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Childhood obesity presents a serious health concern associated with gut 
microbiota alterations. Dietary interventions targeting the gut microbiota have 
emerged as promising strategies for managing obesity in children. This study 
aimed to elucidate the impact of stachyose (STS) supplementation on the gut 
microbiota composition and metabolic processes in obese children. Fecal 
samples were collected from 40 obese children (20 boys and 20 girls) aged 
between 6 and 15 and in vitro fermentation was conducted with or without 
the addition of STS, respectively, followed by 16S rRNA amplicon sequencing 
and analysis of short-chain fatty acids (SCFAs) and gases. Notably, our results 
revealed that STS supplementation led to significant alterations in gut microbiota 
composition, including an increase in the abundance of beneficial bacteria such 
as Bifidobacterium and Faecalibacterium, and a decrease in harmful bacteria 
including Escherichia-Shigella, Parabacteroides, Eggerthella, and Flavonifractor. 
Moreover, STS supplementation resulted in changes in SCFAs production, 
with significant increases in acetate levels and reductions in propionate and 
propionate, while simultaneously reducing the generation of gases such as 
H2S, H2, and NH3. The Area Under the Curve (AUC)-Random Forest algorithm 
and PICRUSt 2 were employed to identify valuable biomarkers and predict 
associations between the gut microbiota, metabolites, and metabolic pathways. 
The results not only contribute to the elucidation of STS’s modulatory effects on 
gut microbiota but also underscore its potential in shaping metabolic activities 
within the gastrointestinal environment. Furthermore, our study underscores 
the significance of personalized nutrition interventions, particularly utilizing STS 
supplementation, in the management of childhood obesity through targeted 
modulation of gut microbial ecology and metabolic function.
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1 Introduction

Childhood obesity and overweight present significant health 
challenges in the pediatric population, which can extend into 
adulthood and increase the risk of obesity (1). Adverse health effects, 
such as metabolic and cardiovascular diseases, musculoskeletal 
problems, and psychosocial issues, can manifest early in childhood 
(2–4). Therefore, it is urgent to develop effective mitigation strategies.

Understanding the various factors that contribute to obesity, such 
as dietary patterns, genetic predispositions, sleep, mental well-being, 
and exercise habits, is crucial. Unhealthy dietary patterns, particularly 
those high in fat and fructose, significantly contribute to obesity (5–7). 
Research shows a decline in dietary quality from childhood to 
adolescence, characterized by reduced intake of fruits, vegetables, and 
dairy, and increased protein consumption. Low intake of dietary fiber 
from vegetables, fruits, and cereals notably contributes to childhood 
obesity (8), highlighting the need for further research into the safety and 
effectiveness of dietary fiber in children. The dietary choices of school-
aged children and adolescents are influenced by immediate needs and 
are vulnerable to unhealthy food marketing. The pervasive marketing 
of ultra-processed foods shapes taste preferences, impacts current and 
future consumption, shapes brand preferences, and influences family 
purchasing decisions. This poses a significant risk for childhood obesity 
(9). During the formative years, interpersonal and social-environmental 
characteristics have a significant impact on dietary patterns (10, 11). 
Therefore, it is crucial to proactively address risk factors associated with 
childhood obesity during these critical stages.

The gut microbiota plays a crucial role in regulating body weight 
and maintaining internal environmental homeostasis (12, 13). Recent 
advancements in high-throughput sequencing have linked gut 
microbiota imbalance with the progression of overweight/obesity in 
children (14). There is a clear connection between the composition of 
gut microbiota and obesity, with differences observed between obese 
and lean individuals (15, 16). Stachyose (STS) is a water-soluble 
dietary fiber and functional oligosaccharide that has potential as a 
prebiotic for colonic fermentation. Previous research has shown that 
STS selectively fosters the growth of beneficial bacteria while 
inhibiting pathogenic bacteria (17–21). However, the impact of STS 
on gut microbiota-associated obesity in children is still limited.

The objective of this study was to investigate the modulation 
patterns of STS in the gut microbiota composition of obese children 
through in vitro fermentation. The study examined microbiota 
modulation and differences in the production of short-chain fatty 
acids (SCFAs) and gas. The findings provide substantial evidence of 
metabolic variations in STS within the gut microbiota of obese 
children. Further research building upon these findings will contribute 
to establishing STS as a dietary fiber in addressing childhood obesity.

2 Materials and methods

2.1 Reagents

Yeast extract, bile salt, L-cysteine, and heme were procured from 
Sigma-Aldrich (United States). Essential chemicals, including 
phosphate-buffered saline (PBS), NaCl, KH2PO4, K2HPO4, MgSO4, 
CaCl2, crotonic acid, and metaphosphoric acid, were sourced from 
Sangon Biotech (Shanghai) Co., Ltd., China. The YCFA medium was 

acquired from Ding guo chang sheng Biotechnology (Beijing) Co., 
Ltd., China.

