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Background: Traditional clinical studies have indicated a link between certain food 
intakes and type 2 diabetes (T2D), but the causal relationships between different 
dietary habits and T2D remain unknown. Using Mendelian randomization (MR) 
approaches, we  investigated the potential causal association between dietary 
habits and T2D risk.

Methods: We  collected publicly available genome-wide association studies’ 
summary statistics for 18 dietary habits from the UK Biobank and T2D data from 
the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium. 
We applied the inverse variance weighted (IVW) method, supplemented with the 
MR-Egger method, weighted median method (WMM), simple method, weighted 
mode, MR-Egger regression, and the MR pleiotropy residual sum and outlier test 
to determine whether a particular diet was causal for T2D.

Results: Reliable and robust MR estimates demonstrated that poultry intake has a 
causal effect on a higher risk of T2D (IVW: OR 6.30, 95% CI 3.573–11.11, p =  2.02e 
− 10; WMM: OR 5.479, 95% CI 0.2758–10.88, p =  1.19e − 06). Conversely, dried 
fruit intake (IVW: OR 0.380, 95% CI 0.237–0.608, p =  5.57e − 05; WMM: OR 0.450, 
95% CI 0.321–0.630, p =  3.33e − 06) and cereal intake (IVW: OR 0.455, 95% CI 
0.317–0.653, p =  1.924e − 05; WMM: OR 0.513, 95% CI 0.379–0.694, p =  1.514e 
− 05) were causally associated with T2D as protective factors. Sensitivity analyses 
confirmed the reliability and robustness of these findings.

Discussion: Our study established the causal effects of poultry intake, dried fruit 
intake, and cereal intake on T2D, identifying poultry intake as a risk factor and 
the other two as protective factors. Further research into potential mechanisms 
is required to validate these novel findings.
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Introduction

With the rise in obesity, the decline in physical activity, a sedentary lifestyle, and poor 
eating habits, type 2 diabetes (T2D) is becoming more and more prevalent worldwide. In 2015, 
T2D was estimated to affect 415 million people, projected to reach 642 million by 2040 (1). 
Diabetes significantly impacts morbidity and mortality, contributing to risks such as stroke, 
renal failure, leg amputation, cardiovascular illnesses, vision loss, and neuropathy (2).
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Lifestyle therapies aimed at modifying diet and physical activity 
levels have consistently been used to reduce T2D risk in the short and 
long term (3). Implementing effective T2D prevention initiatives as 
well as early detection programs is critical to lessen the disease’s health 
burden (4). The proper selection of food and dietary components has 
been recognized to play a significant role in preventing early-onset 
T2D and reducing the lifelong risk of developing the disease. However, 
the exact types of foods that are most beneficial remain unclear.

Previous studies have identified various relationships between 
different dietary habits and T2D. For instance, no statistically 
significant associations were found between the consumption of eggs, 
fish, nuts, vegetables, or refined grains and T2D. Conversely, dairy 
products, fruits, and whole grains showed a negative correlation with 
the incidence of T2D, while red and processed meats, as well as sugar-
sweetened beverages, exhibited a positive correlation (5–10).

Dietary fiber has been shown to play a role in the etiology of 
chronic diseases, including type 2 diabetes (T2D), with its effects 
potentially mediated through the modulation of gut microbiota, 
making this a growing topic of research and interest (2).

While specific food risk factors for T2D progression have been 
identified in a few studies, there is inadequate evidence to substantiate 
their causal significance in T2D incidence, and the variety of diets 
examined is limited. Several genome-wide association studies (GWAS) 
have recently revealed that dietary habits are heritable features (11, 
12). Therefore, Mendelian randomization (MR), which utilizes genetic 
instruments to mitigate potential confounding biases, is an appropriate 
study design to investigate the effects of nutrition on disease or health 
outcomes (13). The goal of this study is to use a two-sample MR 
technique to evaluate the causal links between eating habits and the 
risk of T2D. To mitigate selective reporting bias, all available dietary 
habit variables from the UK Biobank (UKBB) GWAS data provided 
by the Neale lab were evaluated for their potential causal association 
with T2D in this exploratory investigation.

