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Background: The development of metabolic dysfunction associated steatotic 
liver disease (MASLD) has been associated with lipid accumulation, oxidative 
stress, endoplasmic reticulum stress, and lipotoxicity. The Composite Dietary 
Antioxidant Index (CDAI) is a comprehensive score representing an individual 
intake of various dietary antioxidants, including vitamin A, vitamin C, vitamin E, 
selenium, zinc, and carotenoids. This study investigated the association between 
CDAI and MASLD.

Materials and methods: Clinical and demographic data, as well as ultrasound 
transient elastography measurements at baseline, were collected from the National 
Health and Nutrition Examination Survey 2017–2020 (NHANES 2017–2020). The 
controlled attenuation parameter was utilized to diagnose the presence of hepatic 
steatosis and to categorize individuals into those with and without MASLD. Liver 
stiffness was measured by ultrasound transient elastography, and subjects were 
classified as those with and without advanced liver fibrosis.

Results: This study included 5,884 adults, of whom 3,433 were diagnosed with 
MASLD, resulting in a weighted prevalence of 57.3%. After adjusting for covariates, 
the odds ratios for MASLD were 0.96 (95% CI: 0.82, 1.12) in the second quartile, 
0.80 (95% CI: 0.68, 0.95) in the third quartile and 0.60 (95% CI: 0.49, 0.73) in 
the fourth quartile, respectively. CDAI, however, was not significantly associated 
with advanced liver fibrosis.

Conclusion: These findings suggested that scores on the CDAI were linearly and 
negatively associated with the prevalence of MASLD in the United States adults.
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1 Introduction

In June 2023, non-alcoholic fatty liver disease (NAFLD) and metabolic associated fatty 
liver disease (MAFLD) were renamed metabolic dysfunction associated steatotic liver disease 
(MASLD) to emphasize the role of metabolic dysfunction in its development (1). MASLD has 
been estimated to affect 30% of the worldwide adult population. Metabolic dysfunction 
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associated steatohepatitis (MASH), a step within the broad spectrum 
of lesions included in MAFLD, is histologically defined by the 
presence of lobular inflammation and hepatocellular ballooning, and 
associated with an increased risk of progression to fibrosis (2). 
Recently, the Food and Drug Administration (FDA) in the 
United States approved the drug Resmetirom for the treatment of 
MASH in adult patients, the first medication approved by the FDA for 
MASH in 40 years. Lifestyle adjustments are also important in the 
treatment of MASH (3, 4).

Currently, lifestyle interventions to achieve weight loss remain the 
cornerstone of MASLD management (5–13). Oxidative stress has been 
shown to play a significant role in the development of MASLD (14). A 
case–control study in Iran, enrolling 158 NAFLD patients and 357 
healthy controls, revealed that the prevalence of NAFLD was 
significantly lower in subjects within the highest tertile than in subjects 
within the lowest tertile of dietary total antioxidant capacity (DTAC), 
after adjusting for potential confounding factors (odds ratio [OR] 0.19; 
95% confidence interval [CI] 0.9, 0.34; p for trend <0.001) (15). DTAC, 
however, can itself be  influenced by various factors, including 
seasonality, geographic location, storage conditions, and access to water 
and sunlight. Additionally, food preparation and cooking methods can 
also impact DTAC. These considerations were addressed by the 
formulation of the Composite Dietary Antioxidant Index (CDAI), a 
reliable and valid measurement of the overall antioxidant composition 
of an individual’s diet. The CDAI is a comprehensive score of multiple 
dietary antioxidants, including vitamins A, C, and E, selenium, zinc, 
and carotenoids, representing an individual’s overall dietary intake of 
antioxidants (16). A number of studies have demonstrated a negative 
association between CDAI and the prevalence of diabetes, hypertension, 
chronic kidney disease, and depression (17–20), as well as all-cause and 
cardiovascular mortality in the general United States population (21).

Although dietary antioxidants have been shown effective in the 
treatment of adverse health effects, including oxidative stress (22–26), 
the specific relationship between the CDAI and MASLD remains 
unclear. Based on the hypothesis that the CDAI is negatively associated 
with MASLD, the present study investigated the potential correlation 
between CDAI and MASLD using data from the National Health and 
Nutrition Examination Survey (NHANES) 2017–2020.

