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Background: In recent years, diseases caused by abnormal immune-
inflammatory responses have become increasingly severe. Dietary intervention 
involving omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has emerged as a 
potential treatment. However, research investigating the relationship between 
ω-3, ω-6 PUFAs, and ω-6 to ω-3 ratio with inflammatory biomarkers remains 
controversial.

Methods: To investigate the correlation between the intake of ω-3 and ω-6 PUFAs 
and the ratio of ω-6: ω-3 with biomarkers of inflammation, the National Health 
and Nutrition Examination Survey (NHANES) data (1999 to 2020) was utilized. 
The systemic immune-inflammation index (SII), platelet-lymphocyte ratio (PLR), 
neutrophil-lymphocyte ratio (NLR), and white blood cell (WBC) were selected 
as study subjects. Dietary data for ω-3 and ω-6 PUFAs were collected via two 
24-h dietary recall interviews. SII index and other indicators were obtained from 
the blood routine data. The multiple linear regression and restricted cubic spline 
models were utilized to evaluate the association of ω-3, ω-6 PUFAs intake, and 
ω-6: ω-3 ratio to SII and secondary measures.

Results: This study involved a total of 43,155 American adults. ω-3 and ω-6 PUFAs 
exhibited negative correlations with SII, PLR, NLR, and WBC. The correlation 
between ω-6: ω-3 ratio and SII, PLR, NLR, and WBC was not significant. 
Furthermore, the dose–response relationship showed that the relationship 
between the intake of ω-3 and ω-6 PUFAs and SII was an “L” pattern.

Conclusion: Intake of dietary ω-3 and ω-6 PUFAs reduces the levels of several 
inflammatory biomarkers in the body and exerts immunomodulatory effects.
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1 Introduction

An immune-inflammatory response refers to the systemic 
response of the immune system of the body to a particular state. This 
response is involved not only in acute inflammation caused by 
infection or injury but also in the normal homeostatic regulation of 
the body (1, 2). However, prolonged chronic systemic inflammation 
elevates the risk of various disorders, including autoimmune disease, 
cardiovascular disease (CVD), cancer, and diabetes (3–7).

Dietary polyunsaturated fatty acids (PUFAs), serving as vital 
energy sources and cell membrane components, exert a crucial impact 
on human health (8, 9). Clinical trials and experimental research have 
demonstrated that ω-3 PUFAs possess significant anti-inflammatory 
properties (10, 11). Although ω-6 PUFAs are often theoretically 
considered pro-inflammatory mediators, the findings from clinical 
research do not consistently support this conventional hypothesis. 
Arachidonic acid (AA) supplementation was found to elevate AA 
content in human plasma or cellular phospholipids in a randomized 
controlled study and crossover design study conducted in the UK and 
US, respectively. However, it did not exert a significant impact on 
pro-inflammatory cytokine production and the number of 
inflammatory cells (12–14). Conversely, some investigations have even 
proposed that ω-6 PUFAs may be linked to decreased inflammation 
(15–17). Additionally, research on the relationship between ω-6: ω-3 
ratio and inflammatory markers has yielded conflicting results. 
Numerous investigations have revealed that the proportion of ω-6: ω-3 
is positively correlated with inflammatory markers (18–20). While 
Harris (21, 22) collated and analyzed 11 case–control and two 
prospective cohort studies, it was considered that the clinical ω-6: ω-3 
ratio could not serve as a reliable indicator for predicting disease status 
or providing nutritional reference.

The concept of systemic immune-inflammation index (SII) was 
initially introduced by Hu (23) and has been applied in several disease 
areas, such as CVD, respiratory diseases, autoimmune diseases, and 
some cancers (4, 23–27). Additionally, platelet-lymphocyte ratio 
(PLR), neutrophil-lymphocyte ratio (NLR), and white blood cell 
(WBC) count are important indicators commonly used for early 
detection and prediction of inflammatory diseases in clinical practice 
and have also been widely used in clinical studies (28–30).

Clinical interventions and experimental studies on dietary ω-3 
and ω-6 PUFAs have not elucidated the relationship between the 
two and inflammatory mediators. Similarly, there is no consensus 
on the effects of the optimal ratio of ω-6 to ω:3 PUFA in humans. 
Therefore, this study investigated a dataset of ethnically diverse 
cohorts of Americans aged 20 years and older from the National 
Health and Nutrition Examination Survey (NHANES) data to 
analyze the relationship between intake of ω-3, ω-6 PUFAs and the 
ratio of ω-6 to ω:3 and systemic immune-inflammatory markers to 
provide more compelling evidence for clinical interventions 
and therapies.

2 Materials and methods

2.1 Study population

The National Health and Nutrition Examination Survey 
(NHANES), carried out by the Centers for Disease Control and 

Prevention (CDC), is a cross-sectional survey undertaken on a 
biennial basis. Its purpose is to analyze the nutritional and health 
status of children and adults in the US. This assessment is carried 
out by selecting a representative sample of the US population 
employing a complex multistage probability sampling design (31). 
NHANES contains interviews covering demographic, dietary, 
health-related, and socio-economic issues, alongside laboratory 
tests performed by highly qualified medical personnel (32). For this 
study, we included 116,876 participants who took part in the survey 
during the period 1999–2020. Our study exclusion criteria were as 
follows: (1) adults younger than 20 years of age (n = 52,563) (2) 
dietary fatty acid data were incomplete or abnormal and missing 
laboratory tests (n = 10,328) (3) any other covariates were missing 
(n = 10,830). After that, this study comprised 43,155 individuals, 
including 22,575 women and 20,580 men (age: ≥20 years) 
(Figure 1).

