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Background: Numerous studies have shown that low levels of vitamin D are 
linked to a higher risk of inflammatory diseases and their progression. However, 
how vitamin D levels affect mortality in chronic obstructive pulmonary disease 
(COPD) patients is still unclear. Thus, this study aimed to explore the relationship 
between serum 25-hydroxyvitamin D [25(OH)D] levels and the risk of death 
from all causes in U.S. adults with COPD.

Methods: This study analyzed 1,876 adults with COPD from the National Health 
and Nutrition Examination Survey (2005–2018). Mortality data up to December 
31, 2019, were obtained from the National Death Index (NDI) records. Participants 
were categorized into three groups according to their 25(OH)D levels: Q1 
(<50.0  nmol/L) for deficiency; Q2 (50.0–74.9  nmol/L) for insufficiency; and Q3 
(≥75.0  nmol/L) for adequacy. A weighted Cox regression model assessed the link 
between 25(OH)D levels and mortality. Kaplan–Meier survival curves, subgroup, 
and sensitivity analyses were conducted. Additionally, the relationship between 
25(OH)D and the hazard ratio (HR) was detailed through restricted cubic spline 
analysis. Mediation analysis revealed how 25(OH)D mediates the relationship 
between Dietary Inflammatory Index and mortality.

Results: There were 395 all-cause deaths during the follow-up, resulting in 
a mortality rate of 21.06%. After adjusting for potential confounders, higher 
25(OH)D levels significantly correlated with a lower risk of all-cause mortality in 
COPD patients (HR  =  0.52, 95% CI: 0.37–0.72, p  <  0.001). Restricted cubic spline 
analysis indicated a non-linear relationship between 25(OH)D levels and all-
cause mortality (p for nonlinear  =  0.023), with levels below 63.4  nmol/L posing 
an independent risk for all-cause mortality in COPD patients (HR  =  0.98, 95% CI: 
0.97–0.99, p  =  0.005). Sensitivity and subgroup analyses confirmed our results’ 
robustness, with mediation analysis showing 25(OH)D’s 22% mediating effect on 
diet-induced inflammation and all-cause mortality in COPD patients.

Conclusion: 25(OH)D independently lowers the risk of all-cause mortality in 
COPD patients, with a non-linear L-shaped correlation, and mediates the 
effect of Dietary Inflammatory Index on mortality, suggesting new therapeutic 
possibilities.
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Background

Chronic obstructive pulmonary disease (COPD) has the highest 
mortality rate among chronic respiratory diseases (1). According to 
the World Health Organization, COPD is projected to become the 
third leading cause of death globally and the fourth leading cause of 
death in the United States in the next decade. The disease burden 
caused by COPD is expected to slowly and steadily increase (2, 3). 
Characterized by persistent airflow limitation and chronic 
inflammation of the airways, COPD ranks among the leading causes 
of mortality and morbidity, resulting in a substantial socioeconomic 
burden (4). To date, the pathological mechanisms of COPD are 
attributed to excessive inflammation, dysfunctional oxidative stress, 
and imbalance of protease-antiprotease systems (5–7).

As a type of steroid hormone, vitamin D can have unique 
biological effects on many target organs. It is most well-known for its 
role in bone calcium metabolism and maintaining the homeostasis of 
bone and calcium (8). Additionally, many studies also have revealed 
the unique effects of 25-hydroxyvitamin D on various cellular 
processes, such as cell proliferation, differentiation, wound healing, 
repair, and involvement in the host immune and inflammatory 
regulatory systems (9). The deficiency of 25-hydroxyvitamin D has 
been confirmed to be associated with the progression of multiple 
COPD pathogenesis processes, including inflammation regulation, 
excessive oxidative stress, increased protease expression, impaired 
host defense, and pulmonary airway remodeling (10). Evidence from 
clinical trials and meta-analyses indicates that 25-hydroxyvitamin D 
supplementation plays a role in reducing COPD exacerbations and 
improving disease prognosis (11–14).

