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Circadian gene signatures in the 
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Objective: Obesity, a global health concern, is associated with a spectrum of 
chronic diseases and cancers. Our research sheds light on the regulatory role 
of circadian genes in obesity progression, providing insight into the immune 
landscape of obese patients, and introducing new avenues for therapeutic 
interventions.

Methods: Expression files of multiple datasets were retrieved from the GEO 
database. By 80 machine-learning algorithm combinations and Mendelian 
randomization analysis, we discovered the key circadian genes contributing to 
and protecting against obesity. Subsequently, an immune infiltration analysis was 
conducted to examine the alterations in immune cell types and their abundance 
in the body and to investigate the relationships between circadian genes and 
immune cells. Furthermore, we delved into the molecular mechanisms of key 
genes implicated in obesity.

Results: Our study identified three key circadian genes (BHLHE40, PPP1CB, 
and CSNK1E) associated with obesity. BHLHE40 was found to promote obesity 
through various pathways, while PPP1CB and CSNK1E counteracted lipid 
metabolism disorders, and modulated cytokines, immune receptors, T cells, and 
monocytes.

Conclusion: In conclusion, the key circadian genes (BHLHE40, CSNK1E, and 
PPP1CB) may serve as novel biomarkers for understanding obesity pathogenesis 
and have significant correlations with infiltrating immune cells, thus providing 
potential new targets for obese prevention and treatment.
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1 Introduction

Obesity, a pressing global health issue, is associated with numerous complications such as 
type 2 diabetes, cardiovascular disease, obstructive sleep apnea, and various cancers, making 
it a leading cause of increasing mortality worldwide (1). Current studies highlight that obesity 
is a complex disease with a multifaceted etiology, encompassing genetic, metabolic, behavioral, 
and environmental factors (2). Firstly, an energy imbalance caused by caloric intake surpassing 
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expenditure is a pivotal factor in developing obesity. Redundant 
energy is stored as fat, leading to pathological obesity when it 
significantly exceeds the body’s energy utilization (3). Secondly, 
lifestyles and environmental factors play crucial roles in weight gain. 
The decrease in leisure time and physical activities, the rise in 
sedentary behaviors (such as electronic device usage), and sleep 
deprivation caused by chronic work stress collectively contribute to 
the concurrent occurrence of chronic diseases and obesity (2). Thirdly, 
genetic research has demonstrated a polygenic mechanism for obesity 
susceptibility, with the FTO gene variant being the most notable. 
Large-scale genomic screenings have shown that individuals carrying 
one or two copies of this risk allele gain approximately a body weight 
of 1.2 to 3 kg more than non-carriers (4). Additionally, depression and 
anxiety significantly increase the risk of obesity (5). The association of 
obesity with multiple diseases underscores the importance of its 
treatment and management in clinical practice.

Almost all mammals have developed a self-regulated 
transcription-translation feedback loop, generating approximately 
24 h oscillations known as the biological clock. The primary function 
of the biological clock is to regulate the circadian rhythm of 
physiological processes, ensuring synchronization with the external 
environment (6). Disruptions in circadian rhythm, caused by genetic 
or environmental factors, can have long-term detrimental effects on 
metabolic health (7). The reciprocal regulation of circadian rhythm 
and lipid metabolism is increasingly recognized as a critical study area. 
The interaction between the biological clock and lipid metabolism 
may play a role in the occurrence and development of obesity. Recent 
studies suggest that various nutritional sensors can transmit 
information about nutritional status to the biological clock, indicating 
a bidirectional relationship. For example, early research demonstrated 
that reduced nicotinamide adenine dinucleotide (NADH) increases 
the activity of core clock genes (CLOCK/BMAL1 and NPAS2/
BMAL1), while nicotinamide adenine dinucleotide (NAD) inhibits 
their activity (8). AMP kinase (AMPK), another highly conserved 
cellular nutrition sensor, is activated by exercise, fasting, or hypoxia, 
leading to the phosphorylation and degradation of CRY1 (9, 69). 
Additionally, metabolic transcription factors such as REV-ERB, ROR, 
and PPAR exhibit circadian expression in peripheral tissues (10). 
REV-ERBα regulates adipocyte differentiation and inhibits the 
transcription of BMAL1 (11). RORα competes with REV-ERBα to 
bind to the BMAL1 promoter, inducing BMAL1 expression and 
regulating lipid metabolism (12). PPARα positively regulates BMAL1 
expression, creating a positive feedback loop (13, 70). Besides, genetic 
variations in CLOCK, PER2, and CRY1 increase the risk of obesity 
(14). This indicates complex crosstalk between circadian genes and 
transcriptional regulatory factors, though the specific mechanisms by 
which circadian genes directly participate in obesity remain unclear.