2.2 ω-3 and ω-6 PUFAs dietary intake

During the Mobile Examination Centre (MEC) portion of 
NHANES, ω-3 and ω-6 PUFAs dietary intake was obtained through 
two 24-h dietary recalls administered 3 to 10 days apart. The main 
diet interview was conducted in the MEC, and subsequent diet 
interview data were obtained by the Home Office via telephone. 
Comprehensive descriptions of the data processing procedures and 
diet interviews are available in the Diet Interview section of the 
NHANES website. α-linoleic acid (ALA, 18:3), docosapentaenoic 
acid (DPA, 22:5), docosahexaenoic acid (DHA, 22:6), 
eicosapentaenoic acid (EPA, 20:5), and stearidonic acid (SDA, 18:4) 
are constituents of ω-3 PUFAs. On the other hand, AA (20:4) and 
linoleic acid (LA, 18:2) are included in ω-6 PUFAs. Dietary intake of 
ω-3, ω-6 PUFAs, and ω-6: ω-3 ratios were categorized into tertiles for 
subsequent analyses.

2.3 SII and secondary test results

The primary outcome was SII calculated as platelet count × 
neutrophil count/lymphocyte count (33). NLR = Neutrophil count/
lymphocyte count. PLR = platelet count/lymphocyte count. WBC count 
was obtained directly from a blood routine. NHANES implemented 
standardized protocols for the measurement of these biomarkers, and 
all investigators obtained written informed consent from participants.

2.4 Selection of covariates

Alongside the investigation of ω-3 and ω-6 PUFAs dietary intake, 
several potential confounders were examined, including age (20–40, 
41–60, and ≥ 60 years), body mass index (BMI) (normal: <25 kg/m2; 
overweight: 25–30 kg/m2; obesity: ≥30 kg/m2), educational level 
(below high school, high school, or above), marital status (married/
cohabiting with partner or divorced/widowed/never married/
separated), poverty income ratio (PIR) (below poverty line: ≤0.99, 
above poverty line: ≥1), race (Mexican Americans, non-Hispanic 
whites, non-Hispanic blacks, other Hispanics, and other races), 
smoking status (never, before, and now), and sex (men and women).
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2.5 Statistical analyses

Due to the complex sampling design employed by NHANES, all 
experiments were adjusted for weighted variables and survey design to 
ensure that the included population was nationally representative. The 
Kolmogorov–Smirnov normality test was utilized to examine the 
normality of continuous variables, which are expressed as 
mean ± standard error. Variables that were not normally distributed 
were presented utilizing the median (interquartile range). Adjusted 
dietary intake of ω-3 and ω-6 PUFAs was categorized into three groups 
based on tertiles, with the lowest tertile serving as the reference value. 
Multivariate weighted linear regression models were utilized to 
determine the correlation between dietary ω-3, ω-6 PUFAs, and ω-6: 
ω-3 ratios and SII as well as other secondary outcomes. For each 
regression analysis, a total of three statistical models were developed. 
Model 1 remained unadjusted, while Model 2 was adjusted for age and 
sex only. Model 3 encompassed adjustments for all covariates, including 
age, BMI, education, monthly household poverty level index, marital 
status, race, sex, and smoking status. Fully adjusted models considered 
demographic, dietary, lifestyle, and metabolic factors. To further 
investigate the dose–response correlation between dietary ω-3 and ω-6 
PUFAs, as well as the ω-6: ω-3 ratios with the primary measure SII, the 

restricted cubic splines were applied. These splines included three 
nodes at the 5th, 50th, and 95th percentiles of the exposure distribution 
in multivariate-adjusted model 3. All statistical analyses were 
performed using R software for data analysis. All statistical tests were 
two-sided, and p < 0.05 was deemed to reflect statistical significance.

3 Results

3.1 Baseline attributes

Tables 1–3 present the baseline attributes of the study population, 
categorized by dietary intake of ω-3, ω-6 PUFAs, and ω-6: ω-3 ratios in 
triple-digit groups, respectively. The study comprised 43,155 
participants in total. The tertile intervals for ω-3 fatty acid intake were: 
low intake (≤ 1.167 g/day, n = 14,401), medium intake (1.167–1.928 g/
day, n = 14,364), and high intake (>1.928 g/day, n = 14,390). Tertile 
intervals for ω-6 fatty acid intake were defined as low dose intake (≤ 
10.929 g/day, n = 14,387), medium dose intake (10.929–17.63 g/day, 
n = 14,384), and high dose intake (>17.63 g/day, n = 14,384). The tertile 
interval for the ω-6: ω-3 proportion of fatty acid intake was: low (≤ 
8.19, n = 14,383), medium (8.19–10.13, n = 14,383), and high (≥10.13, 

FIGURE 1

Flowchart of the screening process for the selection of eligible participants.
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n = 14,389). Participants with higher ω-3 and ω-6 PUFAs intake tended 
to be young and medium-aged, male, married or cohabiting with a 
partner, non-Hispanic white, higher educational level, wealthier, and 
non-smoking. Regarding laboratory parameters, individuals with 
higher ω-3 and ω-6 PUFAs intake demonstrated lower levels of SII, 
PLR, and WBC.

3.2 Associations between dietary ω-3, ω-6 
PUFAs intake and ω-6: ω-3 ratio and SII, 
PLR, NLR, WBC

Table 4 shows the relationship between the dietary intake of ω-3, 
ω-6 PUFAs and ω-6: ω-3 ratio and SII. In all three models, there was 

TABLE 1 Weighted characteristics of the study population based on dietary ω-3 fatty acids intake.