2.2 Collection of fresh fecal samples from 
volunteers

The body mass index (BMI) is a fundamental metric for assessing 
an individual’s nutritional status. It is calculated by dividing their 
weight in kilograms by the square of their height in meters. 
BMI-for-age Z scores were calculated according to the criteria outlined 
by the World Health Organization and subsequently categorized based 
on Chinese norms (22). The study recruited 40 obese children (20 boys 
and 20 girls) aged 6 to 15 years based on their BMI-for-age Z scores. 
Exclusion criteria were implemented to ensure that none of the 
volunteers had a history of digestive diseases or recent treatment with 
antibiotics, probiotics, or prebiotics. Dietary recall interviews were 
conducted with these volunteers, which involved asking them to recall 
and describe all the foods and beverages they consumed over within 
the past 24 h. Multiple recalls were conducted to capture variations in 
dietary intake across different days of the week (23). The volunteers 
demonstrated a preference for highly processed and sugary foods, as 
outlined by the Chinese Dietary Guidelines 2016. All volunteers 
resided in Hangzhou, Zhejiang Province, and ethical clearance was 
obtained from the Ethical Committee of Hangzhou Centers for Disease 
Control and Prevention (No. 202047). Stool samples were promptly 
collected, stored at 4°C, and analyzed within a 4-h timeframe.

2.3 Treatment of fresh fecal samples

Fresh fecal samples, weighing 0.2 g each were carefully divided 
into three 1.5 mL sterile centrifuge tubes, immediately sealed, and 
stored at −80°C. At the same time, 0.8 g aliquots of fresh fecal samples 
were individually weighed and transferred to 10 mL sterile centrifuge 
tubes. Each tube was then filled with 8 mL of sterile phosphate-
buffered saline (PBS) to ensure proper sealing. Thorough 
homogenization of the feces-PBS buffer mixture was achieved using a 
shaker, followed by careful collection of the resulting supernatant after 
filtration for subsequent inoculation.

2.4 Simulated fermentation in vitro of gut 
microbiota

The gut microbiota, extracted according to the methodology 
described by Liu et al., was inoculated into a simulated fermentation 
system as described in reference (24). The basic composition of the 
YCFA medium (per 100 mL) included 4.5 g/L yeast extract, 0.4 g/L bile 
salt, 3.0 g/L peptone, 3.0 g/L tryptone, 0.8 g/L cysteine hydrochloride, 
2.5 g/L KCl, 4.5 g/L NaCl, 0.2 g/L CaCl2, 0.45 g/L MgCl2, 0.4 g/L 
KH2PO4, 1.0 mL Tween 80, 1.0 mL resazurin, and 2.0 mL trace element 
solution. To create an anaerobic environment, nitrogen was introduced 
after the medium was dissolved and boiled. Using a peristaltic pump 
(Longer Co., Ltd., China), 4.5 mL of YCFA medium was precisely 
injected into vials, sealed, and subjected to high-pressure steam for 
sterilization. In the H_Ctrl group, the gut microbiota was inoculated 
into the YCFA medium, which was designated as the control group. 
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In the H_STS group, the gut microbiota was inoculated into the YCFA 
medium with the addition of STS at a ratio of 0.8 g per 100 mL, 
referred to as the treatment group.

2.5 Genomic DNA extraction and 16S rRNA 
gene sequencing

After simulated in vitro fermentation, distinct populations of the gut 
microbiota were analyzed using 16S rRNA sequencing techniques. 
Genomic DNA from the microbial community was extracted using the 
FastDNA® Spin Kit for Soil (MP Biomedicals, United States) according 
to the manufacturer’s instructions. The V3-V4 hypervariable regions of 
the bacterial 16S rRNA gene were amplified using the primer pair 341F 
(5′-CCTAYGGGRBGCASCAG-3′) and 806R (5′-GGACTACHVGGG 
TWTCTAAT-3′) in a thermocycler polymerase chain reaction (PCR) 
system (GeneAmp 9,700, ABI, San Diego, CA, United States). PCR 
conditions included 3 min of pre-denaturation, followed by 27 cycles at 
95°C for 30 s each, annealing at 55°C for 30 s, extension at 72°C for 45 s, 
and a final extension at 72°C for 10 min. Purified amplicons were pooled 
in equimolar amounts, and paired-end sequencing was performed on 
the NovaSeq PE250 platform (Illumina, San Diego, United States) based 
on the standard protocol of Majorbio Bio-Pharm Technology Co. Ltd. 
(Shanghai, China).

