMR 0.717 0.59 0.705 (0.696,0.713) 0.000 0.004 0.091

NLR 0.711 0.592 0.704 (0.696,0.713) 0.000 0.004 0.170

PLR 0.722 0.533 0.705 (0.697,0.714) 0.000 0.004 0.057

NPAR 0.627 0.546 0.711 (0.702,0.719) 0.000 0.004 0.434

AUC, area under curve; ROC, receiver operating characteristics curve. Model 1 was the unadjusted model. Model 2 was adjusted for gender, age, race/ethnicity, PIR, education, marital status, 
health insurance, tobacco use, alcohol use, hypertension, diabetes, cardiovascular disease.
aSensitivity and specificity were calculated using the best thresholds according to Youden’s index.
bAssume nonparametric.
cNull hypothesis: True region = 0.5.
dHosmer–Lemeshow test.
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revealed a significant positive correlation between elevated levels of SII, 
SIRI, NLR, and NPAR with a heightened risk of MASLD. These 
associations remained robust in sensitivity analysis. SII, SIRI, NLR, and 
NPAR may serve as a biomarker for MASLD and help clinicians refine 
the diagnosis and treatment of chronic liver disease, where NPAR 
showed the superior predictive value. The results of this study could 
reveal the potential role of inflammation in MASLD, it may be possible 
to prevent or improve the progression of MASLD through anti-
inflammatory diets, such as low-salt diets. Longitudinal studies and 
clinical trials are needed to further characterize and confirm the findings 
presented herein.
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