2 Methods

2.1 Study population and design

The study population consisted of subjects enrolled in the 
NHANES 2017–2020, due to the availability of liver ultrasound 
transient elastography data in this population. Using the Fibroscan to 
estimate the severity of liver steatosis and fibrosis (27), hepatic steatosis 

was defined as a controlled attenuation parameter (CAP) ≥ 248 dB/m, 
with a sensitivity of 68.8% and a specificity of 82.2% (28). Advanced 
liver fibrosis was defined as a liver stiffness measure (LSM) value 
≥8.0 kPa (29). The study ultimately enrolled 5,884 subjects from an 
initial population of 15,560. Subjects aged <20 years (n = 6,328), those 
with missing CDAI data (n = 2,592), and those with missing Fibroscan 
measurements (n = 756) were excluded. According to the latest 
consensus diagnostic criteria from the EASL-AASLD-ALEH consensus 
statement in 2023 (1), 3,433 people were diagnosed with MASLD, while 
the others were included in the health control group (n = 2,451). The 
details are presented in Figure 1. The study protocol was approved and 
documented by the Research Ethics Review Committee of the National 
Center for Health Statistics of the United States. Before participants 
were enrolled in the study, they had to provide written informed consent.

2.2 Definition of CDAI

Date were obtained from participants in the NHANES database, 
through two 24-h dietary recalls conducted at separate time points 
(30). The first recall was taken in-person at a mobile testing center, 
while the second recall was performed 3–10 days later via a telephone 
consultation. The CDAI of each participant was calculated based on 
the dietary recall of intake of six dietary antioxidants, vitamin A, 
vitamin C, vitamin E, zinc, selenium, and carotenoids (31).

2.3 Assessment of covariates

Referring to a previous study (32), the covariates included age, sex, 
race, education level, marital status, income status, physical activity, 
smoking status, alcohol consumption, and energy intake. Because other 
variables, such as blood glucose concentration, blood pressure, lipid 
profile, and body mass index were considered in the diagnosis of 
MASLD, these variables were not included in the regression model. 
Marital status was divided into married and unmarried; and education 
level into less than high school, high school, and more than high school. 
Income status was assessed by calculating the household income to 
poverty income ratio (PIR), with subjects divided into those with low 
(< 1.0), moderate (1.0–3.0), and high (≥ 3.0) PIR. Smoking status was 
categorized as never, former or current; physical activity was categorized 
as never, moderate and vigorous exercise (33); heavy drinking was 
defined as more than 14 drinks/week for men or more than 7 drinks/
week for women (34). Detailed explanations of the methods used to 
calculate these variables are available on the NHANES website.1

2.4 Statistical analysis

All analyses considered the weights of each variable in the NHANES 
database. Continuous variables were described as weighted mean 
(standard error) and categorical variables were described as weighted n 
(weighted percentage). The CDAI was converted into quartiles, the 
relationship between CDAI and MASLD/advanced liver fibrosis was 

1 https://www.cdc.gov/nchs/nhanes/

Abbreviations: CAP, Controlled attenuation parameter; CDAI, Composite Dietary 

Antioxidant Index; CI, Confidence interval; DTAC, Dietary total antioxidant capacity; 

FDA, Food and Drug Administration; FLI, Fatty liver index; LSM, Liver stiffness 

measurement; MAFLD, Metabolic associated fatty liver disease; MASH, Metabolic 

dysfunction associated steatohepatitis; MASLD, Metabolic dysfunction associated 

steatotic liver disease; NAFLD, Non-alcoholic fatty liver disease; NHANES, National 

Health and Nutrition Examination Survey; ORs, Odds ratios; PIR, Poverty income 

ratio; Q, Quartile; RCS, Restricted cubic spline.
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examined by three multivariate logistic regression models, all of which 
using the first CDAI quartile group as reference. Model 1 was a crude 
model without any adjustment for covariates; Model 2 included 
adjustments for age, sex, and race; and Model 3 included the adjustments 
in Model 2 as well as adjustments for education level, marital status, PIR, 
smoking, alcohol consumption, physical activity, and energy intake. To 
further eliminate relevant confounding factors, stratified analyses were 
performed based on factors such as age, sex, race, PIR, energy intake, 
and ethnicity. All analyses were performed using R software (version 
4.3.2, Vienna, Austria: R Foundation for Statistical Computing, 2016) 
and Stata/SE software, v.16 (StataCorp, College Station, TX, USA), with 
bilateral p values <0.05 defined as statistically significant.

3 Results

3.1 Baseline characteristics of the enrolled 
population

The study included a total of 5,884 eligible participants, out 
of which 3,433 were diagnosed with MASLD, resulting in a 
weighted prevalence of 57.3% (92,050,707/160,526,094). 