Upon completion of quality control processing, raw sequences were 
denoised using the DADA2 plugin in QIIME2 (version 2020.2) and 
processed to generate amplicon sequence variations (ASVs). Taxonomic 
assignments for ASVs were made using the SILVA 16S rRNA database 
(v138) and the Naive Bayes taxonomy classifier within QIIME2. All 
sequencing data from the raw fecal and fermentation samples have been 
deposited in the National Center for Biotechnology Information Short 
Read Archive under accession number PRJNA1040434. α-diversity 
evaluated at a given depth included the Ace, Chao, and Shannon indices, 
while β-diversity was calculated based on the Bray-Curtis distance of the 
ASV table using the q2-diversity plugin in QIIME2.

2.6 Measurement of SCFAs in simulated 
fermentation in vitro

The composition and levels of SCFAs were analyzed after 24 h of 
simulated in vitro fermentation. Six SCFAs-acetic acid (Ace), 
propionic acid (Pro), isobutyric acid (Isob), butyric acid (But), 
isovaleric acid (Isov), and pentanoic acid (Pen)-were quantified. 
Differences in total SCFA content and specific types of SCFAs were 
examined. Spearman’s rank correlation test was used to explore 
relationships between SCFAs and bacterial genera.

A crotonic acid/metaphosphoric acid solution was prepared by 
dissolving 0.6464 g crotonic acid and 2.5 g metaphosphoric acid in 
100 mL deionized water. To achieve acidification within 24 h, equal 
volumes of fermentation broth (500 mL) and crotonic acid/
metaphosphoric acid solution (100 mL) were mixed and stored at 
−40°C. After acidification, the samples were centrifuged at 13,000 rpm 
for 3 min at 4°C, and the supernatants were obtained by filtration 
through a 0.22 μm hydrophilic micron membrane (Millipore Express, 
Germany). Then, 150 μL of the filtrate was transferred to a test tube.

After loading the sample solution into the gas chromatograph 
(GC-2010 Plus, Shimadzu, Japan), the aging procedure was started. 

The column temperature was started at 80°C for 1 min, increased to 
190°C at a rate of 10°C/min, held for 0.50 min, further increased to 
240°C at 40°C/min, and held for 5 min. The flame ionization detector 
(FID) was set at 240°C, the gasification chamber was set at 240°C, 
and the carrier gas consisted of a nitrogen flow rate of 20 mL/min, a 
hydrogen flow rate of 40 mL/min, and an air flow rate of 400 mL/min. 
Data acquisition and processing were performed using LabSolutions 
software (Shimadzu, Japan).

2.7 Measurement of gas in simulated 
fermentation in vitro

Gas production from bottles with completed fermentation after 
24 h was evaluated using a fermentation gas analyzer equipped with 
five sensitive gas transducers (Empaer, China) operating at a constant 
room temperature of 25°C, according to the protocol described by Ye 
et  al. (25). After activation of the gas detector and completion of 
preheating, the record button was pressed, and the inlet and outlet 
ports were connected to the syringe bottle via a rubber tubing and a 
disposable syringe needle, respectively. Careful measures were taken 
to prevent water from entering the apparatus by ensuring that the 
needle remained clear of the liquid surface of the culture medium 
during measurements. Peak concentrations of the five gases-methane 
(CH4), hydrogen sulfide (H2S), ammonia (NH3), carbon dioxide 
(CO2), and hydrogen (H2)-were carefully recorded. After all five gas 
levels were reduced to zero, the analysis process was repeated for the 
next sample bottle.

2.8 Data analysis

Data are presented as mean ± standard error of the mean and reflect 
the aggregated results of all independent experiments, each performed 
in triplicate. Statistical analyses and graphs involving gases, short-chain 
fatty acids (SCFAs), and bacterial genera were performed using SPSS 
23.0 (IBM Corp., United States) and GraphPad Prism 8.0.1 (GraphPad 
Software, United States). Normality of data distribution was assessed 
using the Shapiro–Wilk test. In cases of normal distribution, a paired 
t-test was used; otherwise, a paired Wilcoxon rank-sum test was used 
for pre-and post-fermentation comparisons. Additionally, the Wilcoxon 
rank sum test was used to compare α-diversity between the two groups. 
β-diversity, indicating structural shifts in the microbial community at 
the genus level, was analyzed using Principal Component Analysis 
(PCA). The LEfSe analysis identified the microbial taxa that exhibited 
differential abundance, applying a threshold of an LDA score greater 
than 3.0. The Area Under the Curve (AUC)-Random Forest algorithm 
was employed for the purpose of ranking the relative importance of the 
bacteria and metabolites, and for model validation. Redundancy 
analysis (RDA) was employed to evaluate the interrelationship between 
samples and fermented metabolites (SCFAs and gases). Predictive 
functional analysis was performed using PICRUSt 2. Microbiota data 
were analyzed on the Majorbio Cloud Platform.1

1 www.majorbio.com
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3 Results