Methods

Dietary habits and T2D summary statistics

Table 1 shows a brief description of dietary habits data sources. 
GWAS summary statistics of 18 kinds of dietary habits were from the 
MRC-IEU consortium and UK-Biobank, all participants are European 
(14, 15). UK Biobank database, a population-scale prospective cohort 
in the United Kingdom, >500,000 participants aged 40–69 years from 
2006 to 2010 were included.

For T2D, we downloaded the 2022 summary statistics of T2D in the 
European population from the DIAbetes Genetics Replication And Meta-
analysis (DIAGRAM) consortium which is combined with a lot of T2D 
researchers, larger scale studies were performed to explore genetic 
characteristics of T2D (16). For this summary statistics, 122 GWAS 
including 180,834 T2D cases and 1,159,055 controls from 5 ancestry 
groups were used, and we only applied the summary statistics of European 
ancestry with 51.1% of the total effective sample size in this study (17).

Genetic instrumental variables selection

To ensure the reliability of the instrumental variables, several 
statistical control steps were taken. Firstly, only single nucleotide 

polymorphism (SNP) with genome-wide significance (P < × −
5 10

8) 
were extracted from the whole dataset. Secondly, linkage disequilibrium 
was removed using the clumping process (R2 0 001< . , window size 
10,000 kb) with the European population. Thirdly, SNPs were 
eliminated if minor allele frequency (MAF)<0.01.

F statistic was calculated for every single instrumental variable to 
ensure there was no weak instrumental variable basis. The calculation 
formula is F R N K K R= − −( ) −( )2 2

1 1/ ; R2 is the proportion of 
the variation for instrumental variable; N  is sample size; K  is the 
number of instrumental variables. The likelihood of a weak 
instrumental variable is considered very small if the F statistic is 
greater than 10 (18).

Mendelian randomization analysis

The IVW method was chosen as the primary approach in this 
study due to its ability to aggregate Wald ratios from individual SNPs, 
allowing for an exploration of the causal effect between dietary habits 
and type 2 diabetes (T2D), provided there is minimal horizontal 
pleiotropy (19). On the other hand, heterogeneity effects can 

TABLE 1 Summary of dietary habits.

Exposure GWAS 
data

Nsnp Sample R2 F

Alcohol intake 

frequency

ukb-b-5779 93 462,346 0.0052 55

Tea intake ukb-b-6066 40 447,485 0.0023 62.7

Coffee intake ukb-b-5237 38 428,860 0.0027 77

Water intake ukb-b-14898 40 427,588 0.0017 49.9

Processed 

meat intake

ukb-b-6324 23 461,981 0.00078 38.6

Poultry intake ukb-b-8006 7 461,900 0.0003 37.2

Beef intake ukb-b-2862 15 461,053 0.00061 47.1

Pork intake ukb-b-5640 14 460,162 0.00039 37.7

Lamb/mutton 

intake

ukb-b-14179 31 460,006 0.0012 41

Non-oily fish 

intake

ukb-b-17627 11 460,880 0.00039 44.8

Oily fish intake ukb-b-2209 59 460,443 0.0024 46.6

Cooked 

vegetable 

intake

ukb-b-8089 17 448,651 0.00062 37.6

Salad/raw 

vegetable 

intake

ukb-b-1996 18 435,435 0.00078 44.7

Fresh fruit 

intake

ukb-b-3881 51 446,462 0.0023 47.6

Dried fruit 

intake

ukb-b-16576 41 421,764 0.0018 44.1

Cheese intake ukb-b-1489 63 451,486 0.0018 39.8

Bread intake ukb-b-11348 29 452,236 0.0012 45

Cereal intake ukb-b-15926 39 441,640 0.002 49.9
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be accounted for in the random effects model of the IVW method (19, 
20). In the MR-Egger method, we account for the presence of an 
intercept term and use it to assess pleiotropic effects. If the intercepted 
item is very close to 0, then the MR-Egger regression model is very 
close to IVW, but if the intercepted item is very different from 0, it 
means that there may be horizontal pleiotropic effects among these 
IVs (21). The weighted median method can produce accurate 
estimates even if 50% of the genetic variation violates the core 
assumptions of MR (22).