With the accelerated advancements in bioinformatics in recent 
years, techniques such as microarray sequencing, transcriptome 
sequencing, and single-cell sequencing have become instrumental in 
identifying novel mechanisms underlying obesity pathogenesis and 
discovering new biomarkers (15, 71). The development of 
bioinformatics technology has enabled researchers to discover that 
cytokines such as macrophages and IL-17 are involved in the 
development of obesity, providing a more comprehensive 
understanding of the molecular changes in this disease (16, 72). 
Simultaneously, numerous large-scale genome-wide association studies 
(GWAS) have identified a significant number of single nucleotide 

polymorphisms (SNPs) associated with obesity risk. Mendelian 
randomization (MR) is a genetic analytical method that operates under 
Mendel’s laws of inheritance, using SNPs as instrumental variables 
(IVs) to establish observed causal correlations between modifiable 
exposures and clinical outcomes (17). By combining pooled data from 
disease GWAS and expression quantitative trait loci (eQTL) studies, 
MR analyses have been widely used in studying multiple diseases, 
elucidating causal correlations between genes and diseases, and 
discovering new therapeutic targets. In MR analyses, the expression 
level of a gene is considered an exposure, while eQTLs situated in 
genomic regions can represent genes in that genome segment. The 
reliability and robustness of these results are subsequently assessed by 
various rigorous statistical procedures (18, 73). Therefore, MR based 
on GWAS is crucial in providing accurate and direct evidence of 
pathogenic genes and drug targets.

In this study, we applied 10 machine learning algorithms to identify 
characteristic genes and subsequently used MR analysis to pinpoint 
circadian genes related to obesity. Besides, this study was supplemented 
by examining the molecular mechanisms and the immune landscape 
underlying obesity. We explored the immune infiltration in obesity and 
analyzed the correlations between key genes and immune cells by 
immune infiltration analysis. Finally, enrichment analysis was 
conducted to uncover the possible functional mechanisms of these key 
genes and the effect of immune inflammation in the pathogenesis.

2 Experimental methods

2.1 Materials and methods

2.1.1 Study design and data acquisition
The analysis process of this bioinformatics research is illustrated in 

Figure 1. For our study, we downloaded the expression files of GSE69039 
from the GEO database (Gene Expression Omnibus, https://www.ncbi.
nlm.nih.gov/geo/), annotated with GPL10558. This dataset includes 
expression profile data from 18 samples (4 controls and 14 patients). 
Additionally, we  obtained the rawcounts files of GSE55008 and 
GSE198012 and transformed the gene IDs into symbols using the R 
package “org.Hs.eg.db.” We also downloaded the single-cell dataset of 
GSE155960, including 12 patients with complete expression profiles for 
analysis. By exclusively selecting data from human subjects, we eliminated 
interspecies differences, enhancing the reliability of our study. Compared 
to previous research, more comprehensive datasets strengthen the 
robustness of our findings. The patients included in this study were 
diagnosed with obesity without any other metabolic, or psychiatric 
disorders. Furthermore, we did not classify obesity by subtypes and did 
not consider differences in race, region, or gender to eliminate potential 
biases that could affect the results. To address non-biological effects 
caused by different samples, sequencing technologies, and instruments 
between microarray and RNA-seq data, we  integrated and analyzed 
multiple datasets using the Rank-in algorithm (19).

eQTL data from the eQTLGen database1 was extracted as the 
exposure. The large-scale eQTLGen project focuses on conducting 
large-scale genome-wide meta-analyses in blood and investigating the 

1 https://www.eqtlgen.org
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genetic basis of complex traits. Participants in the outcome-related 
GWAS studies for this study were primarily European. The outcome 
data were all derived from the MR Base database (finngen_R10_E4_
OBESITY) and included 23,971 patients and 388,084 controls. It 
contains publications, top associations, and complete summary 
statistics, which could be  mapped to genome assembly and 
dbSNP build.

