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Background and Aims: Physical performance is a major contributor of 
mobility and independence during older life. Despite a progressive decline in 
musculoskeletal function starts from middle age, several factors acting during 
the life-course can negatively influence musculoskeletal functional capacities. 
Lifestyle interventions incorporating nutrition and physical exercise can help 
maximizing the muscle functional capacities in early life as well as preserving 
them later in life. Among various dietary compounds, omega-3 polyunsaturated 
fatty acids (PUFAs) are gaining growing attention for their potential effects on 
muscle membrane composition and muscle function. Indeed, several pathways 
are enhanced, such as an attenuation of pro-inflammatory oxidative stress, 
mitochondrial function, activation of the mammalian target of rapamycin 
(mTOR) signaling and reduction of insulin resistance.

Methods: We performed a narrative review to explore the existing literature on 
the relationship between omega-3 PUFAs and physical performance across the 
life-course.

Results: Growing evidence from randomized controlled trials (RCTs) suggests 
beneficial effects of omega-3 PUFAs on muscle function, including physical 
performance parameters in mid to later life. On the other hand, despite a direct 
association in early life is not available in literature, some mechanisms by which 
omega-3 PUFAs may contribute to improved adult physical performance could 
be hypothesized.

Conclusion: Omega-3 PUFAs are gaining growing attention for their positive 
effect on muscle function parameters. The integration of physical function 
measures in future studies would be  of great interest to explore whether 
omega-3 PUFAs could contribute to improved muscle function, starting from 
early life and extending throughout the lifespan. However, larger and high-
quality RCTs are needed to fully elucidate the beneficial effects of omega-3 
PUFAs supplementation on muscle mass and function.
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Introduction

Advancing age is characterized by a progressive and generalized 
decline in muscle mass and function, the so-called “sarcopenia.” 
However, sarcopenia can occur earlier in life (1, 2). The original 
definition of sarcopenia focused on muscle mass as stand-alone. 
Subsequently, much more emphasis has been given to muscle function 
such that it currently comes to the forefront of international guidelines 
(3, 4). Physical performance, a major contributor of mobility and 
independence during older life (5), has been defined as “an objectively 
measured whole-body function related to locomotion” (3, 6). The 
multidimensional concept of physical performance is not merely 
limited to skeletal muscle but also involves central and peripheral 
nervous function including balance (3, 6). Low physical performance 
has been formerly considered a core component of sarcopenia (3, 7) 
and has been widely associated with adverse outcomes including 
frailty, disability and subsequent death (3, 8–14). Consequently, low 
physical performance is used to identify the severity of sarcopenia (3). 
There is a large consensus on the key role that physical function, and 
in particular mobility, plays in the determination of frailty status (15, 
16), regardless of the operational definition used (17). At the same 
time, the relationship between frailty and physical performance may 
be bi-directional since frailty status can also negatively affect mobility 
and physical function. In fact, physical performance measures are 
often used as an outcome measure in most of the trials targeting frailty 
and sarcopenia. Frailty and sarcopenia can be  considered 
complementary in many aspects. To date, the physical frailty 
phenotype proposed by Fried et al. (18) shows a remarkable overlap 
with sarcopenia. The Physical Frailty and Sarcopenia (PF&S) model 
(15) has been therefore suggested as a possible solution to combine 
the two entities (i.e., frailty and sarcopenia) into a unique operational 
definition. Furthermore, the large body of literature about physical 
function impairment as well as the presence of dedicated measures 
that are widely accepted (e.g., short physical performance battery, 
handgrip strength, gait speed), make the PF&S model an easy-to-
implement model to capture both frailty and sarcopenia (15). It is 

indeed largely agreed that the physical function impairment that 
results from the combination of frailty and sarcopenia acquires 
completely different connotations toward worst outcomes (19).

Despite a progressive decline in musculoskeletal function starts 
from middle age, several factors acting during the life course can 
influence musculoskeletal functional capacities. Starting from early 
life, each individual rapidly acquires supporting muscle functions to 
reach a peak or a plateau nearly at the end of adolescence period. 
Subsequently, after the fourth decade of life, a progressive decline in 
muscle mass (i.e., ~1–2% per year) and strength (i.e., ~1.5% per year) 
is seen (20). Kaymak et al. (3), in a comment to the European Working 
Group on Sarcopenia in Older People revised consensus (EWGSOP2), 
suggested that measurement of muscle power (intended as the product 
of strength and velocity) is more relevant than muscle strength as 
stand-alone in reflecting physical performance. Accordingly, muscle 
power has been suggested as the most relevant measure of muscle 
function, being more strongly correlated with functional performance 
than strength as stand-alone in older people. An example may be the 
chair stand test that requires both strength and velocity for its 
execution (3). In the early phases of muscle decline (i.e., initial 
decrease in muscle mass and strength), an individual could still have 
a preserved physical performance and may be  very far from the 
threshold of disability (3) (Figure 1). Hall et al. (5), in the Physical 
Performance Across the Life-span Study, reported that physical 
performance is almost stable in the first two decades of adulthood (i.e., 
from 30 to 50 years of age) with a progressive decline in the middle 
years (i.e., 50+) and late adulthood. Besides genetic and lifestyle 
factors operating across the life course, also some pathological 
conditions can accelerate this degenerative process (with a consequent 
progression toward functional impairment and disability). Lifestyle 
interventions incorporating nutrition and physical exercise are able to 
slow or reverse this process (Figure 1) (3, 21). The rate of decline in 
muscle mass and function is also reflected by their peaks attained 
during early life (2). Indeed, it is essential to maximize muscle 
function in early life as well as maintain this peak during adult life to 
minimize losses during older life (3).