Sensitivity analysis

MR Egger regression was applied to detect horizontal pleiotropy 
by testing the intercept (21). MR-PRESSO method was applied to 
detect outliers that related to horizontal pleiotropy; horizontal 
pleiotropy was removed by eliminating the outliers; a distortion test 
was used to test whether there was a significant difference before and 
after removing outliers (23, 24). And, heterogeneity was tested by 
Cochran’s Q test (IVW and MR-Egger, P < 0 05.  means heterogeneity 
existing) (24). Finally, we performed a “leave-one-out” analysis to 
identify the potential influential SNPs.

Bonferroni correction

P < 0 05.  was considered statistically significant in MR analysis. 
After Bonferroni correction, P < 0 0028.  was considered significant 
(18 exposures) in this MR study.

Results

Figure 1 shows our study flow chart. Table 2 shows the MR 
estimates from different methods of detecting the casual 
association of 18 kinds of dietary habits on T2D. Sensitivity 
analysis results are presented in Supplementary Table S1. 
According to the MR results, coffee intake, poultry intake, dried 
fruit intake, cheese intake, and cereal intake are genetically 
associated with T2D. Scatter plots, forest plots, “leave-one-out” 
analysis plots, and funnel plots for all 18 kinds of dietary habits 
are shown in Supplementary Figure S1.

Two-sample MR analysis for causality of 
coffee intake and T2D

Coffee intake was considered as a risk factor and genetically 
associated with increasing risk of T2D (IVW: OR, 2.878, 95%CI, 
1.664–4.975, p = 1.546e − 04; WMM: OR, 1.724, 95%CI, 1.364–2.178, 
p = 5.006e − 06). Heterogeneity tests showed there was obvious 
heterogeneity (IVW, Cochran’s Q test, p = 2.187e-84; MR-Egger, 
Cochran’s Q test p = 1.029e − 84). No horizontal pleiotropy was found 
(p = 0.768 for the MR-Egger intercept test). Based on the MR-PRESSO 
method, outliers were removed to reduce heterogeneity and horizontal 
pleiotropy, but the correction result was distorted (p < 2e − 04). Thus, 
we cannot get a reliable and robust causal effect between coffee intake 
and T2D.

Two-sample MR analysis for causality of 
poultry intake and T2D

Poultry intake was related to a higher risk of T2D according to the 
MR estimate results (IVW: OR,6.30,95%CI,3.573–11.11, p = 2.02e-10; 
WMM: OR,5.479,95%CI,0.2758–10.88, p = 1.19e-06). Heterogeneity and 
horizontal pleiotropy were not significant in sensitive analysis (IVW, 
Cochran’s Q test, p = 0.172; MR-Egger, Cochran’s Q test, p = 0.115; 
MR-Egger intercept test: p = 0.756). MR-PRESSO method did not find 
outliers and no influential SNPs in the “leave-one-out” analysis (Figure 2). 
We can get a robust and reliable causal association genetically between 
poultry intake and T2D that poultry intake was a risk factor for T2D.

Two-sample MR analysis for causality of 
dried fruit intake and T2D

Dried fruit intake decreased the risk of T2D genetically (IVW: 
OR,0.380,95%CI,0.237–0.608, p = 5.57e − 05; WMM: 
OR,0.450,95%CI,0.321–0.630, p = 3.33e − 06). The existence of 
heterogeneity had been proved in heterogeneity tests (IVW, Cochran’s 
Q test, p = 3.523e − 36; MR-Egger, Cochran’s Q test, p = 4.939e − 35); 
no significant evidence of horizontal pleiotropy existed in (MR-Egger 
intercept close to 0). Outliers were removed in the MR-PRESSO test 
and there were no significant differences in effect association 
estimation after correction (p = 0.69). “Leave-one-out” analysis did not 
suggest any influential SNPs (Figure 2). A reliable causal relationship 
between dried fruit intake and T2D can be drawn.