Previous studies have highlighted vitamin D’s potential to reduce 
mortality rates across diseases and its role in delaying COPD 
progression (15, 16). However, there is limited current scientific 
research on the association between vitamin D and mortality rates in 
COPD patients (17, 18). Specifically, no comprehensive study has 
explored the direct effect of vitamin D on mortality risk in COPD 
patients among the non-institutionalized population in the 
United States. This gap is critical for understanding vitamin D’s role 
in COPD management because the non-institutionalized population 
represents a wider range of COPD patients, making the research 
findings more applicable and practical. This study will analyze 
NHANES data from 2005 to 2018 to investigate the relationship 
between serum 25-hydroxyvitamin D levels and all-cause mortality 
in COPD patients, as well as explore the potential impact of varying 
levels of serum 25-hydroxyvitamin D on mortality in COPD patients. 
The NHANES database, which contains nationally representative 
samples, offers a unique opportunity to address this research gap. The 
database covers a diverse population and ensures data accuracy and 
quality through standardized data collection processes. This solidifies 
the foundation for conducting reliable and effective statistical 
analyses. This study aims to fill gaps in the existing literature and 
enhance understanding of vitamin D’s potential role in reducing 
mortality risk among COPD patients.

Methods

Study design and data source

This study analyses data from the US National Health and 
Nutrition Examination Survey (NHANES) database, focusing on the 
years 2005–2018. The primary objective is to explore associations 
between serum 25-hydroxyvitamin D levels and long-term mortality 
rates in community-dwelling adults with COPD. Additionally, the 
study examines the potential mediating role of serum vitamin D in the 
relationship between the dietary inflammation index and mortality.

The NHANES database comprises data collected by the National 
Center for Health Statistics (NCHS), part of the CDC in the 
United  States. The survey is designed to assess the health and 
nutritional status of individuals from various age groups nationwide. 
A sophisticated, multistage design in survey procedures ensures the 
data’s representativeness of the US population, excluding those in 
institutional settings. Researchers are granted access to use the data 
for research, made available by the NCHS.

NHANES survey participants first undergo a household interview 
and are then invited for a comprehensive examination at a mobile 
examination center (MEC). The examination encompasses physical 
measurements, specialized tests, and lab assessments. Consequently, 
participant evaluations from the NHANES database are deemed reliable 
and comprehensive, similar to population-level assessments (19). More 
information on the NHANES survey is available at its official website: 
https://www.cdc.gov/nchs/nhanes/index.htm. Note that all participants 
provided written informed consent for the NHANES survey.

Study population selection

The study included community-dwelling adults aged 40–79, 
diagnosed with COPD by a physician between 2005 and 2018 in the 
NHANES dataset. COPD identification from the NHANES 
questionnaire was based on affirmative responses to questions about 
a doctor’s diagnosis of COPD, chronic bronchitis, or emphysema. This 
method for identifying COPD patients has been used effectively in 
many previous studies using NHANES data (20, 21). Participants who 
answered “yes” to any of these questions were considered COPD 
patients. From the initial 70,190 participants, 1,876 were included in 
the study after excluding those without vitamin D levels, survival data, 
or covariates, and those who could not be diagnosed with COPD. The 
sample is representative of 11,221,247 individuals in the United States, 
with the screening process detailed in Figure 1.

Mortality status

Since late 2019, NHANES participants have been linked to the 
National Death Index (NDI) database, which contains nine cause-
specific death categories. This link facilitates the identification of 
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mortality patterns and primary causes of death. Detailed information 
on mortality files and cause-specific definitions can be found at the 
CDC Data Link – Mortality Public Information.

25-Hydroxyvitamin D measurements

The serum concentration of 25-hydroxyvitamin D (25(OH)D) 
serves as the biomarker for assessing vitamin D status. Serum 25(OH)
D level classifications follow guidelines from the Endocrine Society 
Clinical Practice (22). The classifications are as follows: Q1 
(<50.0 nmol/L) for deficiency; Q2 (50.0–74.9 nmol/L) for insufficiency; 
and Q3 (≥75.0 nmol/L) for adequacy.

Covariates

Demographic data collected included age (40–49, 50–59, 60–69, 
70–79), gender (male/female), race/ethnicity (non-Hispanic black, 
non-Hispanic white, Mexican American, other), education level (less 
than high school, high school equivalent, higher), marital status 

(married/partner, widowed/divorced/separated, single), and smoking 
status (never, former, current). “Never smoked” refers to individuals 
with less than 100 cigarettes in their lifetime, “Former smokers” to 
those who quit smoking after the same threshold, and “Current 
smokers” to those still smoking after 100 cigarettes.