Total ω-3 fatty acids intake (g) p-value

Variable <=1.167
(n  =  14,401)

1.167–1.928
(n  =  14,364)

>1.928
(n  =  14,390)

Age group (%) < 0.0001

20–40 4,713 (38.0) 5,147 (40.4) 5,328 (39.4)

41–60 4,440 (36.0) 4,760 (35.6) 5,065 (38.5)

> = 60 5,248 (26.0) 4,457 (24.0) 3,997 (22.0)

Sex (%) < 0.0001

Female 8,946 (63.6) 7,592 (53.6) 6,037 (40.9)

Male 5,455 (36.4) 6,772 (46.4) 8,353 (59.1)

Marital status (%) < 0.0001

Married/Living with partner 8,494 (60.9) 8,900 (64.3) 9,162 (66.7)

Windowed/Divorced/

Separated/Never married
5,907 (39.1) 5,464 (35.7) 5,228 (33.3)

Race (%) 0.01

Mexican American 2,723 (8.6) 2,277 (8.0) 2037 (7.5)

Non-Hispanic White 6,492 (68.4) 6,743 (69.6) 6,761 (70.4)

Non-Hispanic Black 2,899 (10.9) 2,891 (10.4) 3,086 (10.0)

Other Hispanic 1,186 (5.7) 1,177 (5.2) 1,039 (5.0)

Other race 1,101 (6.3) 1,276 (6.8) 1,467 (7.1)

Education level (%) < 0.0001

Below high school 2048 (6.8) 1,287 (4.4) 900 (3.3)

High school 5,742 (39.0) 5,346 (34.0) 4,802 (30.4)

Above high school 6,611 (54.1) 7,731 (61.7) 8,688 (66.3)

Smoking status (%) < 0.0001

never 7,842 (54.0) 7,948 (55.6) 7,764 (54.5)

former 3,528 (22.6) 3,628 (24.9) 3,920 (27.7)

current 3,031 (23.4) 2,788 (19.5) 2,706 (17.8)

Body mass index (%) 0.003

<25 4,115 (31.7) 4,046 (30.6) 4,041 (28.5)

25–30 4,810 (32.1) 4,931 (33.3) 4,824 (34.5)

>30 5,476 (36.2) 5,387 (36.1) 5,525 (37.0)

Poverty income ratio (%) < 0.0001

<=0.99 3,241 (16.8) 2,670 (12.9) 2,304 (10.8)

> = 1 11,160 (83.2) 11,694 (87.1) 12,086 (89.2)

SII 578.4 (4.3) 552.5 (4.5) 543.7 (4.4) < 0.0001

NLR 2.2 (0.0) 2.2 (0.0) 2.2 (0.0) 0.1

PLR 131.1 (0.7) 127.4 (0.7) 127.7 (0.7) < 0.0001

WBC (x109) 7.4 (0.0) 7.3 (0.0) 7.3 (0.0) 0.002

SII, systemic immune-inflammation index; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-lymphocyte ratio; WBC: white blood cell.
Bold values represent statistical significance.
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a clear negative correlation between ω-3 and ω-6 PUFAs intake and 
SII. In model 1, the effect size (β) and 95% confidence intervals (CI) 
for SII were −34.662 (−46.069, −23.256) and − 31.157 (−41.912, 
−20.402) for the high-dose intake group of ω-3 and ω-6 PUFAs, 
respectively. In model 2, there was a negative relationship between 
the high-dose intake group of ω-3 and ω-6 PUFAs and SII, with β and 
95% CI of −25.004 (−36.653, −13.354) and −18.021 (−29.131, 
−6.911), respectively. In model 3, a negative relationship was found 

between the high-dose intake group of ω-3 and ω-6 PUFAs and SII, 
with β and 95% CI of −21.309 (−33.098, −9.520) and −15.557 
(−26.681, −4.434), respectively. The p-values for trend were 
statistically significant for ω-3 and ω-6 PUFAs intake (p trend 
<0.001). However, the correlation between the proportion of ω-6: ω-3 
fatty acid intake and SII was not statistically significant. In Model 2, 
there was a positive correlation between the medium scale group of 
ω-6: ω-3 ratios and SII, with β and 95% CI of 12.163 (0.127, 24.199).

TABLE 2 Weighted characteristics of the study population based on dietary ω-6 fatty acids intake.

Total ω-6 fatty acids intake (g) p-value

Variable <=10.929
(n  =  14,387)

10.929–17.63
(n  =  14,384)

>17.63
(n  =  14,384)

Age group (%) < 0.0001

20–40 4,464 (35.8) 5,081 (39.9) 5,643 (41.7)

41–60 4,358 (35.7) 4,761 (35.8) 5,146 (38.6)

> = 60 5,565 (28.5) 4,542 (24.3) 3,595 (19.7)

Sex (%) < 0.0001

Female 9,073 (65.3) 7,750 (55.3) 5,752 (38.3)

Male 5,314 (34.7) 6,634 (44.7) 8,632 (61.7)

Marital status (%) < 0.0001

Married/Living with partner 8,521 (61.6) 8,978 (64.6) 9,057 (65.7)

Windowed/Divorced/

Separated/Never married
5,866 (38.4) 5,406 (35.4) 5,327 (34.3)

Race (%) < 0.0001

Mexican American 2,629 (8.4) 2,347 (8.2) 2061 (7.6)

Non-Hispanic White 6,367 (67.4) 6,741 (70.0) 6,888 (70.9)

Non-Hispanic Black 2,765 (10.4) 6,741 (70.1) 3,271 (10.8)

Other Hispanic 1,380 (6.6) 6,741 (70.2) 920 (4.6)