FIGURE 1

Muscle strength across the life course. Modified from Cruz-Jentoft et al. (3), licensed under CC BY-NC 4.0. The rate of decline in muscle strength is 
reflected by the peak attained during early life. Maximizing the peak of muscle strength in early life as well as maintaining this peak during adult life is 
pivotal to minimize losses during older life.
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Nutritional strategies to counteract muscle mass and function 
decline are mainly based on protein supplementation combined with 
adequate calorie intake while there is limited knowledge on other 
nutritional interventions (22). Furthermore, the efficacy of nutritional 
interventions is enhanced when combined with physical activity (i.e., 
resistance training) (23). Inflammation and oxidative stress are 
considered hallmarks of the aging process (24) influencing the rate of 
functional decline observed in aging. Therefore, supplementation with 
individual nutrients sharing antioxidant and anti-inflammatory 
properties has recently gained attention for potential effects against 
the age-related functional decline (1, 25, 26). Within the plethora of 
various dietary supplements, polyunsaturated fatty acids (PUFAs), 
particularly omega-3 PUFAs and derived long-chain PUFAs 
(LC-PUFAs), are of particular interest for their potential effects on 
muscle function and thus on physical performance through various 
mechanisms. Omega-3 PUFAs may promote muscle anabolism 
through activation of the mammalian target of rapamycin (mTOR) 
signaling and reduction of insulin resistance (27, 28). Furthermore, 
omega-3 PUFAs are widely acknowledged as nutrients with clear anti-
inflammatory and antioxidant properties (27, 29, 30).

This narrative review aims to provide an overview of current 
knowledge about the role of omega-3 PUFAs on physical performance 
across the lifespan.

The role of PUFAs in the body

Linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) are 
considered essential fatty acids (EFAs) because of the absence of 
enzymes necessary for their production in humans and other 
mammals. Instead, they are obtained from plants or other organisms 
that possess enzymatic pathways for their synthesis. They must be part 

of the diet and, once introduced into the body, they can be further 
metabolized in the liver by the enzymes Δ6 and Δ5 desaturases and 
elongases to generate PUFAs (31) (see Figure 2).

LA is the precursor of the omega-6 PUFA family and arachidonic 
acid (AA) is its derived compound, while ALA, eicosapentaenoic acid 
(EPA), and docosahexaenoic acid (DHA) belong to the omega-3 
PUFA family. These two groups of fatty acids influence in different 
ways the property of the cell membranes in terms of fluidity and 
biological effects. DHA, EPA, and AA compete for the sn-2 position 
on membrane phospholipids. Therefore, their relative abundance in 
the membrane influences their availability as substrates for the same 
metabolic pathway enzymes, such as cyclooxygenases and 
lipoxygenases. Consequently, this balance affects the production of 
bioactive compounds with antagonistic roles involved in various 
disease processes (32). Generally, AA-derived metabolites have 
pro-inflammatory properties, whereas EPA-derived compounds are 
less inflammatory. DHA-derivates have anti-inflammatory and 
pro-resolution activities contributing to speeding up the inflammatory 
response’s physiological resolution (33, 34).

Omega-3 PUFAs such as ALA and DHA and omega-6 PUFAs, 
such as LA and AA, are important structural components of cell 
membranes mainly within phospholipids. DHA is necessary for the 
development of brain functions and retinal functions associated to 
vision (35, 36). The incorporation of this omega-3 metabolite takes 
place at uniquely high levels in the central nervous system, where 
omega-3 PUFA are main determinant of membrane PUFA 
composition and unsaturation (37). Once high levels of DHA are 
established in the brain, they tend to be sustained throughout later life. 
This maintenance likely relies on an optimal dietary supply, 
particularly considering the potential decrease in efficiency of 
precursor conversion by the enzymatic pathway among older 
individuals (35, 38).

FIGURE 2

Overview of polyunsaturated fatty acids metabolism in mammals. Schematic metabolic pathways of the two families of polyunsaturated fatty acids in 
mammals, omega-3 and omega-6, from the precursors α-linolenic acid and linoleic acid, respectively. In this figure are represented all the consecutive 
desaturation and elongation steps and the names of major eicosanoids derived. ALA, α-linolenic acid; LA, linoleic acid; EPA, eicosapentaenoic acid; 
DPA, docosapentaenoic acid; DHA, docosahexaenoic acid; AA, arachidonic acid.
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The membrane PUFA composition seems to be more responsive 
to dietary DHA compared to intake of LA and AA, showing a high 
sensitivity to dietary variations in PUFA-supply (39).

DHA, derived from ALA, has relevant metabolic activities. 
Besides hypolipidemic properties, reducing blood concentrations of 
triglycerides, DHA contributes to protect the central nervous system 
from reactive oxygen species, together with antioxidant properties, 
capable of shutting down the upstream inflammatory cascade. 
Furthermore, DHA exhibits immunomodulatory and antiallergic 
activities, contributing to its overall neuroprotective effects. From 
intrauterine life through later ages, DHA contributes to the 
maintenance of cognitive abilities and the prevention of 
neuropsychiatric and neurodegenerative disorders (40).