Hypertension was identified if participants reported a diagnosis 
on multiple visits, received prescription recommendations, or had 
mean systolic ≥140 mm Hg or diastolic ≥90 mm Hg across three 
measurements. Diabetes mellitus (DM) was confirmed by positive 
responses to insulin use, physician-diagnosed diabetes, or blood 
sugar control medication. A CVD history was determined by positive 
responses to doctor-diagnosed myocardial infarction, angina, 
coronary heart disease, or stroke. The MetS group included 
individuals meeting at least three criteria: (1) triglycerides >150 mg/
dL; (2) waist circumference ≥ 102 cm for men or ≥ 88 cm for women; 
(3) HDL levels ≥40 mg/dL for men or ≥ 50 mg/dL for women; (4) 
blood pressure ≥ 130/≥85 mm Hg; and (5) fasting blood glucose 
≥110 mg/dL. Depressive status was assessed using participants’ 
PHQ-9 questionnaire responses. The PHQ-9 is a 9-item self-report 
depression scale assessing symptom frequency over the past 2 weeks. 
Items are scored from 0 (none) to 3 (almost daily). PHQ-9 scores 

FIGURE 1

Cohort flow diagram in NHANES 2005–2018.
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range from 0 to 27, categorized into two groups: “not depressed” for 
scores <5 and “depressed” for scores of 5 or higher. The DII was 
calculated based on the 24 h dietary recall data from day one. DII 
calculation incorporated 26 dietary parameters, including 
carbohydrates, protein, total fat, saturated fat, PUFA, n-3 fatty acids, 
cholesterol, energy, alcohol, fiber, folate, iron, magnesium, zinc, 
selenium, MUFA, caffeine, niacin, riboflavin, thiamine, beta-
carotene, and vitamins A, B6, B12, C, and E. Initially, calculate the 
subjects’ average nutrient intake, subtract the global mean, and divide 
by the standard deviation to obtain Z-scores. Next, Z-scores are 
converted to percentiles, doubled, and reduced by one to recenter the 
data. Multiply the central percentile value of each parameter by its 
inflammatory effect score to calculate a “food-specific DII score.” 
Lastly, values are combined for an “overall DII score” (23–25).

Statistical analysis

To mitigate bias from oversampling, we applied sample weights 
as per NHANES guidelines. We  present normally distributed 
continuous variables with mean and standard deviation, and 
categorical variables with frequency and proportion. We  used 
ANOVA for continuous variables and Pearson’s chi-square for 
categorical variables to assess mean differences and proportions. 
Serum 25-hydroxyvitamin D concentration was treated as a 
categorical variable. The Kaplan–Meier model assessed cumulative 
all-cause mortality rates among COPD participants with varying 
serum 25-hydroxyvitamin D levels. We utilized the Cox proportional 
hazards model to examine the effect of varying 25-hydroxyvitamin D 
levels on all-cause mortality in COPD patients. Model 1 featured a 
univariate analysis of 25-hydroxyvitamin D levels; Model 2 adjusted 
for age, gender, race/ethnicity, marriage, education, and smoking 
status. Model 3 additionally adjusted for hypertension, diabetes, 
cardiovascular disease, metabolic syndrome, and depression, based 
on Model 2. We  investigated a potential non-linear relationship 
between 25-hydroxyvitamin D and all-cause mortality in COPD 
patients using a restricted cubic spline (RCS) to assess continuous 
25-hydroxyvitamin D levels, with knots at the 5th, 50th, and 95th 
percentiles. If non-linear, we performed segmented linear regression 
for further analysis. We conducted a mediation analysis to assess the 
potential mediating role of vitamin D between DII and mortality. 
Lastly, subgroup and sensitivity analyses were performed to confirm 
the results’ robustness. All regressions have undergone goodness of 
fit testing. All analyses were performed using R (version 4.2.0).

Results

Characteristics of participants

Participant demographics and characteristics are presented in 
Table 1. Participants were predominantly aged 60 or older (50.75%) 
and women (60.50%). Additionally, 78.51% identified as non-Hispanic 
white. Those with higher 25-hydroxyvitamin D levels were more likely 
to be  older, non-Hispanic white, married or cohabitating, highly 
educated, and non-smokers. They also exhibited lower prevalence of 
CVD, depression, and metabolic syndrome, with no significant 
differences in diabetes and hypertension rates.