Other race 1,246 (7.2) 6,741 (70.3) 1,244 (6.2)

Education level (%) < 0.0001

Below high school 2,153 (7.6) 1,286 (4.2) 796 (2.9)

High school 5,655 (38.5) 5,320 (33.5) 4,915 (31.4)

Above high school 6,579 (53.9) 7,778 (62.3) 8,673 (65.7)

Smoking status (%) < 0.0001

never 8,008 (54.0) 7,971 (56.6) 7,575 (53.6)

former 3,517 (23.5) 3,663 (24.1) 3,896 (27.6)

current 2,862 (22.5) 2,750 (19.3) 2,913 (18.8)

Body mass index (%) < 0.001

<25 4,133 (31.7) 4,146 (31.0) 3,923 (28.2)

25–30 4,921 (32.5) 4,876 (33.7) 4,768 (33.8)

>30 5,333 (35.9) 5,362 (35.3) 5,693 (38.0)

Poverty income ratio (%) < 0.0001

<=0.99 3,260 (16.8) 2,607 (12.5) 2,348 (11.2)

> = 1 11,127 (83.2) 11,777 (87.5) 12,036 (88.8)

SII 576.6 (4.5) 552.9 (4.2) 545.4 (4.2) < 0.0001

NLR 2.2 (0.0) 2.2 (0.0) 2.2 (0.0) 0.1

PLR 131.0 (0.7) 127.9 (0.7) 127.4 (0.7) < 0.001

WBC (x109) 7.4 (0.0) 7.4 (0.0) 7.3 (0.0) 0.01

SII, systemic immune-inflammation index; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-lymphocyte ratio; WBC: white blood cell.
Bold values represent statistical significance.
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Table 5 shows the dietary intake of ω-3, ω-6 PUFAs, and the 
relationship between ω-6: ω-3 ratio and PLR. In model 1, the β and 
95% CI for PLR were −3.369 (−5.145, −1.593) and −3.606 (−5.428, 
−1.784) for the high-dose intake group of ω-3 and ω-6 PUFAs, 
respectively. In model 2, there was an inverse relationship between 
the high-dose intake group of ω-3 and ω-6 PUFAs and PLR, with 
β and 95% CI of −2.777 (−4.595, −0.959) and −1.958 (−3.608, 

−0.308), respectively. In model 3, a negative relationship was found 
between the high-dose intake group of ω-3 and ω-6 PUFAs and 
PLR, with β and 95% CI of −2.555 (−4.374, −0.735) and −1.867 
(−3.702, −0.033), respectively. The p-values for trend for ω-3 and 
ω-6 PUFAs intake were statistically significant (p < 0.001). The 
correlation between ω-6: ω-3 ratio and PLR did not exhibit 
statistical significance.

TABLE 3 Weighted characteristics of the study population based on dietary ω-6: ω-3 ratio.

ω-6: ω-3 ratio p-value

Variable <=8.19
(n  =  14,383)

8.19–10.13
(n  =  14,383)

>10.13
(n  =  14,389)

Age group (%) < 0.0001

20–40 4,495 (35.6) 5,196 (40.0) 5,497 (42.1)

41–60 4,688 (36.8) 4,708 (36.0) 4,869 (37.5)

> = 60 5,200 (27.5) 4,479 (23.9) 4,023 (20.5)

Sex (%) < 0.0001

Female 7,848 (55.7) 7,514 (51.1) 7,213 (50.0)

Male 6,535 (44.3) 6,869 (48.9) 7,176 (50.0)

Marital status (%) 0.2

Married/Living with partner 8,981 (64.6) 8,789 (64.4) 8,786 (63.3)

Windowed/Divorced/

Separated/Never married
5,402 (35.4) 5,594 (35.6) 5,603 (36.7)

Race (%) < 0.0001

Mexican American 2,116 (7.4) 2,449 (8.4) 2,472 (8.2)

Non-Hispanic White 6,395 (67.9) 6,833 (70.2) 6,768 (70.4)

Non-Hispanic Black 2,688 (9.3) 2,869 (10.0) 3,319 (11.8)

Other Hispanic 1,492 (6.7) 1,128 (5.5) 782 (3.8)

Other race 1,692 (8.7) 1,104 (5.9) 1,048 (5.8)

Education level (%) < 0.0001

Below high school 1,562 (5.6) 1,359 (4.5) 1,314 (4.2)

High school 4,939 (31.2) 5,420 (35.6) 5,531 (35.8)

Above high school 7,882 (63.2) 7,604 (59.9) 7,544 (59.9)

Smoking status (%) < 0.0001

never 8,168 (55.9) 7,863 (55.2) 7,523 (53.2)

former 3,729 (26.0) 3,615 (24.3) 3,732 (25.2)

current 2,486 (18.1) 2,905 (20.5) 3,134 (21.5)

Body mass index (%) < 0.0001

<25 4,308 (31.8) 3,872 (28.3) 4,022 (30.5)

25–30 5,021 (35.0) 4,736 (32.5) 4,808 (32.6)

>30 5,054 (33.2) 5,775 (39.1) 5,559 (36.9)

Poverty income ratio (%) 0.5

<=0.99 2,714 (13.2) 2,699 (13.1) 2,802 (13.7)

> = 1 11,669 (86.8) 11,684 (86.9) 11,587 (86.3)