DHA and EPA share anti-inflammatory and inflammation-
resolving properties including the partial inhibition of leucocyte 
chemotaxis, adhesion molecule expression and leukocyte-endothelial 
adhesive interactions, production of eicosanoids such as 
prostaglandins and leukotrienes from the AA, as well as the 
production of pro-inflammatory cytokines (30). These anti-
inflammatory and pro-resolving effects show to be relevant to improve 
clinical outcomes in different therapeutic areas, supporting the 
protective role of the immune system (41). Omega-3 PUFAs seem to 
be involved in the activation of cells from both the innate and the 
adaptive immune system (42). In particular, in the innate immune 
cells omega-3 PUFAs (1) reduce neutrophil migration and increase 

their phagocytosis, (2) reduce pro-inflammatory cytokine release, 
increase phagocytosis and M2 macrophages phenotype that promote 
tissue repair at macrophage level and (3) reduce presentation at 
dendritic cells level (42). In the adaptive immune cells, omega-3 
PUFAs limit excessive B-cells responses, increase T regulatory cells 
differentiation and function while reduce T helper 17 differentiation, 
and limit the release of pro-inflammatory cytokines (42, 43). 
Consistent with aims of the present review, in older populations 
growing evidence suggests a role of omega-3 PUFAs in the 
maintenance of muscle mass and function and in the musculoskeletal 
health in general (44).

Main mechanisms of omega-3 PUFAs in the 
muscle

Most studies on omega-3 PUFAs have been primarily focused on 
cellular and molecular mechanisms underlying muscle protein 
metabolism (45). Accordingly, the main mechanisms through which 
omega-3 PUFAs could benefit muscle parameters seem to be (1) both 
anti-catabolic and anabolic effects on muscle protein synthesis (2) 
modulation of insulin sensitivity (3) amelioration of mitochondrial 
functioning, inflammation and muscle fiber contractile properties (4) 
neuroprotective and motor neuron excitability properties (46). 
Figure 3 presents an overview on the main mechanisms, which will 

FIGURE 3

Overview of the main mechanisms by which Omega-3 PUFAs can influence muscle parameters. Modified from Therdyothin et al. (47), licensed 
under CC BY 4.0. Omega-3 PUFAs, incorporated into the cell membrane, modulate neuromuscular transmission and seem to directly stimulate 
mTORC1, both as stand-alone and synergically with amino acids ingestion thus enhancing muscle protein synthesis. Omega-3 PUFAs also 
counteract inflammatory processes through less production of inflammatory mediators as well as by the release of pro-resolution mediators and by 
reducing ROS production at the mitochondrial level, thus decreasing muscle protein breakdown. Omega-3 PUFAs also act as ligands for G-protein 
coupled receptors (GPCRs) and induce the activation of the peroxisome proliferator-activated receptors (PPARs), with the consequent inhibition of 
nuclear factor kappa B (NFκB). In turn, the inhibition of NFκB leads to a reduced cyclooxygenase production resulting in a decreased inflammatory 
response finally reducing muscle protein breakdown. The inhibition of NF-κB also leads to the downregulation of the muscle ring finger-1 (MuRF-1) 
gene counteracting the ubiquitin-proteasome system and thus reducing muscle protein breakdown. n-3 PUFA, omega-3 polyunsaturated fatty 
acid; mTORC1, mammalian target of rapamycin complex; NFκB, nuclear factor kappa B; MuRF-1, muscle ring finger-1; PPARs, peroxisome 
proliferator-activated receptors.
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be discussed in detail by each life stage (e.g., early life, adult and older 
life) in the following specific sections, by which omega-3 PUFAs can 
influence muscle parameters.

Omega-3 PUFAs EPA and DHA, both as stand-alone and 
synergically with amino acids ingestion, seem to directly stimulate 
mTORC1 thus enhancing muscle protein synthesis (Figure  3). 
However, it should be considered that while the acute activation of 
mTORC1 could promote muscle protein synthesis (48), the prolonged 
activation of mTORC1 has been associated with severe muscle 
atrophy, mainly because of decreased autophagy in the muscle (49). 
Therefore, it seems that alternating periods of high and low mTORC1 
activation, as occurring with a healthy diet incorporating omega-3 
PUFAs, is the key for an optimal muscle function (50). Omega-3 
PUFAs seem also to improve mitochondrial function, mainly by 
reducing non-mitochondrial respiration and by augmenting the 
reserve respiratory capacity and bioenergetics (51). By reducing ROS 
production at the mitochondrial level, omega-3 PUFAs seem also to 
reduce muscle protein breakdown (47). Additionally, omega-3 PUFAs 
seem to counteract insulin resistance by improving mitochondrial 
function and bioenergetics as well as by modulating phospholipid 
membranes (52, 53), but also by increasing serum levels of insulin-like 
growth factor 1 (IGF-1). In turn, IGF-1 stimulates muscle protein 
synthesis via mTORC1-dependent and independent pathways 
(47, 54).