Serum 25(OH)D concentrations and 
mortality

Over the follow-up period, 395 participants died, with a median 
duration of 70 months. The Kaplan–Meier curve revealed significantly 
elevated all-cause mortality rates among COPD patients with lower 
vitamin D levels (p = 0.003) (Figure 2A). The Cox proportional hazards 
model confirmed increased mortality rates for serum 25(OH)D 
deficiency categories across all models. In the fully adjusted Model 3, the 
stratified HRs and 95% CIs for serum 25(OH)D categories were as 
follows: Q1 (<50.0 nmol/L) as reference, Q2 (50.0–74.9 nmol/L) at 0.63 
(0.47–0.83), and Q3 (≥75.0 nmol/L) at 0.52 (0.37–0.72), with a 
significant decreasing trend (p-trend <0.001) (Table 2). The RCS analysis 
demonstrated a non-linear association between serum 25(OH)D levels 
and all-cause mortality in COPD patients (p-nonlinearity = 0.023) 
(Figure  2B). Additional analyses, including threshold effects and 
segmented linear regression, were conducted to explore the relationship 
between serum 25(OH)D levels and all-cause mortality in COPD 
patients. The findings identified a threshold at 65.3 nmol/L. Above 
65.3 nmol/L, serum 25(OH)D levels did not significantly correlate with 
mortality. Conversely, below 65.3 nmol/L, a negative correlation with 
mortality was observed across all models (Table 3).

Causal mediation analysis

In order to discover the potential mediating effect of serum 
vitamin D on inflammatory diet and mortality in COPD patients, and 
to provide value for improving prognosis, we conducted a mediation 
analysis. Firstly, the Cox proportional hazards model shows a positive 
correlation between DII and all-cause mortality in the COPD 
population (Supplementary Table S1). Secondly, correlation analysis 
shows a negative correlation between DII and serum vitamin D levels 
(Supplementary Table S2). Finally, the mediation analysis results 
showed a mediation effect of 22% (95% CI, 0.07–0.74) (Table  4), 
confirming our hypothesis.

Subgroup and sensitivity analysis

We performed subgroup analyses to assess the influence of 
demographic factors and comorbidities on the association between 
serum 25(OH)D concentration and all-cause mortality in patients with 
COPD. The findings indicated no significant interactions in stratified 
analyses by sex, marriage, education, smoking status, diabetes, 
hypertension, cardiovascular disease, metabolic syndrome, and 
depression (p > 0.05). However, significant interactions were observed 
between serum 25(OH)D concentration and both age and race/
ethnicity (Figure 3). Sensitivity analysis, excluding participants with 
less than 2 years of follow-up and considering 25(OH)D as a continuous 
variable, produced consistent results (Supplementary Tables S3, S4), 
confirming the robustness of our findings.

Discussion

Our study utilized the NHANES mortality cohort data from 2005 
to 2018 to assess the relationship between serum 25(OH)D 
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TABLE 1 Baseline characteristics of participants with COPD according to serum 25(OH)D concentrations.

Characteristics Serum 25(OH)D Concentrations (nmol/L)

Total <50 (n =  592) 50–74.9 (n =  615) >  =  75.0 (n =  669) p-value

Age, years 0.004

  40–49 336 (20.83) 127 (25.23) 91 (17.30) 118 (21.99)

  50–59 472 (28.42) 153 (31.04) 155 (24.42) 164 (31.54)

  60–69 618 (31.60) 186 (25.79) 232 (35.41) 200 (31.16)

  70–79 450 (19.15) 126 (17.94) 191 (22.88) 133 (15.31)

Gender, % 0.09

  Female 1,070 (60.50) 344 (62.73) 394 (62.66) 332 (56.04)

  Male 806 (39.50) 248 (37.27) 275 (37.34) 283 (43.96)

Race/ethnicity, % <0.0001

  White 1,088 (78.51) 254 (66.30) 471 (86.11) 363 (78.12)

  Black 378 (8.82) 204 (19.27) 80 (4.27) 94 (6.66)