SII 555.5 (4.6) 564.2 (4.9) 552.5 (3.9) 0.1

NLR 2.2 (0.0) 2.2 (0.0) 2.2 (0.0) 0.01

PLR 128.6 (0.7) 128.8 (0.7) 128.5 (0.7) 1

WBC (x109) 7.3 (0.0) 7.4 (0.0) 7.3 (0.0) 0.2

SII, systemic immune-inflammation index; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-lymphocyte ratio; WBC: white blood cell.
Bold values represent statistical significance.
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Table 6 depicts the dietary intake of ω-3, ω-6 PUFAs, and the 
relationship between ω-6: ω-3 ratio and NLR. In model 1, the β and 
95% CI for NLR were −0.041 (−0.076, −0.006) and −0.04 (−0.077, 
−0.003) for the medium-dose intake group of ω-3 and ω-6 PUFAs, 
respectively. In model 2, there was an inverse relationship between the 
high-dose intake group of ω-3 and ω-6 PUFAs and NLR, with β and 
95% CI of −0.045 (−0.084, −0.005) and −0.038 (−0.075，−0.001), 
respectively. In model 3, a negative relationship was found between 

the medium-dose intake group of ω-3 PUFAs and NLR, with β and 
95% CI of −0.037 (−0.071, −0.002). The p-values for trend for ω-3 and 
ω-6 PUFAs intake were statistically significant (p < 0.05). In Model 1, 
there was a negative correlation between the high-scale group of ω-6: 
ω-3 ratios and NLR, with β and 95% CI of −0.037 (−0.073, −0.002).

Table  7 shows the ω-3 and ω-6 PUFAs dietary intake and the 
relationship between ω-6: ω-3 ratio and WBC. In model 1, the β and 
95% CI for WBC were −0.169 (−0.264, −0.073) and − 0.128 (−0.214, 

TABLE 5 Survey-weighted multivariate regression analyses of associations between dietary ω-3 and ω-6 PUFAs intake and ω-6:ω-3 ratio and PLR.

PLR Model 1
β (95%CI) p-value

Model 2
β (95%CI) p-value

Model 3
β (95%CI) p-value

Total ω−3 PUFAs intake (g)

<=1.167 ref ref ref

1.167–1.928 −3.731 (−5.511, −1.951)** −2.777 (−4.595, −0.959)** −3.499 (−5.292, −1.706)**

>1.928 −3.369 (−5.145, −1.593)** −1.576 (−3.365, 0.213) −2.555 (−4.374, −0.735)**

p for trend <0.001 0.1 <0.01

Total ω−6 PUFAs intake (g)

<=10.929 ref ref ref

10.929–17.63 −3.128 (−4.802, −1.455)** −1.958 (−3.608, −0.308)** −2.782 (−4.395, −1.169)**

>17.63 −3.606 (−5.428, −1.784)** −0.882 (−2.711, 0.947) −1.867 (−3.702, −0.033)*

p for trend <0.001 0.383 0.059

Total ω−6:ω−3 ratio

<=8.19 ref ref ref

8.19–10.13 0.161 (−1.679, 2.002) 1.053 (−0.765, 2.872) 1.494 (−0.190, 3.177)

>10.13 −0.117 (−1.891, 1.656) 1.233 (−0.512, 2.979) 1.574 (−0.203, 3.352)

p for trend 0.893 0.168 0.086

PLR, platelet-lymphocyte ratio; β, standardized coefficients; CI, confidence interval. Non-adjusted model: no covariates were adjusted. Minimally-adjusted model: age and gender were 
adjusted. Fully-adjusted model: age, gender, race, marital status, education level, smoking status, body mass index, and family monthly poverty level index were adjusted. *p < 0.05; **p < 0.01.

TABLE 4 Survey-weighted multivariate regression analyses of associations between dietary ω-3 and ω-6 PUFAs intake and ω-6:ω-3 ratio and SII.

SII Model 1
β (95%CI) p-value

Model 2
β (95%CI) p-value

Model 3
β (95%CI) p-value

Total ω-3 PUFAs intake (g)

<=1.167 ref ref ref

1.167–1.928 −25.9 (−36.554, −15.246)** −21.198 (−32.102, −10.295)** −18.628 (−29.451, −7.806)**

>1.928 −34.662 (−46.069, −23.256)** −25.004 (−36.653, −13.354)** −21.309 (−33.098, −9.520)**

p for trend <0.0001 <0.0001 <0.001

Total ω-6 PUFAs intake (g)

<=10.929 ref ref ref

10.929–17.63 −23.686 (−34.169, −13.203)** −18.418 (−28.841, −7.996)** −16.115 (−26.451, −5.780)**

>17.63 −31.157 (−41.912, −20.402)** −18.021 (−29.131, −6.911)** −15.557 (−26.681, −4.434)**

p for trend <0.0001 <0.0001 <0.001

Total ω-6:ω-3 ratio

<=8.19 ref ref ref

8.19–10.13 8.65 (−3.452, 20.752) 12.163 (0.127, 24.199)* 8.198 (−3.488, 19.884)

>10.13 −3.061 (−13.079, 6.956) 1.943 (−8.029, 11.914) −0.583 (−10.800, 9.633)

p for trend 0.524 0.732 0.867

SII, systemic immune-inflammation index; β, standardized coefficients; CI, confidence interval. Non-adjusted model: no covariates were adjusted. Minimally-adjusted model: age and gender 
were adjusted. Fully-adjusted model: age, gender, race, marital status, education level, smoking status, body mass index, and family monthly poverty level index were adjusted. *p < 0.05; 
**p < 0.01.
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−0.041) for the high-dose intake group of ω-3 and ω-6 PUFAs, 
respectively. The p-values trend for ω-3 and ω-6 PUFAs intake were less 
than 0.01 and 0.05, respectively, and were statistically significant. In 
model 2, there was a negative relationship between the high-dose intake 
group of ω-3 and ω-6 PUFAs and WBC, with β and 95% CI of −0.142 
(−0.246, −0.039) and-0.113 (−0.206, −0.021), respectively. The p-value 
for trend for ω-3 PUFAs intake was statistically significant. (p < 0.01). 
No notable relationship was depicted between ω-6: ω-3 ratio and WBC.