Omega-3 PUFAs could inhibit muscle protein breakdown also 
by acting as ligands for G-protein coupled receptors (GPCRs) and 
by activating the peroxisome proliferator-activated receptors 
(PPARs), with the consequent inhibition of nuclear factor kappa B 
(NFκB). In turn, the inhibition of NFκB leads to a reduced 
cyclooxygenase production resulting in a decreased inflammatory 
response (55) (Figure 3). The inhibition of NF-κB also leads to the 
downregulation of the muscle ring finger-1 (MuRF-1) gene 
counteracting the ubiquitin-proteasome system and thus reducing 
muscle protein breakdown (47). Furthermore, PPARs which are 
transcription factors activated by fatty acids and their derivatives, 
are involved in development, metabolism, inflammation, and many 
cellular processes in different tissues including the muscle (56). In 
particular, there are three different PPAR isotypes: (1) PPARα is 
highly expressed in tissues, like skeletal muscle, with effective fatty 
acid catabolism; (2) PPARβ/δ, which is more ubiquitously with a 
predominance in the skeletal muscle, is implicated in energy 
metabolism, mitochondrial biogenesis, and fiber-type switching; 
(3) PPARγ is highly expressed in adipocytes, but it is also involved 
in fat deposition in the muscle (56). Indeed, beyond NF-κB 
inhibition, PPARγ activation seems to play a relevant role in the 
inhibition of myosteatosis (i.e., intramuscular and intermuscular 
fat infiltration) and muscle fiber type switching (56) which are key 
features in the age-related sarcopenia (1). In particular, fat 
deposition in the muscle with its lipotoxic action, can exert 
detrimental effects on both muscle quality and strength, also 
negatively affecting mobility function (57–59). These effects are 
even more magnified when sarcopenia is accompanied by obesity 
(60). Additionally, PPARγ is a key regulator of glucose homeostasis 
and insulin sensitivity in the human skeletal muscle (61), with 
abnormalities in its expression being involved in skeletal muscle 
insulin resistance, especially in the presence of obesity and/or type 
II diabetes (62). The effects of omega-3 PUFAs supplementation on 
PPARγ activity have been demonstrated also in young athletes 

(e.g., age range of 20 to 30 years) who were supplemented with 
2000 mg/day of omega-3 PUFAs (EPA: 360 mg, DHA: 240 mg) or 
placebo (2000 mg/day edible paraffin) for 3 weeks (63). The authors 
found that omega-3 PUFAs supplementation was significantly 
associated with the up-regulation of PPARγ, with an increase in 
resting energy expenditure and appetite (63). Also a recent meta-
analysis of randomized controlled trials (RCTs) (64), involving 
both young, middle-aged and older people, showed that omega-3 
PUFAs supplementation at varying doses (from 2000 mg/day to 
7,000 mg/day) and with varying duration (from 3 to 48 weeks) led 
to a significant up-regulation of PPAR-γ gene expression. Finally, 
the incorporation of omega-3 PUFAs in the phospholipid bilayers 
of the cell membrane favors membrane fluidity and modulates 
neuromuscular transmission (Figure 3) resulting in greater muscle 
strength (47, 65–67).

Physical performance measures

The assessment of physical performance in older people can 
be envisioned as a summary marker of functional status as well as 
of the underlying biology of ageing (8). Tests of physical 
performance are strongly associated with frailty, disability and 
death in older people (9–14) and are used to identify the severity 
of sarcopenia (3). Physical performance measures are thus 
intended to monitor the evolution of functional status over time or 
the change after an intervention (68, 69), so such tests are often 
used as an outcome measure in most trials (3). Much research has 
been conducted in large, prospective studies of older populations, 
assessing physical performance in several ways. The main tests of 
physical performance in older people are summarized in Table 1. 
Physical performance is usually measured in older people by the 
Short Physical Performance Battery (SPPB) (11, 72), the 400-meter 
walk test (400-MWT) (74), gait speed (70, 71), and the Timed-Up 
and Go (TUG) test (73), as suggested by the EWGSOP2 (3). 
Shortly, the SPPB test combines the assessment of gait speed, a 
balance test, and a chair stand test. The SPPB scores range from 0 
to 12, with a score of ≤8 points indicating poor physical 
performance (11, 72). However, the SPPB is frequently used in 
research rather than in clinical practice because of its length of 
administration (i.e., at least 10 min) (3). The 400-MWT evaluates 
both walking ability and endurance and consists of completing 20 
laps of 20 m as fast as possible, with up to two rest stops during the 
test that are allowed. Non-completion or ≥6 min for completion of 
this test indicates poor physical performance (74). Also in this 
case, the length of the 400-MWT as well as the need for a corridor 
at least 20 m long make it difficult to implement in routine clinical 
practice. However, in the geriatric context, some tests with shorter 
distances (e.g., 4, 7, and 10 Meter Walk Test) have been proposed 
as good alternatives showing high test–retest reliability and validity 
in measuring walking speed (76–78). However, also the 10-meter 
walk test (10-MWT) requires a corridor 20 m long making it 
difficult to implement in most clinical settings (79). Indeed, the 
4-meter walk test (4-MWT), which is part of the SPPB test, is 
considered a valid alternative to the 10-MWT in both clinical and 
research settings (3, 80), with a cut-off ≤0.8 m/s that has been 
advised to indicate poor physical performance (i.e., severe 
sarcopenia) (3). Gait speed is instead considered an 
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easy-to-implement highly reliable measure and it is advised, for its 
convenience, by EWGSOP2 for physical performance assessment 
(3). Likewise, the TUG test is widely used in the geriatric context 
for its simplicity and reliability. In particular, the TUG test asks the 
participant to rise from a chair, walk up to a marker 3 m away, turn 
around, walk back to the chair and sit down again, with a cut-off 
of ≥20 s suggested as indicative of poor physical performance (3, 
73). To better capture the age-related modifications in functional 
status, physical performance should be assessed before reaching 
old age, taking into consideration the determinants that influence 
it over one’s lifetime (8). In this way, to intervene earlier in life 
could slow the rate of functional decline associated with aging. 
There is a gap in understanding early-life factors influencing late-
life physical performance (8). Furthermore, there is a paucity of 
measures for assessing physical performance in young people as 
well as the fact that physical performance is rarely assessed in 
young individuals. Until now, tests of physical performance such 
as the TUG test or the 10-MWT have been used in pediatric 
populations with specific pathological conditions (e.g., Down 
Syndrome (81, 82) or neuromuscular disease (83–85)). These tests, 
typically employed in the geriatric population, could therefore 
be applied to younger populations (i.e., young adults) to evaluate 
physical performance despite different cut-offs may be needed.