Compared to the non-MASLD participants, MASLD participants 
had higher age and energy intake as 51.5 ± 0.4 years vs. 
44.4 ± 0.5 years and 2,112 ± 20.0 kcal/day vs. 2,039 ± 23.9 kcal/day, 
respectively (p < 0.001). The proportion of male (51.4% vs. 43.8%, 
p < 0.001) and of married individuals (67.6% vs. 56.6%, p < 0.001) 
was significantly higher in MASLD. However, the MASLD group 
had a significantly lower score on CDAI than the non-MASLD 
group (0.6 ± 0.1 vs. 1.1 ± 0.1, p < 0.001). Race, educational level 
and smoking status also differed significantly in these two groups 
(all p < 0.05) (Table 1).

3.2 Association of CDAI with MASLD

Weighted multivariate logistic regression analyses were performed 
to further access the relationship between CDAI and MASLD based 
on the quartile of CDAI. Univariate logistic regression analysis showed 
that the unadjusted OR (95% CI) of MASLD was significantly lower 
in the fourth quartile (Q4) (OR 0.83; 95% CI: 0.72, 0.96, p = 0.013) 
than in the first quartile (Q1) (used as reference). After adjusting for 
potential confounding factors, the risk of MASLD in Model 3 
remained significantly lower in Q4 than in Q1 (OR 0.60; 95% CI: 0.49, 

FIGURE 1

Flowchart of participant selection. NHANES, National Health and Nutrition Examination Survey; CAP, controlled attenuation parameter; CDAI, 
composite dietary antioxidant index; MASLD, metabolic dysfunction associated steatotic liver disease.
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0.73, p < 0.001). In addition, there was a significant negative correlation 
between the CDAI index and the occurrence of MASLD for all three 
models (Table 2).

We also analyzed separately the impact of each component of 
CDAI upon MASLD risk. These analyses found that vitamin C, 
vitamin E, and carotenoids may play an important role in the negative 
correlation between CDAI and MASLD (all p for trend <0.05) 
(Figure 2). Subsequently, restricted cubic spline (RCS) analysis to 
investigate the dose–response relationship between CDAI and 
MASLD risk showed that higher levels of CDAI were associated with 
a reduced likelihood of MASLD, with a non-linear p-value of 0.873 
(Figure 3).

Sensitivity analyses were used to assess the stability of the 
relationship between CDAI and MASLD. The fatty liver index (FLI) 
has been shown relatively effective in detecting MASLD in the 
United States population (35). The use of an FLI ≥ 60 to diagnose 

MASLD (36, 37) showed a significant negative correlation between 
CDAI and MASLD in all three models (Table 3). Even after excluding 
subjects with extremely high (> 8,000 kcal/day for men, > 5,000 kcal/
day for women) and low (< 500 kcal/day for both sexes) daily energy 
consumption, a significant negative correlation between CDAI and the 
prevalence of MASLD persisted in all three models (Table 4). To rule 
out the possibility that higher CDAI may result from the intake of 
multivitamin and multimineral supplements, vitamin B6, vitamin D, 
vitamin K, calcium, phosphorus, and magnesium intake were included 
as covariates. However, CDAI and the prevalence of MASLD still 
showed a significant negative correlation in all three models (Table 5). 
Stratified analyses to explore the association between CDAI and 
MASLD by age, sex, race, PIR, and energy intake (converted to 
quartiles) showed that none of these variables significantly modified 
the relationship between CDAI and MASLD (p for interaction ≥0.05; 
Figure 4).

TABLE 1 Characteristics of the enrolled population.

Characteristics Non-MASLD (n  =  2,451) MASLD (n  =  3,433) p value

Age (years; SD) 44.4 (0.5) 51.5 (0.4) <0.001

Male, n (%) 29,992,219 (43.8%) 47,314,063 (51.4%) <0.001

Race/ethnicity, n (%) <0.001

Mexican American 3,834,621 (5.6%) 8,652,766 (9.4%)

Other Hispanic 5,067,178 (7.4%) 6,627,650 (7.2%)

Non-Hispanic White 43,824,247 (64.0%) 59,556,807 (64.7%)

Non-Hispanic Black 9,791,980 (14.3%) 8,928,918 (9.7%)

Non-Hispanic Asian 3,629,195 (5.3%) 4,234,332 (4.6%)

Other Race-Including Multi-Racial 2,328,166 (3.4%) 4,050,244 (4.4%)