3.1 Diversity analysis

After 24 h of in vitro fermentation, the gut microbiota was 
analyzed by 16S rRNA sequencing. A Venn diagram was used to 
provide a comprehensive representation of the gut microbial profile. 
Comparison of the microbial profiles between the H_Ctrl and H_STS 
groups revealed 102 common genera (Figure 1A). Figures 1B,C show 
the α-diversity in both groups. Both the Chao (p = 0.03766) and 
Shannon (p = 0.03075) indices showed statistically significant 
differences between the two groups (p < 0.05), indicating remarkable 
diversity differences between the H_Ctrl and H_STS groups. 
Figure 1D illustrate the β-diversity of the H_Ctrl and H_STS groups. 
The PCA (p = 0.001) revealed significant differences in the bacterial 
community structure at the genus level between the H_Ctrl and H_
STS groups during in vitro fermentation (Figure 1D).

3.2 The compositions of microbiota

The bar plots in Figure 2A show the relative abundance of different 
bacterial genera in the 80 fecal samples. Complementing these results, 

the Circos analysis visually illustrates the relative abundance 
relationships between bacterial communities at the genus and group 
level, as shown in Figure 2B. Significant differences were observed in 
genera such as Bifidobacterium (6.15% vs. 55.08%), Escherichia-
Shigella (49.11% vs. 13.21%), Parabacteroides (1.06% vs. 0.24%), 
Eggerthella (0.64% vs. 0.03%), Flavonifractor (0.78% vs. 0.05%), 
Bilophila (0.52% vs. 0.06%), Phascolarctobacterium (3.51% vs. 0.51%), 
Faecalibacterium (0.49% vs. 2.56%), and Lachnoclostridium (1.00% vs. 
0.05%). To identify potential gut microbiota biomarkers, the 
AUC-Random Forest algorithm was employed and the optimal model 
was identified that maximized the AUC value of the Receiver 
Operating Characteristic (ROC) curve. In the validation cohorts of 
the H_Ctrl and H_STS groups, we selected the top 30 bacterial genera 
were shown in Figure 2C. Sensitivity and specificity analyses were 
conducted for the top 80 bacterial genera at the maximum AUC value 
from the random forest algorithm, resulting in the AUC of 0.78 (95% 
confidence interval [CI]: 0.68–0.88), as depicted in Figure 2D.

3.3 The differences of microbiota

To assess potential differences in bacterial genus enrichment 
between the H_Ctrl and H_STS groups, we performed LEfSe analysis 

FIGURE 1

Diversity of gut microbiota. (A) The Venn diagram, based on ASV levels, illustrates the number of genera in the H_Ctrl (orange) and H_STS (blue) 
groups, as well as the common genera (purple) between the two groups. α-diversity in the H_Ctrl and H_STS groups, assessed using the (B) Chao 
index (p  =  0.03766) and (C) Shannon index (p  =  0.03075), is displayed with significance indicated by asterisks (*0.01  <  p  ≤  0.05; **0.001  <  p  ≤  0.01; 
***0.0001  <  p  ≤  0.001; ****p  ≤  0.0001). (D) β-diversity at the genus level is visualized through PCA (p  =  0.001) comparing the H_Ctrl and H_STS groups.
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using Linear Discriminant Analysis (LDA) effect size. As shown in 
Figure 3A, 26 bacterial genera showed disparities between the two 
groups. Notably, the significant enrichment of 15 bacterial genera in 
the H_Ctrl group, such as Escherichia-Shigella, Parabacteroides, 

Eggerthella, Flavonifractor, Bilophila, Phascolarctobacterium, and 
Lachnoclostridium (Figures 3C–H,J). Conversely, the H_STS group 
manifested a higher abundance of 11 bacterial genera, including 
Bifidobacterium and Faecalibacterium (Figures 3B,I).

FIGURE 2

Composition of gut microbiota. (A) The community bar plot analysis at the genus level visually represents the relative abundance of gut microbiota in 
individual samples from the H_Ctrl and H_STS groups. (B) Circos analysis at the genus level offers a comprehensive view of the abundance relationship 
between samples and bacterial communities. (C) The bar plot illustrates the variable importance of gut microbiota at the genus level, constructed 
through random forest. (D) The performance of the model candidates is evaluated using ROC analysis of gut microbiota at the genus level, with AUC 
values indicating diagnostic accuracy. AUC  ≤  0.5 signifies no diagnostic value, AUC  =  0.5  ~  0.7 indicates low accuracy, AUC  =  0.7  ~  0.9 suggests a certain 
degree of accuracy, and AUC  ≥  0.9 indicates high accuracy.
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3.4 SCFAs analysis