3.3 Stratified analyses of the associations 
between dietary ω-3, ω-6 PUFAs intake 
and SII

The study participants were divided into groups based on sex, age, 
smoking status, race, BMI, and education (Supplementary Tables S1, S2). 
The analysis showed that the relationship between dietary intake of 
ω-3 and ω-6 fatty acids and the SII index remained consistent across 

TABLE 6 Survey-weighted multivariate regression analyses of associations between dietary ω-3 and ω-6 PUFAs intake and ω-6:ω-3 ratio and NLR.

NLR Model 1
β (95%CI) p-value

Model 2
β (95%CI) p-value

Model 3
β (95%CI) p-value

Total ω−3 PUFAs intake (g)

<=1.167 ref ref ref

1.167–1.928 −0.041 (−0.076, −0.006)* −0.042 (−0.077, −0.007)* −0.037 (−0.071, −0.002)*

>1.928 −0.032 (−0.072, 0.008) −0.045 (−0.084, −0.005)* −0.036 (−0.076, 0.004)

p for trend 0.188 <0.05 0.082

Total ω−6 PUFAs intake (g)

<=10.929 ref ref ref

10.929–17.63 −0.04 (−0.077, −0.003)* −0.034 (−0.070, 0.002) −0.031 (−0.067, 0.005)

>17.63 −0.039 (−0.077, −0.001)* −0.038 (−0.075, −0.001)* −0.033 (−0.070, 0.004)

p for trend <0.05 <0.05 0.086

Total ω−6:ω−3 ratio

<=8.19 ref ref ref

8.19–10.13 0.02 (−0.022, 0.063) 0.033 (−0.009, 0.075) 0.024 (−0.017, 0.065)

>10.13 −0.037 (−0.073, −0.002)* −0.014 (−0.050, 0.021) −0.02 (−0.055, 0.016)

p for trend <0.05 0.402 0.263

NLR, neutrophil-to-lymphocyte ratio; β, standardized coefficients; CI, confidence interval. Non-adjusted model: no covariates were adjusted. Minimally-adjusted model: age and gender were 
adjusted. Fully-adjusted model: age, gender, race, marital status, education level, smoking status, body mass index, and family monthly poverty level index were adjusted. *p < 0.05; **p < 0.01.

TABLE 7 Survey-weighted multivariate regression analyses of associations between dietary ω-3 and ω-6 PUFAs intake and ω-6:ω-3 ratio and WBC.

WBC Model 1
β (95%CI) p-value

Model 2
β (95%CI) p-value

Model 3
β (95%CI) p-value

Total ω−3 PUFAs intake (g)

<=1.167 ref ref ref

1.167–1.928 −0.098 (−0.175, −0.021)* −0.091 (−0.169, −0.014)* −0.023 (−0.098, −0.051)

>1.928 −0.169 (−0.264, −0.073)** −0.142 (−0.246, −0.039)** −0.049 (−0.148, 0.050)

p for trend <0.01 <0.01 0.334

Total ω−6 PUFAs intake (g)

<=10.929 ref ref ref

10.929–17.63 −0.043 (−0.139, 0.054) −0.042 (−0.142, 0.058) 0.028 (−0.067, 0.123)

>17.63 −0.128 (−0.214, −0.041)** −0.113 (−0.206, −0.021)* −0.037 (−0.121, 0.048)

p for trend <0.05 0.015 0.354

Total ω−6:ω−3 ratio

<=8.19 ref ref ref

8.19–10.13 0.06 (−0.031, 0.151) 0.051 (−0.038, 0.140) −0.024 (−0.109, 0.060)

>10.13 −0.006 (−0.108, 0.097) −0.024 (−0.124, 0.076) −0.074 (−0.171, 0.023)

p for trend 0.899 0.625 0.132

WBC, white blood cell; β, standardized coefficients; CI, confidence interval. Non-adjusted model: no covariates were adjusted. Minimally-adjusted model: age and gender were adjusted. Fully-
adjusted model: age, gender, race, marital status, education level, smoking status, body mass index, and family monthly poverty level index were adjusted. *p < 0.05; **p < 0.01.
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all the groups and did not exhibit significant variations. However, it is 
important to note that the association between ω-3 and ω-6 fatty acid 
intake and SII was found to be  stronger in the obese population 
(BMI > 30).

3.4 Nonlinear associations between dietary 
ω-3, ω-6 PUFAs intake and SII

Figures  2, 3 illustrate the findings of the dose–response 
relationship between ω-3, ω-6 PUFAs and SII index. As shown in the 
figure, an L-type correlation was observed between ω-3 and ω-6 
PUFAs intake and SII (p for nonlinearity <0.05). The dose–response 
relationship between intake of ω-3 and ω-6 PUFAs and SII showed an 
overall trend of first decrease and then increase, with inflection points 
of 2.35 g/day and 19.79 g/day, respectively. However, the non-linear 
relationship between the ω-3: ω-6 ratio and SII was not significant 
(p for nonlinearity >0.05).