Married, n (%) 38,757,069 (56.6%) 92,050,700 (67.6%) <0.001

Educational level, n (%) <0.001

less than high school or high school 21,775,173 (31.8%) 34,519,015 (37.5%)

more than high school 46,700,214 (68.2%) 57,531,692 (62.5%)

Poverty-income ratio, n (%) 0.08

low 7,189,915 (10.5%) 9,481,222 (10.3%)

moderate 25,404,368 (37.1%) 37,556,688 (40.8%)

high 35,881,104 (52.4%) 45,012,797 (48.9%)

Smoker, n (%) <0.001

Never 41,906,936 (61.2%) 51,916,598 (56.4%)

Former 14,790,683 (21.6%) 25,498,045 (27.7%)

Current 11,777,768 (17.2%) 14,636,064 (15.9%)

Physical activity, n (%) 0.80

Never 31,909,530 (46.6%) 42,159,223 (45.8%)

Moderate 17,940,551 (26.2%) 25,037,792 (27.2%)

Vigorous 18,625,306 (27.2%) 24,853,692 (27.0%)

Heavy drinker, n (%) 26,773,876 (39.1%) 33,322,355 (36.2%) 0.06

Energy intake (Kcal/day; SD) 2039 (23.9) 2,112 (20.0) <0.001

CDAI 1.1 (0.1) 0.6 (0.1) <0.001

Continuous variables are expressed as weighted mean [standard error (SD)], categorical variables as weighted n (weighted percentage). The p-values for the continuous variables were 
calculated by weighted linear regression model, while the categorical variables were calculated by weighted chi-square test.
MASLD, metabolic dysfunction associated steatotic liver disease; CADI, composite dietary antioxidant index.
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3.3 Association of CDAI with advanced liver 
fibrosis

Weighted multivariate logistic regression analysis showed that, 
without any adjustment, the prevalence of advanced liver fibrosis was 
lower in CDAI Q4 (OR 0.99; 95% CI: 0.69, 1.43, p = 0.98) than in Q1 
(as reference), but this difference was not statistically significant. After 
adjusting for confounding factors, similarly no statistically significant 

difference was found between Q4 and Q1 in Model 3 (OR 0.87; 95% 
CI: 0.54, 1.41, p = 0.56). These findings are presented in Table 6.

4 Discussion

Increases in the prevalence of obesity and metabolic diseases have 
been associated with increases in the incidence of MASLD. Lifestyle 

TABLE 2 Association of composite dietary antioxidant index and metabolic dysfunction associated steatotic liver disease.

CDAI Model 1 Model 2 Model 3

OR (95% CI), p OR (95% CI), p OR (95% CI), p

Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q2 1.12 (0.97, 1.30), 0.12 1.07 (0.92, 1.25), 0.39 0.96 (0.82, 1.12), 0.60

Q3 0.99 (0.86, 1.16), 0.97 0.95 (0.82, 1.11), 0.53 0.80 (0.68, 0.95), 0.012

Q4 0.83 (0.72, 0.96), 0.013 0.79 (0.68, 0.92), 0.003 0.60 (0.49, 0.73), <0.001

p for trend 0.004 <0.001 <0.001

Model 1: unadjusted.
Model 2: adjusted for age, gender and race.
Model 3: adjusted for Model 2 plus age, gender, race, marital status, education level, poverty income ratio, alcohol intake, smoking, physical activity, and energy intake.
Metabolic dysfunction associated steatotic liver disease was defined by controlled attenuation parameter ≥ 248 dB/m.
CDAI, composite dietary antioxidant index; Q, quartile; OR, odds ratio; CI, confidence interval.

FIGURE 2

Forest plot for analyzing the relationship between each component of composite dietary antioxidant index and metabolic dysfunction associated 
steatotic liver disease. OR, odds ratio; CI, confidence interval.
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modifications such as exercise and dietary interventions have been 
found effective in treating MASLD, but their underlying mechanisms 
remain unclear. To our knowledge, the present study is the first to 
explore the relationship between CDAI and MASLD in a large sample 
population. This study showed a significant negative linear association 
between CDAI scores and the risk of developing MASLD, even after 
adjusting for covariates.