Omega-3 PUFAs and physical performance 
in early life (childhood and adolescence)

As the global population continues to age, there is a growing 
need to identify modifiable factors throughout life that influence 
physical function in later years. These factors may influence the 
peak of function achieved earlier in life determining the timing 
and rate of subsequent decline (Figure 1). Literature about the role 
of omega-3 PUFAs on physical performance in early life is scarce, 
although beneficial effects of these compounds on sport 
performance of young athletes have been reported (86, 87). 
Notwithstanding, some potential mechanisms by which PUFAs 
could exert beneficial effects on physical performance starting 
from early life could be argued (Figure 4).

The role of the immune system and inflammatory processes 
throughout the lifespan, including early and in-utero life, has gained 
growing attention as a driver of a wide spectrum of age-related chronic 
conditions including metabolic syndrome, type 2 diabetes, 

cardiovascular disease, osteoporosis and sarcopenia (88). Systemic 
chronic inflammation, even during childhood and pregnancy, has 
been reported to influence the inflammatory trajectories in later stages 
of life (59, 88, 89). Conversely, inflammation, defined as the elevation 
of pro-inflammatory cytokines (i.e., C-reactive protein, interleukin-6), 
has been associated with poor physical performance in both older 
individuals (90, 91) and young adults (i.e., sedentary young adults 
aged 18–35 years) (92). Inflammation could be regarded as an early 
determinant of the physical performance decline seen with aging, 
starting from childhood and even from pregnancy. Starting from 
pregnancy, the so-called “maternal exposome” (i.e., diet, physical 
activity, psychological stress and exposure to xenobiotics) influences 
the immune system programming of the offspring towards a more 
pro-inflammatory profile in adulthood (88). Poor nutrition during 
early life (i.e., both undernutrition and overweight and obesity) has 
been associated with increased levels of inflammatory markers and 
with consequences during adult life including cardiometabolic disease 
and sarcopenia (93). The omega-3 PUFAs EPA and DHA are able to 
partially inhibit many aspects of inflammation, including leukocyte 
chemotaxis, adhesion molecule expression and leukocyte-endothelial 
adhesive interactions, production of eicosanoids such as 
prostaglandins and leukotrienes from the AA, and production of 
pro-inflammatory cytokines (30). In this context, omega-3 
supplementation during pregnancy contributes to increase omega-3 
PUFAs status of the offspring (94) and influence immunological 
outcomes through the modification of offspring cytokine 
concentrations (95, 96). See et al. (97) reported for the first time that 
omega-3 PUFAs supplementation during pregnancy was associated 
with an increase in specialized pro-resolving mediators precursors in 
the cord blood of the offspring at birth, suggesting a beneficial role in 
the alleviation of low-grade inflammatory status associated with 
pregnancy. However, the authors found the effects were not sustained 
at 12 years of age highlighting that the continuation of supplementation 
across life course may be also a relevant factor. This is because the 
effects of omega-3 fatty acid consumption might require a more 
prolonged and continuous intervention to observe a sustained 
difference in pro-resolving mediators as the half-life of EPA, DHA and 
the resolvins is in the hour range (98, 99). The time windows (i.e., at 
birth and at 12 years of age), used in the study of See et al. (97), have 
probably been chosen because those life stages can be envisioned as 
critical and sensitive periods of human development, according to 
Barker’s ‘developmental origins of health and disease’ hypothesis 
(100). This theory proposes that factors that modify physiological 

TABLE 1 Main measures of physical performance in older people.