Two-sample MR analysis for causality of 
cheese intake and T2D

Cheese intake was associated with T2D genetically (IVW: 
OR,0.452,95%CI,0.362–0.563, p = 1.72e − 12; WMM: 
OR,0.572,95%CI,0.459–0.712, p = 6.46e − 07). However, there was 
significant horizontal pleiotropy in the MR-Egger intercept test 
(p = 0.038). We  cannot draw firm conclusions about a causal 
relationship between cheese consumption and T2D.

Two-sample MR analysis for causality of 
cereal intake and T2D

The results of MR analysis showed that cereal intake was closely 
related to T2D, and cereal intake could reduce the risk of T2D (IVW: 
OR,0.455,95%CI,0.317–0.653, p = 1.924e − 05; WMM: 
OR,0.513,95%CI,0.379–0.694, p = 1.514e − 05). The heterogeneity test 
demonstrated there was significant heterogeneity (IVW, Cochran’s Q 
test, p = 5.061e − 20; MR-Egger, Cochran’s Q test, p = 1.171e − 19). No 
horizontal pleiotropy was detected (MR-Egger intercept test: 
p = 0.358). The correction after removing outliers was not distorted in 
the MR-PRESSO test (p = 0.461). “Leave-one-out” suggested no 
influential SNPs existing (Figure  2). A reliable causal association 
between cereal intake and T2D can be drawn.

We conducted reverse Mendelian randomization (MR) analysis, 
with T2D as exposures and dietary habits as outcomes. Our findings 
indicated no significant association of T2D with poultry intake, dried 
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FIGURE 1

Flow chart of steps for Mendelian randomization analysis in this study.
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fruit intake, and cereal intake, affirming the robustness of our previous 
results. Reverse MR estimates and sensitivity analysis outcomes are 
detailed in Supplementary Tables S2, S3.

Discussion

In this two-sample MR, we  systemically evaluated the causal 
associations of 18 dietary habits with T2D using the most extensive 

diet GWAS results accessible to date. Our study identified potential 
protective effects of dried fruit intake and cereal intake against 
T2D. Conversely, poultry intake was associated with an increased risk 
of T2D, while other dietary habits showed no significant effects on 
T2D risk. These findings remained consistent and robust following 
sensitivity analyses. Additionally, we observed genetic associations of 
T2D with coffee consumption and cheese consumption; however, 
definitive causal conclusions were limited due to the presence of 
horizontal pleiotropy.

TABLE 2 MR analysis results of different methods for evaluating the causality between dietary habits and T2D.