MASLD is a complex multi-factorial disease, associated with 
various genetic, epigenetic, and environmental factors, with its 
pathogenesis being incompletely understood (38–40). The “multiple 
hit” hypothesis involving many potentially concurrent factors may 
provide a suitable explanation of MASLD. Oxidative stress, one of the 
factors contributing to these hits (39, 41), is a reflection of an 
imbalance between the generation of reactive species and the clearing 

FIGURE 3

Restricted cubic spine model of the odds ratio of metabolic dysfunction associated steatotic liver disease with composite dietary antioxidant index. All 
were adjusted for age, sex, race, marital status, education level, poverty income ratio, alcohol intake, smoking, physical activity, and energy intake. CI, 
confidence interval.

TABLE 3 Association of composite dietary antioxidant index and metabolic dysfunction associated steatotic liver disease defined by fatty liver index.

CDAI Model 1 Model 2 Model 3

OR (95% CI), p OR (95% CI), p OR (95% CI), p

Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q2 0.93 (0.81, 1.08), 0.068 0.92 (0.79, 1.06), 0.262 0.87 (0.74, 1.02), 0.084

Q3 1.01 (0.88, 1.17), 0.850 1.01 (0.87, 1.16), 0.980 0.98 (0.83, 1.16), 0.830

Q4 0.79 (0.68, 0.91), 0.001 0.78 (0.68, 0.91), 0.001 0.73 (0.59, 0.88), 0.001

p for trend 0.007 0.006 0.002

Model 1: unadjusted.
Model 2: adjusted for age, gender and race.
Model 3: adjusted for Model 2 plus age, gender, race, marital status, education level, poverty income ratio, alcohol intake, smoking, physical activity, and energy intake.
Metabolic dysfunction associated steatotic liver disease was defined by fatty liver index ≥ 60.
CDAI, composite dietary antioxidant index; Q, quartile; OR, odds ratio; CI, confidence interval.
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capacity of the antioxidant system, favoring the former (42). At high 
concentrations, reactive species can induce oxidative modifications in 
cellular macromolecules (DNA, lipids, proteins, etc.), leading to the 
accumulation of damaged macromolecules and triggering liver injury 
(43, 44). Oxidative stress assessment involves (1) direct measurement 
of reactive species levels, (2) measurement of oxidative damage to 
biomolecules, and/or (3) assessment of antioxidant status. Many 
antioxidant biomarkers have been applied to evaluate the redox status 
of MASLD (44).

Pro-inflammatory diets can amplify the inflammatory 
responses within the body by increasing oxidative stress and 
immune dysregulation. Unhealthy dietary habits are often 
associated with higher levels of inflammatory cytokines, which can 
promote the development of atherosclerosis (45). The CDAI, which 
measures the dietary intake of antioxidants such as vitamins A, C, 
and E, selenium, zinc, and carotenoids, has been used to measure 
dietary antioxidant intake, population norms, and the overall 
impact of antioxidants on health outcomes (16, 46). Although 
individual antioxidants may play a role in the pathogenesis of 
MASLD, biological interactions among dietary antioxidants should 
also be considered (47–50). In our study, CDAI was measured to 
estimate combined exposure to six dietary antioxidants, resulting 
in a potential dose–response association between combined 
antioxidant intake and MASLD risk. That is, increased CDAI was 
associated with a lower risk of MASLD.

Several previous studies have assessed the relationship between 
intake of a specific vitamin with MASLD (51–54). These studies found 
that vitamin C, vitamin E, and carotenoids were negatively associated 
with the risk of MASLD, while vitamin A was positively associated with 
the risk of MASLD (51–54). In our study, a negative correlation between 
vitamin C, vitamin E, and carotenoids and the risk of developing 
MASLD was also found. Nevertheless, the results of our study did not 
indicate a significant correlation between vitamin A and MASLD 
(although a strong tendency was found p = 0.051). Furthermore, the 
present study found that the CDAI, a widely validated comprehensive 
antioxidant index, correlated negatively with the risk of 
developing MASLD.

To our knowledge, our study was the first to assess the 
relationship between CDAI and MASLD in a large national sample, 
finding a significant negative correlation between the two. Although 
the present study did not directly investigate the underlying 
mechanisms, several possibilities should be considered. Oxidative 
stress is a key factor in the pathogenesis of MASLD (9, 10, 39, 55). 
Antioxidant intake can reduce the overall level of oxidative stress 
(56–58). Using the CDAI index as a comprehensive assessment of 
dietary antioxidants may be a tool able to more comprehensively 
assess the relationship between the redox state and the pathogenesis 
of MASLD.

The present study had several limitations. Its cross-sectional 
design and lack of information on time of diagnosis prevented 

TABLE 4 Association of composite dietary antioxidant index and metabolic dysfunction associated steatotic liver disease excluding individuals with 
extreme energy intake.