After 24 h of in vitro fermentation, we analyzed the composition 
and content of SCFAs, including six types: Ace, Pro, Isob, But, Isov, and 
Pen. To evaluate the potential of gut microbiota and SCFAs as 
biomarkers, we performed the AUC-Random Forest algorithm, and 
selected the top 30 features (SCFAs and bacterial genera) were shown 
in Figure 4A. Sensitivity and specificity analyses for the top 100 features 
at the maximum AUC value from the random forest algorithm revealed 
the AUC of 0.84 (95% confidence interval [CI]: 0.75–0.93; Figure 4B). 
In addition, the RDA was used to explore the relationship between 
SCFAs and samples. The RDA plot shows the distribution of samples 
in the H_Ctrl and H_STS groups. Ace showed a positive association 
with samples in the H_STS group and a negative association with 
samples in the H_Ctrl group. Conversely, Isov and Pro showed a 
positive association with samples in the H_Ctrl group and a negative 
association with samples in the H_STS group (Figure 4C). Compared 

to the H_Ctrl group, the H_STS group had significantly higher levels 
of Ace (p ≤ 0.0001) and significantly lower levels of Isov 
(0.001 < p ≤ 0.01) and Pro (0.01 < p ≤ 0.05; Figures 4D–F). Furthermore, 
scatter plots and Spearman correlation coefficients were used to analyze 
the association and significance between SCFAs and bacterial genera 
(Figures 4G–L). Eggerthella showed a significant positive correlation 
(cor > 0.5, p < 0.05) with Isov. Escherichia-Shigella showed a significant 
positive correlation (cor > 0.5, p < 0.05) with Isov and Pro, but a negative 
correlation (cor < −0.5, p < 0.05) with Ace. Bifidobacterium showed a 
significant positive correlation (cor > 0.5, p < 0.05) with Ace, but a 
significant negative correlation (cor < −0.5, p < 0.05) with Isov and Pro.

3.5 Gas analysis

After 24 h of in vitro fermentation, we analyzed the composition 
and concentration of gases, including five types: CH4, H2S, NH3, CO2, 

FIGURE 3

Difference of gut microbiota. (A) Gut microbiota comparisons at the genus level between the H_Ctrl and H_STS groups are examined using LEfSe 
(LDA  >  3, p  <  0.05). (B–J) The relative percentage abundance differences of the top 9 variables, importance of gut microbiota at the genus level in 
Figure 2C, are illustrated. Significance thresholds are denoted by asterisks (*0.01  <  p  ≤  0.05; **0.001  <  p  ≤  0.01; ***0.0001  <  p  ≤  0.001; ****p  ≤  0.0001).
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and H2. To evaluate the potential of gut microbiota and gases as 
biomarkers, the AUC-Random Forest algorithm was performed. The 
top  30 features (gases and bacterial genera) are presented in 
Figure 5A. Sensitivity and specificity analyses using the ROC curve for 
the top 46 features at the maximum AUC value from the random forest 
algorithm revealed the AUC of 0.86 (95% confidence interval [CI]: 

0.77–0.94; Figure 5B). In addition, we used the RDA to explore the 
relationship between gases and samples. The RDA plot shows the 
sample distribution in the H_Ctrl and H_STS groups. All gases showed 
a negative association with samples in the H_STS group and a positive 
association with samples in the H_Ctrl group (Figure 5C). In contrast 
to the H_Ctrl group, the H_STS group showed significantly lower levels 

FIGURE 4

SCFAs levels in the H_Ctrl and H_STS groups. (A) The bar plot displays the variable importance of gut microbiota at the genus level and SCFAs 
determined through random forest. (B) The ROC analysis evaluates the performance of model candidates based on gut microbiota at the genus level 
and SCFAs, with AUC values indicating diagnostic accuracy. AUC  ≤  0.5 indicates no diagnostic value, AUC  =  0.5  ~  0.7 indicates low accuracy, 
AUC  =  0.7  ~  0.9 indicates a certain degree of accuracy, and AUC  ≥  0.9 indicates high accuracy. (C) RDA analysis of SCFAs and samples in the H_Ctrl and 
H_STS groups. (D–F) Significant differences in SCFAs levels between the H_Ctrl and H_STS groups are shown, with statistical significance thresholds 
indicated by asterisks (*0.01  <  p  ≤  0.05; **0.001  <  p ≤  0.01; ***0.0001  <  p  ≤  0.001; ****p  ≤  0.0001). Scatterplots illustrate the significant correlations 
(cor  ≥  0.5) between SCFAs and gut microbiota. The correlations are as follows: (G) cor  =  0.506, p  =  1.69e-06; (H) cor  =  −0.5315, p  =  3.93e-07; 
(I) cor  =  0.5129, p  =  1.15e-06; (J) cor  =  0.696, p  =  7.69e-13; (K) cor  =  −0.6097, p  =  1.93e-09; (L) cor  =  −0.5476, p  =  1.47e-07.
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of H2S (p ≤ 0.0001), H2 (p ≤ 0.0001), and NH3 (p ≤ 0.0001; Figures 5D–F). 
In addition, scatter plots and Spearman correlation coefficients were 
used to examine the association and significance between gases and 
bacterial genera (Figures  5G–O). Notably, Eggerthella showed a 
significant positive correlation (cor > 0.5, p < 0.05) with NH3 and H2, 
while Lachnoclostridium showed a positive association (cor > 0.5, 
p < 0.05) with NH3. Escherichia-Shigella showed a significant positive 
correlation (cor > 0.5, p < 0.05) with NH3, H2 and H2S. Conversely, 

Bifidobacterium showed a significant negative correlation (cor < −0.5, 
p < 0.05) with NH3, H2 and H2S.