4 Discussion

A comprehensive cross-sectional survey was carried out in this 
research to assess the relationship between dietary intake of ω-3, ω-6 
PUFAs, and ω-6 to ω-3 ratio with systemic immune and 
inflammatory biomarkers. Data from the NHANES survey for 1999 
to 2020, representing the US population, were utilized. In this study, 
we found a significant negative correlation between dietary intake of 
ω-3 and ω-6 PUFAs and SII, NLR, PLR, and WBC, which supports 
the contention that ω-3 PUFAs exert an anti-inflammatory effect, 
and that ω-6 PUFAs have a similar anti-inflammatory effect. In 
addition, the dose–response relationship suggests that ω-3 and ω-6 
PUFAs intakes are associated with SII in a non-linear L-form, 
whereas ω-6: ω-3 ratios are not substantially related to these 
inflammatory biomarkers.

Theoretical studies suggest that ω-3 and ω-6 PUFAs compete 
with each other at cyclooxygenase (COX) and lipoxygenase (LOX) 
sites to generate different types of eicosanoids, such as 
prostaglandins (PGs) and leukotrienes (LTs), etc. (34). In response 
to inflammatory stimuli, AA within the ω-6 PUFA is released 
from membrane phospholipids. Subsequently, it undergoes 
conversion into PGE2 and LTB4 in a COX- and LOX-dependent 
manner. This process exerts a strong pro-inflammatory effect, 
contributing to platelet aggregation and vasoconstriction. In 
contrast, the metabolism of EPA and DHA in ω-3 PUFA produces 
PGE3 and LTB5, which exhibit anti-inflammatory and antiplatelet 
aggregation effects (35).

However, the relationship between fatty acid elongation and 
desaturase action is rather complex, and clinical outcome is not 
easily predicted based on biochemical pathways alone. The 
association between dietary PUFAs and inflammatory markers 
has not yet been fully elucidated (36). The anti-inflammatory 
impacts of ω-3 fatty acids have been extensively documented in 
multiple clinical and experimental studies. Two extensive studies 
by Derosa et al. (10, 11) revealed substantially reduced levels of 
serum of high-sensitivity C-reactive protein (hs-CRP), matrix 
metalloproteinase (MMP)-2, and MMP-9  in patients with 
dyslipidemia after 6 months of EPA + DHA intake at 2.6 g/day 

compared with placebo. ω-3 PUFAs also protect from CVD by 
addressing arrhythmias, lowering blood pressure, plasma 
homocysteine and serum triglycerides, prolonging clotting time, 
and suppressing platelet aggregation (37). This is consistent with 
the findings of this research. However, it is crucial to highlight 
that there is no substantial correlation between consuming low 
doses of ω-3 fatty acids over short courses and inflammation 
biomarkers (38).

At the same time, it was found that ω-6 PUFAs also had some 
anti-inflammatory effects. Although ω-6 PUFAs are theoretically 
and widely recognized as pro-inflammatory mediators, multiple 
clinical studies have failed to substantiate this hypothesis (12–14). 
In a study examining the impact of dietary AA supplementation 
on peripheral blood mononuclear cells (PBMCs), participants 
who received 0.7 g/day of AA-rich single-cell oil (ARASCO) for 
12 weeks exhibited an elevation in the proportion of AA in PBMC 
phospholipids of total fatty acids (12). In another study, ARASCO 

FIGURE 2

Dose–response relationship between ω-3 PUFAs intake and SII. The 
association was adjusted for age, gender, race, marital status, 
education level, smoking status, body mass index, family monthly 
poverty level index.

FIGURE 3

Dose–response relationship between ω-6 PUFAs intake and SII. The 
association was adjusted for age, gender, race, marital status, 
education level, smoking status, body mass index, family monthly 
poverty level index.
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supplementation for 7 weeks significantly increased the secretion 
of PGE2 and LTB4 from lipopolysaccharide-stimulated cultured 
PBMCs. However, this supplementation did not lead to the 
increased secretion of interleukin-6 (IL-6), IL-1β, or tumor 
necrosis factor-α (TNF-α), nor did it affect the number of 
circulating lymphocytes labeled with specific subsets (13). A 
randomized controlled study of healthy elderly adults (55 to 
70 years old) in Japan discovered that the plasma phospholipid 
content of AA increased dose-dependently following 4 weeks of 
AA supplementation at 0.24 g/day or 0.73 g/day. However, this 
supplementation did not influence the levels of AA metabolites 
and the plasma concentrations of CRP, IL-6, and TNF-α (14). The 
provided evidence indicates that increasing AA intake results in 
elevated AA content in plasma or cellular phospholipids. However, 
it does not exert a notable impact on pro-inflammatory cytokine 
production and the number of inflammatory cells. In parallel, 
studies focusing on LA, a synthetic substrate of AA, revealed that 
increasing LA intake did not elevate AA concentrations in plasma 
or PBMC. Moreover, it was not significantly associated with 
multiple inflammatory markers (39–41). This observation could 
be attributed to the saturation of the pathway for synthesizing AA 
from LA. Conversely, some studies even suggest that AA and LA 
may be associated with reduced inflammation (15–17). A cross-
sectional study of 364 patients with CVD secondary prevention 
showed that augmented dietary consumption of ω-3 and ω-6 
PUFAs was inversely correlated with levels of CRP, IL-1β, IL-10, 
and IL-12 (16). Another cross-sectional study showed that ω-3 
and ω-6 PUFAs intake was linked to a reduced risk of developing 
CVD in comparison with intake of either fatty acid alone (17). 
These findings align with our observation that ω-6 PUFA intake 
is inversely associated with inflammatory markers. The inhibitory 
effect of ω-6 PUFAs on inflammatory responses may be achieved 
through eicosanoid-independent pathways as well as the 
production of precursors related to the inflammatory abrogation 
mediators. Nonetheless, additional research is required to explore 
the specific mechanisms involved (42).