  Mexican American 126 (2.51) 49 (3.71) 37 (1.98) 40 (2.29)

  Others 284 (10.16) 85 (10.73) 81 (7.65) 118 (12.93)

Marriage, % <0.0001

  Married/Living with partner 959 (58.94) 265 (48.48) 375 (67.27) 319 (56.25)

  Widowed/divorced/separated 740 (33.64) 258 (40.33) 240 (27.30) 242 (36.66)

  Never married 177 (7.42) 69 (11.18) 54 (5.43) 54 (7.09)

Education, %

  <High school 524 (19.22) 199 (25.67) 140 (13.14) 185 (22.07) <0.0001

  High school 492 (28.86) 156 (30.84) 192 (29.40) 144 (26.66)

  >High school 860 (51.92) 237 (43.49) 337 (57.46) 286 (51.26)

Smoking status, % 0.002

  Never 496 (27.37) 153 (26.71) 179 (29.43) 164 (25.23)

  Former 687 (35.97) 183 (27.67) 287 (41.22) 217 (35.60)

  Now 693 (36.66) 256 (45.61) 203 (29.35) 234 (39.17)

DM, % 0.98

  Yes 569 (25.54) 189 (25.83) 213 (25.68) 167 (25.13)

  No 1,307 (74.46) 403 (74.17) 456 (74.32) 448 (74.87)

Hypertension, % 0.15

  Yes 1,230 (59.94) 397 (65.37) 446 (57.79) 387 (58.53)

  No 646 (40.06) 195 (34.63) 223 (42.21) 228 (41.47)

Cardiovascular disease, % 0.002

  Yes 611 (28.58) 211 (36.92) 203 (23.65) 197 (28.51)

  No 1,265 (71.42) 381 (63.08) 466 (76.35) 418 (71.49)

Depression, % 0.001

  Yes 863 (41.31) 295 (50.52) 278 (34.81) 290 (42.60)

  No 1,013 (58.69) 297 (49.48) 391 (65.19) 325 (57.40)

Metabolic syndrome, % 0.01

  Yes 1,018 (51.59) 338 (59.32) 363 (48.29) 317 (49.92)

  No 858 (48.41) 254 (40.68) 306 (51.71) 298 (50.08)

Serum 25(OH)D 

Concentrations, nmol/L

71.49 (1.44) 35.28 (0.52) 62.95 (0.33) 99.79 (1.60) <0.0001

Dietary Inflammatory Index 1.84 (0.07) 2.27 (0.10) 1.52 (0.09) 1.92 (0.11) <0.0001

Bold values (when p is less then 0.05) means it is statistically significant.
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concentrations and all-cause mortality among US COPD patients 
aged 40 to 79. First, our findings indicate that 64.34% of COPD 
patients have serum 25(OH)D deficiency, underscoring a widespread 
prevalence of insufficient vitamin D levels consistent with previous 
research (26–28). Second, an L-shaped correlation between serum 
25(OH)D levels and all-cause mortality was observed in COPD 
patients, suggesting that, within a specific range, reduced levels 
significantly associate with increased all-cause mortality. The observed 
association remains significant, independent of conventional lifestyle 
factors and prevalent comorbidities such as diabetes, hypertension, 

cardiovascular disease, and metabolic syndrome, with subgroup 
analysis corroborating this conclusion. These results may lead to 
clinical and dietary guidelines appears.

In individuals with COPD, two key factors contributing to 
breathing difficulties and restricted airflow are inflammation within 
the bronchial tube linings (obstructive bronchiolitis) and the 
destruction of alveolar sacs (emphysema) (29). Obstructive 
bronchiolitis is characterized by mucus cell hyperplasia, an increase 
in smooth muscle cells, and fibrosis in the airways (30). The 
development of emphysema is attributed to an imbalance in protease/

FIGURE 2

(A) The cumulative incidence of all-cause death in the three groups of serum 25(OH)D concentrations during the follow-up period. (B) The restricted 
cubic spline (RCS) analyses between serum 25(OH)D and all-cause mortality of participants with COPD. RCS adjusted for age, gender, race/ethnicity, 
marriage, education, smoking status, hypertension, diabetes, cardiovascular disease, metabolic syndrome, and depression.

TABLE 2 The relationship between serum 25(OH)D concentrations and all-cause mortality of COPD among participants from the NHANES (2005–
2018).