3.6 Functional prediction

To predict and compare the functional capacities of the gut 
microbiota between the H_Ctrl and H_STS groups, we performed 

FIGURE 5

Content of gas in different media. (A) The bar plot depicts the variable importance of gut microbiota at the genus level and gases as determined by 
random forest. (B) The ROC analysis assesses the performance of model candidates based on gut microbiota at the genus level and gases, with AUC 
values indicating diagnostic accuracy. AUC  ≤  0.5 indicates no diagnostic value, AUC  =  0.5  ~  0.7 indicates low accuracy, AUC  =  0.7  ~  0.9 indicates a 
certain degree of accuracy, and AUC  ≥  0.9 indicates high accuracy. (C) RDA analysis of gases and samples in the H_Ctrl and H_STS groups. (D–F) 
Significant differences in gas levels between the H_Ctrl and H_STS groups are presented, with statistical significance thresholds indicated by asterisks 
(*0.01  <  p ≤  0.05; **0.001  <  p  ≤  0.01; ***0.0001  <  p  ≤  0.001; ****p  ≤  0.0001). Scatterplots illustrate the significant correlations (cor  ≥  0.5) between gases 
and gut microbiota. The correlations are as follows: (G) cor  =  0.545, p  =  1.73e-07; (H) cor  =  0.5299, p  =  4.31e-07; (I) cor  =  0.5221, p  =  6.82e-07; 
(J) cor  =  0.554, p  =  9.76e-08; (K) cor  =  0.5413, p  =  2.17e-07; (L) cor  =  0.5621, p  =  5.77e-08; (M) cor  =  −0.7368, p  =  6.66e-15; (N) cor  =  −0.6259, 
p  =  5.37e-10; (O) cor  =  −0.7229, p  =  3.69e-14.
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PICRUSt 2 analysis using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database. At level 3, we visualized the top 10 
pathways with notable differences between the H_Ctrl and H_
STS groups by bar chart analysis (Figure  6A). Among these 
pathways, five showed significantly higher enrichment in the 
H_STS group, including biosynthesis of secondary metabolites 
(p ≤ 0.0001), biosynthesis of amino acids (p ≤ 0.0001), ribosome 
(p ≤ 0.0001), quorum sensing (p ≤ 0.0001), and purine metabolism 
(p ≤ 0.0001). Concurrently, five pathways were notably more 
enriched in the H_Ctrl group, encompassing metabolic pathways 
(p ≤ 0.0001), microbial metabolism in diverse environments 
(p ≤ 0.0001), ABC transporters (p ≤ 0.0001), carbon metabolism 
(p ≤ 0.0001), and Two-component system (p ≤ 0.0001). Predicted 
pathways, including metabolic pathways, biosynthesis of 
secondary metabolites, microbial metabolism in diverse 
environments, ABC transporters, carbon metabolism, 
two-component systems, and purine metabolism, showed the 
highest positive correlation (cor > 0.5) with Escherichia-Shigella 

and the highest negative correlation (cor < −0.5) with 
Bifidobacterium in the microbial community (Figure 6B). This 
set of pathways also showed a significant negative correlation 
with Ace and a significant positive correlation with Isov, NH3, H2, 
and H2S (Figure 6C).

4 Discussion

Unhealthy dietary patterns, especially those with low dietary 
fiber intake, are widely recognized as significant contributors to gut 
microbiota imbalance in obese children. This study utilized 
simulated in vitro fermentation to characterize the gut microbiota, 
sequenced the microbial community using 16S rRNA amplicon 
analysis, and quantified SCFAs and gases produced by the 
microbiota. We investigated the effects of STS as a dietary fiber on 
the gut microbiota and its metabolites in obese children using 
these methods.