In addition, this study revealed no noteworthy correlation 
between ω-6: ω-3 ratio and SII, along with other secondary 
measures. It is noteworthy that research investigating the 
relationship between the ω-6: ω-3 ratio and inflammatory markers 
has yielded conflicting results (18–22). Kalogeropoulos et al. (18) 
demonstrated a strong relationship between the proportion of 
ω-6: ω-3 and hs-CRP, IL-6, TNF-α, fibrinogen, and homocysteine 
in serum from 374 healthy people in the ATTICA’s study database. 
This suggests that the inflammatory balance of the body may 
be regulated by the relative amounts of ω-6 and ω-3 fatty acids. 
Another study involving 1,123 healthy individuals discovered an 
inverse relationship between the proportion of ω-6: ω-3 in fasting 
plasma and the anti-inflammatory marker IL-10 (20). Zhang et al. 
(19) utilized a population cohort from the UK Biobank to identify 
an elevated risk of all-cause, cancer, and CVD mortality with an 
elevated ω-6: ω-3 ratio in the population. Harris (21, 22) 
conducted an analysis of 11 case–control and two prospective 
cohort studies, revealing that the ω-6: ω-3 ratio was not effective 
in distinguishing coronary artery disease cases from healthy 
subjects. Therefore, it is suggested that more evidence is necessary 
to substantiate the utility of the ω-6: ω-3 ratio as a biomarker for 
predicting disease status or serving as a nutritional reference. This 

is supported by our findings. The ω-6: ω-3 ratio may not allow for 
the efficacy of each fatty acid to be  assessed individually. 
Therefore, no recommendation can be  given for a more 
accurate assessment.

The specific mechanism for the “L” shaped dose–response 
relationship between dietary ω-3 and ω-6 fatty acid intake and SII 
index is unclear, but there are several possibilities. First, dietary 
fatty acid intake is strongly associated with age, BMI, and 
individual metabolism. The results of stratified analyses show that 
there are some differences in BMI among the included study 
populations. One study found that a high dietary ω-6: ω-3 PUFA 
ratio was positively associated with excessive obesity and 
worsened metabolic status (43). And BMI is a better predictor of 
response to dietary supplements than simple body weight (44). 
Therefore, BMI differences in the study population may contribute 
to the over-activation of the inflammatory state, resulting in an 
“L” shaped dose–response relationship between PUFAs intake and 
inflammatory biomarkers in the body. Secondly, the effect of a 
single dietary component on homeostasis is limited, as the 
structure and function of cell membranes are regulated by other 
dietary factors, such as antioxidants and polyphenols, in addition 
to PUFAs. Several studies have shown that PUFAs is highly 
susceptible to oxidation, and their peroxidation produces lipid 
peroxides, which can harm the organism. The dietary intake of 
PUFA is accompanied by the intake of certain antioxidants, such 
as LA and vitamin E which are also obtained through vegetable 
oils. An epidemiological study investigating the relationship 
between PUFA intake and CRP concentrations found that the 
negative correlation between dietary ω-3 and ω-6 fatty acid intake 
and elevated CRP was only significant in individuals with low 
vitamin E intake, demonstrating some interaction between 
vitamin E and PUFAs (45). Thus with the gradual increase in ω-3 
and ω-6 fatty acid intake, antioxidants in the body are unable to 
antagonize the higher levels of lipid peroxides and an increase 
follows a decrease in the level of inflammation. In addition to this, 
PUFA is also closely associated with the platelet-activating factor 
(PAF), the synthesis and catabolism of which involves the 
participation of a series of enzymes, among which lipoprotein-
associated phospholipase A2 (Lp-PLA2) is considered to be  a 
marker of vascular inflammatory response in the body. A cross-
sectional study including 2,246 participants found that AA, EPA, 
and DHA plasma levels were negatively correlated with Lp-PLA2 
mass and activity (46). In addition, a negative correlation between 
EPA and DHA and Lp-PLA2 concentrations was also observed in 
adipose tissue (47). Further studies revealed that this may affect 
Lp-PLA2 expression through activation of p38 mitogen-activated 
protein kinase and phosphatidylinositol 3-kinase (48–50). This 
may be related to the “L” shaped relationship between ω-3 and ω-6 
fatty acid intake and SII index. However, the association between 
ω-3 and ω-6 PUFAs and PAF has not yet been established, and 
further studies are needed (51, 52).

On the one hand, this research exhibits multiple notable 
strengths. Firstly, it examined the correlation between dietary ω-3, 
ω-6 PUFAs intake and ω-6: ω-3 ratio and systemic immune-
inflammatory status, utilizing multiple inflammatory indicators. 
Secondly, it explored the dose–response relationship between the 
main indicator SII and the dietary intake of ω-3 and ω-6 PUFAs. 
Finally, it employed a large, nationally representative sample, 
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which enhances statistical power and augments the accuracy and 
reliability of the findings. On the other hand, this research also 
has certain limitations. Firstly, due to its cross-sectional design, 
establishing causality is challenging. Secondly, dietary data were 
collected via a 24-h dietary recall interview, which may lead 
to inaccuracy.

5 Conclusion

This research proposes that there is an inverse relationship 
between ω-3, ω-6 PUFAs intake and systemic inflammatory 
biomarkers in humans. The intake ω-3 and ω-6 PUFAs in the dose–
response relationship exhibited an “L”-type association with the SII, 
indicating an initial decrease followed by an increase. However, no 
noticeable association was observed between ω-6: ω-3 ratio and these 
inflammatory markers. Further investigation is warranted to elucidate 
the mechanisms underlying this observation.
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