Models Serum 25(OH)D Concentrations (nmol/L), HR (95% CI)

Model 1 Model 2 Model 3

Character 95% CI p 95% CI p 95% CI p

<50 Ref Ref Ref

50–74.9 0.63 (0.45,0.89) 0.01 0.56 (0.43, 0.73) <0.0001 0.63 (0.47, 0.83) 0.001

> = 75 0.53 (0.37,0.76) <0.001 0.44 (0.32, 0.62) <0.0001 0.52 (0.37, 0.72) <0.001

p for trend <0.001 <0.0001 <0.001

Model 1: non-adjusted.
Model 2: adjusted for age, gender, race/ethnicity, marriage, education, and smoking status.
Model 3: adjusted for model 2 plus hypertension, diabetes, cardiovascular disease, metabolic syndrome, and depression.
Bold values (when p is less then 0.05) means it is statistically significant.

TABLE 3 Threshold effect analysis of serum 25(OH)D concentrations on all-cause mortality in COPD patients.

Adjusted HR (95% CI), p-value

Fitting by the standard linear model 0.99 (0.98, 1.00) < 0.001

Fitting by the two-piecewise linear model

Inflection point 65.30 nmol/L

25(OH)D concentrations <65.30 nmol/L 0.98 (0.97, 0.99) 0.005

25(OH)D concentrations > = 65.30 nmol/L 0.99 (0.98, 1.00) 0.21

Adjusted for age, gender, race/ethnicity, marriage, education, smoking status, hypertension, diabetes, cardiovascular disease, metabolic syndrome, and depression.
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antiprotease enzyme activity (31). Prolonged chronic inflammation 
can lead to the generation of endogenous reactive oxygen species 
(ROS), resulting in an imbalance in oxidants/antioxidants (32). 
Furthermore, ROS can activate various pro-inflammatory pathways, 
such as nuclear factor kB (NF k β) and the MAPK pathway, thereby 
triggering inflammation (33). Studies have indicated a decrease in 
Nrf2 gene expression in COPD patients, which may contribute to 
oxidative stress in lung tissue (34). Insufficient levels of vitamin D have 
been associated with the progression of various pathological processes 
in COPD. These processes include the regulation of inflammation, 
heightened oxidative stress, increased expression of proteases, 
compromised host defense, and remodeling of the pulmonary airway 
(10). According to a study a deficiency in vitamin D can lead to an 

increase in the production of several matrix metalloproteinases 
(MMP2, MMP9, and MMP12), resulting in an imbalance in protease/
antiprotease expression (35). Additionally, vitamin D inhibits the 
TGF-b1 signaling pathway, which is linked to fibrosis in COPD (36). 
Numerous studies have highlighted the potential antioxidant 
properties of vitamin D and its analogues, as well as their ability to 
activate Nrf2 (37). Vitamin D stimulates Nrf2 expression, thereby 
enhancing the phagocytic potential of alveolar macrophages in COPD 
patients. Chronic inflammation and oxidative stress play a crucial role 
in the development of COPD, the related function of vitamin D could 
potentially serve as an effective therapeutic target.

Several prospective cohort studies suggest an association 
between vitamin D deficiency and diminished lung function or an 

TABLE 4 Mediation effects of 25(OH)D on association of DII and all-cause mortality.

Independent 
variable

Mediator Total effect Indirect 
effect

Direct effect Proportion 
mediated, % 

(95% CI)

Coefficient 
(95% CI)

p value Coefficient 
(95% CI)

p value Coefficient 
(95% CI)

p value

DII 25(OH)D

−35.48 (−71.12, 

−6.93) 0.016

−7.55 (−14.63, 

−2.55) <0.001

−27.93 (−63.61, 

−1.23) 0.028 0.22 (0.07, 0.74)

Mediation analysis was adjusted for age, gender, race/ethnicity, marriage, education, smoking status, hypertension, diabetes, cardiovascular disease, metabolic syndrome, and depression.