Measure Description Cut-off points

Gait speed (70, 71) Commonly assessed through a 4-MWT. Other distances (e.g., 7 and 10 meters) have also been proposed ≤0.8 m/s

SPPB (11, 72) Composite test including assessment of gait speed, a balance test and a chair stand test ≤8 point score

TUG (73) The person is asked to rise from a standard chair, walk to a marker 3 m away, turn around, walk back and sit 

down again

≥20 s

400-MWT (74) The person is asked to complete 20 laps of 20 m, each lap as fast as possible with up to 2 rest stops during the 

test

Non-completion or ≥6 min for 

completion

6-MWT (75) The test is self-paced, with standardized instructions and encouragement being given as patients walk as far 

as possible over 6 min through a flat corridor

<400 m

4-MWT, 4 meter walk test; SPPB, short physical performance battery; TUG, timed up and go; 400-MWT, 400-meter walk test; 6-MWT, 6-min walk test.
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processes during the critical developmental period in early life may 
exert a long-term influence on disease in adult life. In particular, early 
life nutritional exposures, especially during critical or sensitive 
periods, are significant determinants of both growth and development 
and later health (100). Specifically, omega-3 PUFAs supplementation 
during pregnancy seems to increase omega-3 PUFAs status of the 
newborn (94), influencing immune function by acting on cytokine 
concentrations (95, 96) and attenuating lipid peroxidation in the 
newborn (101).Various RCTs involving children and adolescents with 
specific pathological conditions (i.e., autism spectrum disorder, 
attention-deficit-hyperactivity disorder, and cystic fibrosis) have 
demonstrated the role of omega-3 PUFAs in countering 
pro-inflammatory mediators after birth (102–104).

On the other hand, low birth weight as well as altered physical 
growth and development parameters (at the age of 1, 7, and 12 years, 
respectively), have been associated with poor grip strength and 
physical performance in mid-to-later life (i.e., at the age of 53 and 
56 years for mid-life and at the age of 65–70 years for later life) (8, 
105–109). Muscle strength is a major determinant of the age-related 
decline of physical performance (106), as shown in Figure 1. Indeed, 
incorporating lifestyle modifications to maximize the peak of muscle 
functional capacities during early life is functional to preserve physical 
performance in mid-to-later life. Exploring the potential of omega-3 
PUFAs to positively affect muscle strength from early life by 
influencing birth weight and parameters related to growth and 

development could be of significant interest. In this regard, a longer 
duration of breastfeeding has been associated with both greater grip 
strength in older life (110) and increased lower body explosive 
strength in adolescence (111). The beneficial effects of breastfeeding 
on grip strength could probably be mediated by breast milk fatty acids 
content. This is of particular interest since achieving a higher peak in 
muscle strength starting from early life is directly associated with a 
lower decline in muscle strength and, consequently, in physical 
performance being the latter strongly influenced by muscle strength 
(3, 106). Human milk contains essential dietary fatty acids such as LA 
and ALA, along with their metabolites AA and DHA, which play a 
supportive role in the growth and development of breastfed infants 
(112). The amount of omega-6 and omega-3 fatty acids secreted in the 
milk is reflective of the maternal dietary intake of PUFAs (112). The 
hypothesis that omega-3 PUFAs supplementation could prevent 
preterm birth and low birth weight has originated from studies 
conducted in the Faroe Islands (113). In these islands, the diet is 
characterized by a greater intake of marine foods compared with the 
population of Denmark. This likely accounts for the higher birth 
weights (approximately 200 g more at term) observed in babies born 
in this area. Furthermore, birth weights of infants from the Faroe 
Islands have been found to be  higher than those of 33 other 
countries (113).

From a life course perspective, another factor to be considered is 
obesity (and in particular adiposity). Maternal obesity has been 

FIGURE 4

Possible mechanisms mediating the associations between low omega-3 status during early life and physical performance decline later in life. 
Decreased omega-3 status has been associated with low birth weight, altered growth and development parameters in early life and decreased immune 
function, augmented inflammation and oxidative stress across the lifespan. In turn, all these mechanisms have been largely associated with poor 
physical performance during older life. ↓, decreased; ↑, increased.
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associated with increased fetal adiposity, especially when accompanied 
by gestational diabetes (93). Nutritional excess during early childhood 
(i.e., greater gestational weight gain, higher birth weight, faster 
postnatal weight gain) is associated with an increased risk of obesity, 
central adiposity as well as insulin resistance in adult and older life 
(from 20 till 70 years of age) (93, 114). Subsequently, excess weight 
gain during childhood and adolescence period is likely to lead to 
persistent overweight and obesity throughout life (115).

In this context, the role of chronic inflammation should not 
be  overlooked since increased adiposity is characterized by the 
abnormal secretion of a wide range of pro-inflammatory molecules 
including adipokines, cytokines and chemokines thus predisposing to 
adult adverse conditions although inflammation is a necessary 
biological response to various stimuli, having defense and tissue 
restructuring functions (88, 116). Inflammatory trajectories across the 
life course could be thus probably mediated by body composition 
alterations as both undernutrition and overweight are associated with 
inflammation (93, 117, 118). In turn, obesity status, either 
independently or in combination with sarcopenia, has been associated 
with reduced physical performance in older individuals (119). Based 
on these considerations, omega-3 PUFAs have been suggested to play 
a role in the context of overweight/obesity through numerous 
mechanisms including the modulation of lipid metabolism and 
inflammation, the regulation of adipokines as well as the promotion 
of adipogenesis and the alteration of epigenetic mechanisms (120). A 
reduced red blood cell omega-3 PUFAs status has been reported in 
children with greater adiposity and has been associated with a 
suboptimal intake of omega-3 PUFAs (121). In this context, a plausible 
explanation may be also related to the evolution of the Western diet 
towards a pro-inflammatory diet rich in refined grains and ultra-
processed foods and low in fruits and vegetables, thus poor in 
vitamins, minerals and with a suboptimal omega-3 content in favor of 
omega-6 PUFAs (88). However, no significant effects of omega-3 
PUFAs supplementation on anthropometric parameters have been 
reported in children and adolescents living with overweight/obesity 
(122, 123).