FIGURE 6

PICRUSt 2 analysis and Wilcoxon rank-sum test bar plots. (A) The top 10 metabolic pathways at Level 3, based on KEGG categories, are presented with 
statistical significance thresholds indicated by asterisks (*0.01  <  p ≤  0.05; **0.001  <  p  ≤  0.01; ***0.0001  <  p  ≤  0.001; ****p  ≤  0.0001). (B,C) Depict 
correlation analyses between metabolic pathways and the top 7 relative abundances of gut microbiota at the genus level.

https://doi.org/10.3389/fnut.2024.1411374
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Pi et al. 10.3389/fnut.2024.1411374

Frontiers in Nutrition 10 frontiersin.org

The human gastrointestinal tract hosts a vast array of 
microorganisms, which significantly influence human health (26). 
The intricate interplay between the metabolism of the gut 
microbiota and the physiological stability of the host has profound 
implications for health (27, 28). Imbalances in the composition of 
the gut microbiota can contribute to various diseases that impact 
human health, including obesity and type 2 diabetes mellitus, both 
of which are closely associated with alterations in the gut 
microbiota (29, 30). Therefore, investigating the gut microbiota is 
crucial for understanding human gut health. Previous studies have 
highlighted the prebiotic properties of STS, underscoring its 
effectiveness in modulating the equilibrium of the gut microbiota. 
This modulation leads to structural changes in microbial 
communities, resulting in an increase in beneficial probiotics such 
as Bifidobacterium and Lactobacillus, while concurrently inhibiting 
the growth of harmful bacteria like Clostridium perfringens (17). 
These collective actions confer significant advantages on the overall 
health of the host.

In this study, after 24 h of in vitro fermentation, STS 
demonstrated the capacity to influence the composition of the gut 
microbiota (Figure  2). To gain insight into the mechanisms 
underlying alterations in gut microbiota composition in childhood 
obesity, it is essential to examine the influence of dietary habits and 
microbial composition on the microbial ecosystem. In this study, 
we conducted a comprehensive analysis of the significant enrichment 
of specific bacterial genera in the control group (H_Ctrl) and the 
STS supplementation group (H_STS; Figure 3). In the H_Ctrl group, 
there was a notable enrichment in potentially pathogenic and 
opportunistic bacterial genera such as Escherichia-Shigella, 
Eggerthella, and Bilophila, which can produce harmful metabolites 
and trigger immune responses, contributing to the metabolic 
disturbances observed in childhood obesity (31–34). The presence 
of bacterial genera involved in proteolytic fermentation, such as 
Parabacteroides and Flavonifractor, suggests a diet high in protein 
and low in fiber, which further exacerbates metabolic imbalance and 
promotes an environment conducive to obesity (35, 36). Conversely, 
the higher abundance of beneficial bacterial genera such as 
Bifidobacterium and Faecalibacterium in the H_STS group is 
indicative of the positive impact of STS supplementation. 
Consequently, the inhibition of harmful bacterial genera and the 
enrichment of beneficial bacterial genera through STS 
supplementation can help to mitigate the adverse effects of obesity 
by promoting a healthier gut microbiota.

SCFAs such as Ace, Pro, But, Isob, Isov, and Pen are critical 
metabolites produced by gut microbiota during the fermentation 
of dietary fibers. SCFAs play a pivotal role in maintaining gut 
health, regulating metabolism, and influencing immune function 
(37, 38). The analysis of changes in SCFAs levels and their 
correlation with specific bacterial genera in the control (H_Ctrl) 
and STS supplementation (H_STS) groups provides insights into 
the metabolic and microbial shifts associated with STS 
supplementation in childhood obesity (Figure 3). In the H_Ctrl 
group, higher levels of Pro and Isov were observed in positive 
correlations Escherichia-Shigella. While Pro has beneficial effects, 
such as regulating glucose metabolism and appetite, high level of 
Pro in a dysbiotic gut may reflect an imbalance contributing to 
metabolic disturbances (39, 40). Isov, a product of branched-chain 
amino acid (BCAA) fermentation, is indicative of elevated protein 
fermentation activity (41). High level of Isov is often associated 

with diets high in protein and low in fiber (42). The association of 
Escherichia-Shigella with elevated levels of these SCFAs may 
contribute to increased energy extraction from the diet and altered 
fat storage, thereby potentially contributing to the development of 
childhood obesity. Conversely, the H_STS group, which exhibited 
higher level of Ace and positive correlations with beneficial 
bacteria such as Bifidobacterium. Ace is an essential energy source, 
influences lipid metabolism, and has anti-inflammatory properties 
(43). Bifidobacterium is known for its beneficial effects on gut 
health, including enhancing gut barrier function, modulating 
immune responses, and inhibiting pathogenic bacteria (44). 
Elevated level of Ace, driven by Bifidobacterium, have the potential 
to contribute to an increased energy harvest from the diet and to 
influence pathways related to facilitating glycolysis and energy 
expenditure (45). It is possible that this may have complex effects 
on obesity. The random forest analysis identified key features 
(SCFAs and bacterial genera) that differentiate between the H_
Ctrl and H_STS groups, achieving a maximum AUC of 0.84. This 
demonstrates the effectiveness of SCFA profiles and microbiota 
composition as biomarkers for distinguishing these groups. The 
RDA plots revealed distinct associations between specific SCFAs 
and the microbiota compositions of each group. Ace was positively 
associated with the H_STS group, while Isov and Pro were 
positively associated with the H_Ctrl group. These resullts 
underscore the impact of STS supplementation on promoting a 
healthier SCFA profile.