FIGURE 3

Subgroup analyses of the associations between serum 25(OH)D concentrations and all-cause mortality among participants with COPD from the 
NHANES (2005–2018). The Cox proportional hazard model was used to estimate the HR of all-cause mortality.
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increased risk of acute exacerbation in COPD (18, 38, 39). 
Furthermore, multiple randomized controlled trials (RCTs) have 
demonstrated that vitamin D supplementation can decrease the 
incidence of moderate or severe COPD exacerbations in patients 
with lower baseline concentrations of 25(OH)D (13, 40). 
Additionally, a meta-analysis incorporating vitamin D and protein 
gene polymorphism studies has highlighted a connection between 
vitamin D status and COPD risk (41). Although vitamin D is 
recognized for its crucial role in bone health and various chronic 
diseases, the optimal serum 25(OH)D concentration remains 
contentious. Our findings parallel those of other diseases, 
specifically the link between low serum 25(OH)D concentrations 
and all-cause mortality. This relationship is typically non-linear, 
with mortality rates diminishing as 25(OH)D levels rise up to a 
threshold point, beyond which no further reduction occurs. 
Compared with other similar studies, our study has more 
standardized and high-quality data sources and a longer follow-up 
time, we  also identified a 63.40 nmol/L threshold for all-cause 
mortality in COPD patients, however, confirming whether serum 
25(OH)D concentrations at or above this level mitigate the risk of 
premature death requires further clinical trials.

Current research suggests that dietary inflammation is 
associated with the incidence of COPD, deterioration in lung 
function, and disease progression, potentially linked to the chronic 
inflammatory nature of such diets contributing to COPD’s 
progression (42). However, the relationship between diet-related 
inflammation and COPD mortality remains poorly understood, 
and it is unclear whether vitamin D deficiency in COPD patients 
is related to this phenomenon or not. Our study utilized the 
Dietary Inflammatory Index (DII) to quantify dietary 
inflammation. DII is designed based on the influence of dietary 
parameters on inflammatory biomarkers (IL-4, IL-6, IL-10, TNF-α, 
and CRP), which may stimulate the activation of CYP27B1 (43). 
CYP27B1 is an enzyme that converts 25 (OH) D into its active 
form 1,25 (OH)2 D. Elevated 1,25 (OH)2D can inhibit the 
conversion of vitamin D3 to 25 (OH)D and the liver synthesis of 
25(OH)D, consequently resulting in a reduction in serum 25(OH)
D levels (44). Findings indicated a positive correlation between DII 
and COPD mortality, a negative correlation with serum 25(OH)D 
level. Additional mediation analysis supported serum 25(OH)D’s 
mediating role between dietary inflammation and mortality. 
Different from other studies, this new discovery in COPD patients 
could potentially establish a novel pathway hypothesis, leading to 
new treatment avenues in the future.

This study has several notable strengths. Initially, the study 
included a nationally representative sample of American adults 
with COPD, which ensured the generalizability of the results 
thanks to the large sample size. Additionally, the extended 
follow-up period for tracking fatalities provides a robust 
foundation for the study’s analysis. Secondly, meticulous 
adjustments for socioeconomic status, dietary and lifestyle factors, 
comorbidities, and other potential confounders strengthen our 
conclusions. Finally, using standardized methods to ascertain 
serum 25(OH)D concentrations in the NHANES database ensures 
the reliability of our data analysis.

However, this research has its limitations. First, the 
observational nature of the study does not allow for the 
establishment of causation. Second, a single 25(OH)D 

measurement at recruitment may not accurately capture long-term 
exposure levels. Nonetheless, other studies indicate that a single 
measurement can adequately reflect vitamin D status over time 
(45), and a moderate ICC suggests that time-dependent variation 
is unlikely to significantly affect the study’s findings. Third, the 
inclusion of COPD patients was based on initial questions without 
subsequent verification from medical records. Lastly, like other 
observational studies, this research cannot rule out the possibility 
of residual or unknown confounding, or unanticipated 
confounding effects due to measurement errors and 
unmeasured variables.

In summary, considering multiple factors, this study discovered 
a significant and consistent association between lower serum 
25(OH)D levels and increased risks of death from all causes, as 
well as its mediating role in the impact of the Dietary Inflammatory 
Index on mortality among American adults with COPD. This 
finding could serve as a target for interventions aimed at decreasing 
the risk of premature death. The findings underscore the 
importance of monitoring and evaluating vitamin D levels to 
prevent mortality in adults with COPD and provide a possible 
preventive approach.
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