Exposures IVW MR-Egger Weighted Median

OR (95%CI) p-value OR (95%CI) p-value OR (95%CI) p-value

Alcohol intake frequency 1.325 0.004 0.664 0.05 1.070 0.31

1.095–1.604 0.442–0.999 0.939–1.220

Tea intake 0.943 0.789 2.150 0.12 1.539 0.0000518

0.612–1.452 0.831–5.560 1.249–1.896

Coffee intake 2.878 1.546e − 04 2.485 0.119 1.724 5.006e − 06

1.664–4.975 0.813–7.591 1.364–2.178

Water intake 1.276 0.416 0.311 0.17 0.958 0.79

0.061–2.301 0.061–1.584 0.697–1.584

Processed meat intake 0.955 0.852 0.105 0.06 1.032 0.85

0.591–1.544 0.011–0.970 0.736–1.448

Poultry intake 6.300 2.02e − 10 0.311 0.90 5.479 1.19e − 06

3.573–1.111e+01 3.905e − 09 − 2.478e + 07 2.758e + 00 – 1.088e + 01

Beef intake 0.936 0.94 1.031 1.00 1.345 0.300

1.576e-01-5.564 5.795e − 05 − 18326.656 7.680e − 01 − 2.356

Pork intake 2.106 0.115 16.000 0.42 1.980 0.035

0.833–5.323 0.025–10148.570 1.049–3.737

Lamb/mutton intake 0.750 0.350 5.309 0.189 0.697 0.085

0.411–1.370 0.466–60.455 0.462–1.052

Non-oily fish intake 1.861 0.60 69.188 0.48 0.841 0.534

0.178–1.937e + 01 0.0007808 − 6.130721e + 06 0.488–1.451e + 00

Oily fish intake 0.847 0.46 1.952 0.47 0.730 0.0075

0.545–1.317 0.315–12.075 0.580–0.920

Cooked vegetable intake 3.466 0.11 4.867 0.86 1.338 0.32

7.439e-01-1.615e+01 1.268e − 07 − 1.868 + 08 7.554e − 01 − 2.369e + 00

Salad/raw vegetable intake 0.636 0.05 1.616 0.69 0.627 0.071

0.404–1.001 0.160–16.296 0.378–1.041

Fresh fruit 1.466 0.15 3.028 0.24 1.151 0.50

intake 0.874–2.461 0.494–18.575 0.768–1.725

Dried fruit intake 0.380 5.57e − 05 0.117 5.43e − 02 0.450 3.33e − 06

0.237–0.608 0.014–0.974 0.321–0.630

Cheese intake 0.452 1.72e − 12 1.163 7.43e − 01 0.572 6.46e − 07

0.362–0.563 0.473–2.855 0.459–0.712

Bread intake 0.872 0.61 0.810 0.87 0.837 0.33

0.511–1.487 0.062–10.620 0.584–1.200

Cereal intake 0.455 1.924e − 05 0.221 6.665e − 02 0.513 1.514e − 05

0.317–0.653 0.046–1.058 0.379–0.694
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In our study, we employed a two-sample MR design to investigate 
the causal association between various types of meat intake and 
T2D. Genetic variations served as instrumental variables for assessing 
meat intake. We  examined five distinct exposures to meat, each 
representing different types: poultry, processed meat, beef, pork, 
lamb/mutton, and non-oily/oily fish. Previous studies that did not 
consistently differentiate between these types of meat may have 
contributed to conflicting findings. Our findings suggested a 
protective effect of poultry intake against T2D, whereas no significant 
associations were observed for processed meat, beef, pork, lamb/
mutton, and non-oily/oily fish consumption in relation to T2D risk.

Based on its impact on obesity development, individuals who 
consume poultry generally have a lower incidence of type 2 diabetes 
compared to those who consume other types of meat (25). A 
reduced risk of type 2 diabetes was observed among individuals in 
Denmark when they replaced processed red meats (such as beef, 
veal, pork, lamb/mutton) with chicken, substituted whole or 
processed red meats with fish, and exchanged processed red meats 
for unprocessed red meats (26). Diabetes and poultry consumption 
were not significantly correlated in the Chinese cohort study of the 

China Kadoorie Biobank (27). These differences may be due to the 
mean consumption of poultry in the current study population being 
significantly lower than that of red meat (28). A meta-analysis of 12 
different dietary groups was carried out and found a positive 
relationship between red, processed meat and the risk of T2D (10, 
29, 30). However, in Japanese, higher red meat intake is connected 
with an increased risk of T2D in males but not in women (31). In 
Chinese adults, especially in urban participants, intake of red meat 
is linked to a higher risk of T2D and cardiometabolic illnesses (27). 
Unlike previous studies, we did a more detailed classification of red 
meat, for example, beef, pork, and lamb/mutton, and found that 
there was no significant relationship between red meat and 
T2D. Possible reasons include the breeding process, where 
commercially bred chickens may be  exposed to hormones and 
antibiotics, which can act as endocrine disruptors and potentially 
affect glucose metabolism. Additionally, processed chicken products 
often contain high levels of sodium and preservatives. Cooking 
methods also play a role, as fried or fat-added chicken products can 
be high in saturated and trans fats. These cooking methods can lead 
to the formation of advanced glycation end products (AGEs) 