Gases produced by the gut microbiota, CH4, H2S, NH3, CO2, 
H2, serve as key indicators of microbial activity and gut health 
(46). The investigation of alterations in gas production in the 
context of childhood obesity and the assessment of the impact of 
STS supplementation, can provide valuable insights into the 
dynamics of the gut microbiota and their influence on metabolic 
health. The H_STS group exhibited significantly lower level of 
H2S, H2, and NH3 compared to the H_Ctrl group. H2S, a byproduct 
of sulfate-reducing bacteria, has been linked to the damaging of 
the gut lining, which can contribute to the development of 
inflammation and gastrointestinal disorders (47). A significant 
positive correlation was observed between Escherichia-Shigella 
and H2S, indicating that this pathogenic genus thrives in and 
contributes to a low in dieray fiber with high H2S production, 
which is harmful to gut health (48, 49). H2 is a byproduct of 
microbial fermentation of carbohydrates and fibers. Although H2 
itself is not harmful, its accumulation affects other microbial 
processes and can indicate high fermentative activity (49). Positive 
correlations with Eggerthella and Escherichia-Shigella suggest that 
these bacterial genera contribute to higher H2 production, 
reflecting a gut environment with increased fermentation 
associated with dysbiosis and metabolic imbalance (50, 51). NH3 
is produced during protein fermentation, and elevated level 
indicates increased proteolytic activity, which is often linked to 
gut dysbiosis and inflammation (52). Positive correlations with 
Eggerthella, Lachnoclostridium, and Escherichia-Shigella highlight 
these genera’s role in proteolytic fermentation, which produces 
NH3. These bacterial genera are involved in various metabolic 
activities, including protein fermentation and the production of 
metabolites that affect energy balance and fat storage. Their 
association with increased NH3 level suggests they may 
significantly impact the gut microbiome’s role in childhood 
obesity by altering the gut environment and metabolic functions 
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(53–55). These findings indicate that STS supplementation results 
in a reduction in gas production, which is indicative of a healthier 
gut microbiota composition.

Furthermore, after STS supplementation, the analysis using 
PICRUSt 2 analysis and heatmap revealed seven metabolic pathways 
with significant negative correlations with Bifidobacterium and Ace, 
while showing significant positive correlations with Escherichia-
Shiguela, H2S, and NH3 (Figure 6). These findings provide preliminary 
evidence that STS supplementation may influence the gut microbiota 
and its metabolic output in obese children. However, these findings 
are based on correlations and require further validation through 
additional studies. Future research should aim to confirm these 
associations and elucidate the causal relationships between STS 
treatment, changes in gut microbiota, and their metabolic pathways. 
This could lead to the development of novel therapeutic strategies 
targeting the gut microbiota for the management of obesity 
in children.

It is crucial to address the notable limitations in the study. 
Firstly, the use of fecal extracts of gut microbiota may not fully 
represent the entire spectrum of gut microbiota due to potential 
discrepancies in composition compared to the gastrointestinal tract. 
Secondly, relying on in vitro models, although beneficial for 
controlled experiments, lacks the complexity of human physiology 
and may not capture all dynamic interactions present in the body. 
Lastly, the microbiota analysis in the study was based on taxonomic 
profiles from 16S rRNA gene sequencing, which offers a broad 
overview but may lack detailed insights compared to more advanced 
methods like complete shotgun metagenome sequencing. These 
limitations should be considered when interpreting the results, and 
future research could explore advanced techniques and in vivo 
models to enhance understanding.

5 Conclusion

Childhood obesity represents a substantial health hazard, with 
disrupted dietary patterns playing a pivotal role in its development, 
underscoring the urgency of implementing early dietary interventions 
to mitigate associated health concerns. The results of this study lay 
the groundwork for investigating the impact of diet, specifically STS, 
on the gut microbiota and provide insights into the potential 
development of personalized nutrition programs. STS emerges not 
only as a factor shaping the composition of the gut microbial 
community, but also as a significant influencer of microbial 
metabolites. The integration of various analyses, including random 
forest, RDA, scatterplot, and PICRUSt 2, facilitates the identification 
of correlations between gut microbiota, metabolites, and pathways. 
STS has the potential to play a pivotal role in addressing childhood 
obesity by delineating traits that modulate gut microbiota metabolic 
output and thereby promote gut health. The ability of STS to regulate 
key microbial metabolites associated with childhood obesity 
positions it as a valuable therapeutic strategy in the field of 
personalized medicine. The exploration of dietary interventions, 
particularly those involving STS, may pave the way for effective 
strategies aimed at optimizing the metabolic profile of the gut 
microbiota in the context of childhood obesity.
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