CDAI Model 1 Model 2 Model 3

OR (95% CI), p OR (95% CI), p OR (95% CI), p

Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q2 1.13 (0.97, 1.31), 0.11 1.08 (0.92, 1.25), 0.36 0.96 (0.81, 1.12), 0.57

Q3 0.99 (0.86, 1.16), 0.99 0.96 (0.82, 1.15), 0.57 0.79 (0.67, 0.94), 0.008

Q4 0.84 (0.72, 0.97), 0.017 0.79 (0.68, 0.93), 0.004 0.59 (0.48, 0.72), <0.001

p for trend 0.001 <0.001 <0.001

Model 1: unadjusted.
Model 2: adjusted for age, gender and race.
Model 3: adjusted for Model 2 plus age, gender, race, marital status, education level, poverty income ratio, alcohol intake, smoking, physical activity, and energy intake.
Metabolic dysfunction associated steatotic liver disease was defined by controlled attenuation parameter ≥ 248 dB/m.
CDAI, composite dietary antioxidant index; Q, quartile; OR, odds ratio; CI, confidence interval.

TABLE 5 Association of composite dietary antioxidant index and metabolic dysfunction associated steatotic liver disease after multivitamin and 
multimineral adjustment.

CDAI Model 1 Model 2 Model 3

OR (95% CI), p OR (95% CI), p OR (95% CI), p

Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q2 1.12 (0.97, 1.30), 0.12 1.07 (0.92, 1.25), 0.39 0.99 (0.84, 1.17), 0.923

Q3 0.99 (0.86, 1.16), 0.97 0.95 (0.82, 1.11), 0.53 0.85 (0.71, 1.02), 0.080

Q4 0.83 (0.72, 0.96), 0.013 0.79 (0.68, 0.92), 0.003 0.69 (0.55, 0.88), 0.002

p for trend 0.004 <0.001 <0.001

Model 1: unadjusted.
Model 2: adjusted for age, gender and race.
Model 3: adjusted for Model 2 plus age, gender, race, marital status, education level, poverty income ratio, alcohol intake, smoking, physical activity, energy intake, vitamin B6, vitamin D, 
vitamin K, calcium, phosphorus and magnesium.
Metabolic dysfunction associated steatotic liver disease was defined by controlled attenuation parameter ≥ 248 dB/m.
CDAI, composite dietary antioxidant index; Q, quartile; OR, odds ratio; CI, confidence interval.
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the determination of a causal relationship between CDAI 
and MASLD. Secondly, although the models controlled for 
covariates, all relevant covariates may not have been considered. 
Thirdly, due to the nature of the NHANES database, information 
on dietary intake was self-reported, which may have introduced 
recall bias. Large-scale prospective studies are therefore needed 
to better understand the relationship between the CDAI 
and MASLD.

5 Conclusion

This study demonstrated a significant negative association 
between CDAI scores and MASLD in United States adults. Moreover, 
these results suggested that diet rich in antioxidants may reduce the 
risk of MASLD, but additional studies in clinical cohorts are needed 
to confirm these findings.
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FIGURE 4

Forest plot of stratified analyses of the relationship between composite dietary antioxidant index and metabolic dysfunction associated steatotic liver 
disease. Analyses were adjusted for covariates age, gender, race, marital status, education level, poverty income ratio, alcohol intake, smoking, physical 
activity, and energy intake, when they were not the strata variables. OR, odds ratio; CI, confidence interval.

TABLE 6 Association of composite dietary antioxidant index and advanced liver fibrosis.

CDAI Model 1 Model 2 Model 3

OR (95% CI), p OR (95% CI), p OR (95% CI), p

Q1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

Q2 1.04 (0.72, 1.49), 0.84 0.99 (0.68, 1.43), 0.96 0.97 (0.66, 1.42), 0.86

Q3 0.81 (0.56, 1.18), 0.27 0.77 (0.53, 1.11), 0.16 0.73 (0.48, 1.13), 0.16

Q4 0.99 (0.69, 1.43), 0.98 0.96 (0.67, 1.39), 0.84 0.87 (0.54, 1.41), 0.56

p for trend 0.11 0.24 0.07

Model 1: unadjusted.
Model 2: adjusted for age, gender and race.
Model 3: adjusted for Model 2 plus age, gender, race, marital status, education level, poverty income ratio, alcohol intake, smoking, physical activity, and energy intake.
CDAI, composite dietary antioxidant index; Q, quartile; OR, odds ratio; CI, confidence interval.
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