A B C

D E F

G H I

FIGURE 2

(A) Scatter plot showing the effect of SNPs on Poultry intake vs. T2D. (B) Forest plot of Mendelian randomization effect size for Poultry intake on T2D. 
(C) Leave-one-out analysis of the effect of Poultry intake on T2D. (D) Scatter plot showing the effect of SNPs on Dried fruit intake vs. T2D. (E) Forest 
plot of Mendelian randomization effect size for Dried fruit intake on T2D. (F) Leave-one-out analysis of the effect of Dried fruit on T2D. (G) Scatter plot 
showing the effect of SNPs on Cereal intake vs. T2D. (H) Forest plot of Mendelian randomization effect size for Cereal intake on T2D. (I) Leave-one-out 
analysis of the effect of Cereal intake on T2D.
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through frying, grilling, and high-temperature baking. These fats 
and compounds are known to increase oxidative stress and 
inflammation, which are contributing factors to the onset and 
progression of type 2 diabetes (T2D) (32). Therefore, both the 
nutritional and non-nutritional components of poultry may have 
dual effects on human health, potentially influencing outcomes 
positively or negatively. Different studies have yielded inconclusive 
results regarding the impact of meat consumption on T2D, which 
could be  attributed to differences in study designs and 
methodologies, such as variations in food frequency surveys and 
varying levels of residual confounding. These differences may also 
reflect potential distinctions between Eastern and Western 
dietary habits.

Fish intake and the risk of T2D remain controversial. In our study, 
we did not find a causal relationship between non-oily/oily fish and 
T2D. However, some studies have reported a positive association 
between fish intake and T2D risk. Fish intake has been found to 
be positively correlated with diabetes risk, particularly among urban 
participants, and with cardiometabolic illnesses in Chinese adults 
(27). However, Some research results do not support the fish for the 
beneficial effect of T2D (33, 34). There was also a study that found 
fish/seafood and marine LC n-3 PUFA intake had no significant 
impact on the risk of T2D, whereas oily fish intake had a significant 
impact (35). The varying research results may be attributed to several 
factors: the potential influence of dietary toxins in fish on the 
association with T2D (36), differences in the types of fish consumed 
(lean, fatty, and shellfish), variations in dietary factors found in fish, 
differences in preparation methods, and varying levels of 
contamination across different countries (8, 37).

Wholegrain cereals have been reported to alleviate metabolic 
symptoms associated with T2D, including insulin resistance, lipid 
disorders, and obesity, by improving oxidative status, inflammatory 
markers, and gut microbiota (38–41). The current study provided 
robust evidence that cereal intake may reduce the risk of T2D, 
consistent with findings from previous research (42). However, both 
the bioactive components in cereal and the processing affect the 
glycemic response (38). The anti-diabetic properties of whole grains 
synergistically leverage their distinct bioactivities rather than relying 
on any single component (38). More research is needed to confirm 
this concept. Although specific information on cereal kinds, such as 
bran, oat, biscuit, and other kinds, was available in UK Biobank, 
GWAS summary statistics of these particular cereal types were all 
underpowered and found very few or no significant variants (43). As 
a result, we were unable to do MR analysis to determine the effect of 
different cereal kinds on the risk of T2D because reliable IVs 
were unavailable.

Previous studies found a higher diet of specific whole fruits, 
particularly blueberries, grapes, and apples, is connected with a 
significantly lower risk of type 2 diabetes (6, 44, 45). Conversely, 
greater consumption of fruit juice is linked with a higher risk (46, 47). 
However, evidence suggests a non-linear dose–response relationship; 
increasing fruit intake to 200–300 g/day reduces the risk of T2D by 
10%, with no additional benefit observed beyond this level (10). In our 
study, we observed a significant association between dried fruit intake 
and T2D risk. Traditional dried fruits (i.e., those without added 
sugar), such as grapes, have been shown to reduce the risk of diabetes, 
likely due to the modulation of insulin resistance status by grape 
polyphenol extracts (48–51).

It has been suggested by some evidence that intakes of coffee, tea, 
and plain water were inversely associated with glucose and obesity 
(52–55), but several other studies have failed to replicate these 
associations (54, 56, 57). Confounding factors, such as differences in 
study design, methods of consumption quantification, beverage 
temperatures, and cigarette smoking, as well as variations in genetic 
and environmental factors such as race, sex, age, lifestyle, gut 
microbiota, and genetic polymorphisms, could potentially explain 
these discrepancies (56).