Lower socioeconomic position (SEP) has been associated with 
lower serum levels of omega-3 PUFAs starting from pregnancy 
through adulthood (124–129). Robinson et al. (130) in a multi-cohort 
analysis, reported that a low SEP was independently associated with 
an unfavorable metabolic profile including low omega-3 status both 
in children (i.e., aged 7 years), adolescents (i.e., aged 15 and 17 years), 
adults and older adults (from 31 till 75 years of age). This is probably 
due to the poor quality of the diet associated with a lower 
socioeconomic status as reported in ethnic minorities (i.e., Latino 
immigrants in the U.S.), but also in urban areas of Australia (129, 131) 
with a reduced consumption of fruits, vegetables, whole grains, fiber, 
fish and seafood thus reflective of low omega-3 status (132). 
Additionally it should be considered that low levels and intake of 
omega-3 may in part be related to the limited accessibility of marine-
food sources, especially in certain geographic areas (129). In a 
systematic review and meta-analysis, Birnie et al. (133) reported an 
association between lower childhood SEP and reduced physical 
performance in adulthood and older life (from 18 to 79 years). This 
connection persisted even after adjustment by adult SEP, despite the 
presence of heterogeneity among studies. These findings suggest that 
the accumulation of adverse exposures across the life course may 
be more predictive of the functional decline observed during aging 

than models considering only adult factors. It can be assumed that the 
association between low childhood SEP and reduced physical 
performance in adult and older life may be mediated, in addition to 
other adversities, by a poor quality of the diet, including inadequate 
omega-3 PUFAs intake.

It has been documented that attainment of gross motor 
development milestones (i.e., standing and walking) during childhood, 
as well as higher scores on tests measuring cognitive ability and motor 
coordination, are associated with enhanced physical performance in 
midlife, independently of other factors (8). In particular, Kuh et al. 
showed that the age at which an individual first walked was associated 
with both midlife standing balance and chair stand test, which are two 
out of three components of the Short Physical Performance Battery 
(SPPB) (8). The authors reported that better scores on cognitive ability 
tests at age 8 years and of motor coordination at age 15 years were 
associated with greater standing balance and chair standing (8). The 
attainment and maturation of motor and cognitive function during 
childhood, as well as the age-related motor and cognitive functional 
decline in older life, are highly integrated (134, 135), indicating that 
these developmental factors may be envisioned as markers of more 
complex cortical–subcortical neural circuits connected with higher 
levels of function later in life (8). This aligns with the findings of Ridler 
et al., who showed an anatomically related overlap between fronto-
cerebellar system related to infant motor development and adult 
executive function (136). Similarly, Murray et al. reported that early 
development in the gross motor domain is associated with higher 
adult executive function (137). In this regard, omega-3 PUFAs are 
widely acknowledged to play a central role in brain function and 
contribute to the structure of the neuronal cell membranes (138). They 
are crucial for myelination and vision development during the 
perinatal period (139). In particular, DHA represents nearly 90% of 
total omega-3 PUFAs in the brain and is especially concentrated in the 
gray matter (140, 141). Early life accumulation of omega-3 PUFAs 
represents a golden opportunity for their storage in neural tissues (38, 
140–142). In this context, it has been demonstrated that omega-3 
PUFAs supplementation during pregnancy is associated with earlier 
achievement of gross motor milestones and improved cognitive 
development in children (143). The study by Beblo et  al. (144) 
reported that fish oil supplementation enhanced omega-3 PUFAs 
levels and improved motor skills in children with phenylketonuria. 
Additionally, Agostoni et al. (145) in a RCT, demonstrated that infants 
who received DHA supplementation achieved sitting without support 
in a shorter period. Other studies reported contrasting results. A 
systematic review by U.S. Departments of Agriculture nutrition 
evidence reported insufficient evidence to establish a relationship 
between omega-3 supplementation during pregnancy and lactation 
with motor and visual development in infants (146). Richardson and 
Montgomery (147) found that in children with development 
coordination disorder, PUFAs supplementation (i.e., 2 capsules 3 
times/day providing 558 mg of EPA, 174 mg of DHA and 60 mg of LA 
for 3 months) did not improve motor function, while they improved 
reading and spelling age and symptoms of attention-deficit/
hyperactivity disorder.

In summary, the role of omega-3 PUFAs starting from early life, 
and even in utero, is intriguing given their long-lasting effects on human 
health through the various mechanisms discussed (e.g., birth weight, 
motor development, modulation of inflammation, immune response 
and oxidative stress) which could probably influence adult physical 
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performance, with potential implications for the prevention of 
sarcopenia, frailty and disability.