MR study, a carefully designed study with a large sample size, 
could help resolve this controversial issue. This is consistent with the 
results of other studies (13, 58). The inverse relationship between 
genetically proxied coffee consumption and plasma caffeine levels (i.e., 
the genetic variants with the strongest association with higher coffee 
consumption are associated with lower plasma caffeine levels) and the 
lack of association (e.g., from fat mass or other hot beverages or 
caffeine-containing drinks) may be caused by pleiotropic effects of the 
SNPs used (59, 60). We  found no significant causal association 
between alcohol frequency intake, tea intake, coffee intake water 
intake, and T2D.

There are some limitations of our study. Firstly, due to the 
limitations of publicly accessible GWAS summary statistics, we only 
assessed the overall effects of food on T2D that were adjusted for sex 
and age. Secondly, the current study only included people of European 
ancestry, the findings may not be generalizable to other populations. 
Furthermore, some specific dietary patterns, for example, 
Mediterranean diet and Western diet, were not studied in our study, 
due to a lack of data. A subsample of UKBB was given repeated dietary 
evaluations every 3–4 months, and the results demonstrated moderate 
to substantial agreement with the answers to the dietary touchscreen 
questions at baseline (43). Thus, recall bias and seasonal variation 
could be ruled out.

However, this study represents one of the most comprehensive 
MR investigations to date into the causal role of dietary habits on the 
risk of T2D. To enhance statistical power, we  utilized summary 
statistics from large-scale GWAS meta-analyses. Furthermore, 
sensitivity analyses demonstrated the reliability and robustness of our 
findings. Importantly, the primary exposure variables in our study 
exhibited good reproducibility and validity. Identifying protective 
dietary habits for T2D is critical for primary prevention. However, 
caution is warranted in interpreting the evidence of causality from our 
study. We emphasize the necessity for further research to validate and 
generalize our findings across different populations and settings.

Nutritional advice should be tailored to individual circumstances, 
including socioeconomic status, cultural background, personal 
preferences, and health conditions. For instance, adopting a 
low-carbohydrate, high-fiber diet can enhance glycemic control and 
optimize the effectiveness of medications like metformin and insulin 
(61). Certain foods rich in specific nutrients can interact with 
medications; for instance, foods high in vitamin K can influence the 
efficacy of anticoagulants used by diabetics with cardiovascular disease 
(62) Additionally, dietary patterns that facilitate weight loss can 
enhance insulin sensitivity, potentially reducing the required dosage 
of medications (63). Therefore, consulting with a certified dietitian or 
healthcare professional is recommended to create a personalized diet 
plan that aligns with individual needs and health goals.

Based on our findings, we  offer the following dietary 
recommendations: Firstly, avoid choosing to consume poultry that 
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has been overexposed to hormones and antibiotics during the 
feeding process. In addition, avoid choosing poultry that is overly 
processed with too much-added sodium and preservatives. 
Choose simple cooking methods such as baking or steaming and 
avoid frying and grilling (32). Secondly, moderate intake of dried 
fruits with simple ingredients is recommended in daily life; many 
dried fruits are rich in antioxidant vitamins, and the dietary fiber 
in dried fruits modulates gut microbiology and influences lipid 
and glucose metabolism and immune homeostasis (48, 64–66). 
Finally, in terms of staple foods in the diet, choosing the right 
amount of cereals—typically low in added sugars and high in 
fiber—can be beneficial in preventing T2D (67). Most importantly, 
adopting a combination of low-risk lifestyle behaviors—including 
maintaining a healthy weight, consuming a balanced diet, 
engaging in regular physical activity, refraining from smoking or 
excessive alcohol consumption, and drinking alcohol in 
moderation—has been associated with a lower risk of developing 
type 2 diabetes (68).

Conclusion

This two-sample MR study demonstrated a causal effect of poultry 
intake, dried fruit intake, and cereal intake on T2D. Specifically, 
poultry intake was identified as a genetic risk factor for T2D, whereas 
dried fruit intake and cereal intake were found to be protective factors. 
Further validation of these novel findings and investigation into 
potential underlying mechanisms are warranted.
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