Omega-3 PUFAs and physical performance 
in mid to later life

Growing clinical evidence supports the positive role of omega-3 
PUFAs on physical performance in mid to later life (148–150). Some 
studies focused on the relationship between omega-3 PUFAs 
supplementation and muscle strength (27, 151). As shown in Figure 1, 
with advancing age muscle strength tends to decline earlier and more 
rapidly than physical performance, especially when a lower peak in 
muscle strength is reached during early life. According to the latest 
consensus guidelines of the EWGSOP2, in the early phases of 
sarcopenia development, a person may result above the threshold of 
low physical performance despite a reduction in muscle strength (3). 
The reduction in muscle strength can be considered an early indicator 
of overt functional decline. This is evidenced by the EWGSOP2 
algorithm for sarcopenia case finding where low muscle strength 
represents the first step in sarcopenia assessment defining probable 
sarcopenia and low physical performance the last step to quantify 
sarcopenia severity (3). Muscle strength can be thus considered as the 
early component, on which acting, to preserve muscle function and 
thus physical performance during older life. In this regard, a recent 
meta-analysis showed a beneficial effect of omega-3 PUFAs 
supplementation on lower body muscle strength while no effects were 
found on upper body strength (151). Bird et al. (152), in a recent meta-
analysis, reported a significant relationship in favor of omega-3 PUFAs 
supplementation for quadriceps maximal voluntary capacity. Another 
meta-analysis by Rondanelli et al. (153) found no effects of omega-3 
EPA plus DHA supplementation on chair rise test and handgrip 
strength. On the other hand, a meta-analysis of 9 RCTs showed that 
omega-3 PUFAs supplementation significantly increased the grip 
strength (154). In the Hertfordshire cohort study, Robinson et  al. 
found a positive association between fatty fish consumption and grip 
strength (155). Regarding physical performance, in 2017, Frison et al. 
(150) reported that higher omega-3 PUFAs plasma levels were 
associated with lower odds of low gait speed (i.e., <0.63 m/s) in older 
individuals. In a cross-sectional analysis of the Multidomain 
Alzheimer Preventive Trial (MAPT), recruiting older adults aged 
70 years and older, Fougère et al. (156) found an association between 
low levels of omega-3 PUFAs in red blood cell membranes and lower 
physical performance measured through the SPPB. However, in a 
secondary analysis of the MAPT trial, Rolland et al. (157) reported no 
significant effects of long-term omega-3 PUFAs supplementation, 
either alone or in combination with a multidomain lifestyle 
intervention comprising physical activity counseling, on the walking 
speed test and SPPB.

In the InCHIANTI study, including 1,273 participants between 
22 and 104 years of age living in Tuscany (Italy), Abbatecola et al. 
(148) found that higher levels of total PUFAs, omega-3 PUFAs, and 
omega-6 PUFAs were associated with high physical performance (i.e., 
SPPB score > 9) at baseline, after adjusting for age. However, after 
adjusting for potential confounders, baseline 7 m walk time was 
associated with total PUFAs levels. Additionally, the authors found 
that baseline omega-3 PUFAs levels were inversely associated to the 
risk of developing a decline in SPPB to scores ≤9, while the omega-6/

omega-3 ratio was associated with a higher risk of SPPB decline and 
with a longer time to walk 7 meters.

Hutchins-Wiese et  al. (158), in a RCT recruiting 126 
postmenopausal women, demonstrated that omega-3 PUFAs 
supplementation resulted in greater physical performance, measured 
by change in walking speed. On contrary, Krzymińska-Siemaszko 
et al. (159) did not observe an improvement in physical performance 
after 12 weeks of omega-3 PUFAs supplementation in a sample of 
older people with low muscle mass. A recent meta-analysis of RCTs in 
older adults (153), reported that daily omega-3 PUFAs 
supplementation is associated with a reduction in the time of the TUG 
test, while no statistically significant effect was found on 
4-MWT. These results are in line with another recent meta-analysis 
(151), focused on people aged 55 years and older, which reported a 
significant association between omega-3 supplementation and lower 
TUG but not on walking speed. However, in another systematic 
review and meta-analysis, it was found that there were minor benefits 
of omega-3 supplementation for TUG performance, while subgroup 
analyses showed that omega-3 PUFAs supplements at more than 2 g/
day may contribute at improving walking speed, especially if the 
intervention is carried out for more than 6 months (160).

In summary, evidence from interventional studies and meta-
analyses gave controversial results on the beneficial effect of omega-3 
PUFAs on physical performance parameters. As outlined by some 
authors, small study size and heterogeneity in the intervention 
protocol, including the ratios between EPA and DHA, may have 
limited the applicability of these results.

Conclusion

Mechanisms through which omega-3 PUFAs could benefit muscle 
function including physical performance parameters across the life 
course are intriguing. However, it should be  considered that few 
interventional studies explored the effects of omega-3 PUFAs 
supplementation on physical performance, with varying duration, 
dosage and use (i.e., alone or in combination with other interventions). 
This has led to controversial results reported in literature. However, it 
seems that omega-3 PUFAs supplementation at high doses (i.e., more 
than 2 g/day) and for longer periods (i.e., for more than 6 months) may 
contribute to improving physical performance (e.g., walking speed) in 
older people. Larger and high-quality RCTs are needed to fully 
elucidate the beneficial effects of omega-3 PUFAs supplementation on 
muscle function parameters. Although, a direct association in early life 
is not available in literature, some mechanisms by which omega-3 
PUFAs may contribute to improved physical performance could 
be hypothesized. The integration of physical function measures in 
future RCTs would be of great interest to explore whether omega-3 
PUFAs could contribute to improved muscle function parameters, 
starting from early life and extending throughout the lifespan.
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