2.1.2 Selection of characteristic genes via 
machine learning

Our study involved binary data, and ten machine learning 
algorithms were selected based on sample size, quality, and the 
research question. To identify the key genes involved in obesity, 
we followed the previous workflow (20). Due to the researchers’ focus 
on tumor prognosis, we  have improved several classic machine 
learning algorithms to better fit the binary classification problem in 
this study. (1) Firstly, we integrated 10 classic algorithms: random 
forest (RF), gradient booster machine (GBM), support vector machine 
(SVM), logistic regression (LR), Lasso, Ridge, XGBoost, Naive Bayes, 
Stepwise Cox, and Elastic Network (Enet). Among them, RF, LASSO, 
XGBoost, and Stepwise Cox have the function of dimensionality 
reduction and variable screening, and we combined them with other 
algorithms into 80 machine-learning algorithm combinations. (2) 
Next, we  used GSE69039 with a large sample size in GEO as the 
training cohort and used these 80 combinations to construct 

signatures in the files with different expression genes (DEGs). (3) 
Finally, in the two testing cohorts (GSE55008, GSE198012), 
we calculated the Harrell’s concordance index (C-index) for model 
selection. Based on the average C-index, we ultimately chose the best 
consensus prediction model for obesity and obtained the average 
ranks of each signature. Signatures with model number >10 and 
average rank <6 were defined as characteristic genes. In addition, 
external independent datasets (GSE241015, GSE231656, GSE133666) 
were generated to evaluate the diagnostic performance of the optimal 
model through receiver operating characteristic (ROC) curves. 
We utilized the Caret package to fine-tune and train each algorithm 
meticulously to achieve optimal performance, identifying the 
algorithm with the highest accuracy and diagnostic efficiency.

2.1.3 Mendelian randomization analysis
The outcome IDs filtered through the MR-Base database2 are 

derived from the GWAS summary data3 to extract relevant causal 
correlations in eQTL. Firstly, we conducted a preliminary screening 
of basic information to investigate the causal relationship between 
circadian rhythm and obesity. SNPs were screened as IVs based on the 
following criteria: (1) SNPs demonstrated a significant genome-wide 
correlation (p < 5 × 10−8) in the initial analysis, indicating a strong 
association between SNPs and exposure; (2) linkage disequilibrium 
(LD) between SNPs was excluded (R2 < 0.001 and <10,000 kb) in the 
sensitivity analysis; (3) the F-value was used to assess the strength of 
IVs for screened SNPs to avoid weak instrumental bias. Generally, an 
F-value of 10 or higher indicates that the IVs strongly correlate with 
exposure and that MR results are not influenced by weak instrumental 
bias. Secondly, we removed palindromic SNPs with moderate allele 
frequencies and retained SNPs with p < 5 × 10−5. The selected SNPs 
were then examined for their association with potential confounding 
factors such as diabetes and hormone use in Phenoscanner4. Finally, 
we conducted MR (21) analysis to establish causal relationships using 
genetic variations as IVs for exposure (circadian genes).

MR analysis is based on three core assumptions: (1) the correlation 
assumption (IVs are closely related to the exposure but not directly 
related to the outcomes); (2) the independence assumption (IVs are not 
related to confounding factors); and (3) the exclusivity assumption (IVs 
affect outcomes only through the exposure; any effect through other 
pathways indicates genetic pleiotropy). We primarily used the inverse 
variance weighted (IVW) method for MR analysis, which provides a 
consistent estimate of the association between exposure and outcome 
risk without pleiotropy (22). The IVW and MR Egger tests were then 
performed to evaluate heterogeneity among individual SNPs. A p-value 
less than 0.05 indicates no heterogeneity, suggesting that fixed-effect 
models should be  used. Otherwise, random-effect models are 
appropriate (23). Additionally, we conducted a pleiotropy analysis to 
verify the robustness of our results. The MR Egger intercept method was 
used to determine whether IVs exhibited pleiotropy. When the intercept 
term is very close to zero, MR Egger regression is nearly equivalent to 
IVW. A lower likelihood of horizontal pleiotropy indicates that SNPs are 
associated only with the exposure and not with other confounding 
variables (24). The weighted mode is used to correct for pleiotropy and 

2 http://app.mrbase.org/

3 https://gwas.mrcieu.ac.uk/

4 http://www.phenoscanner.medschl.cam.ac.uk/

FIGURE 1

Flowchart of study design.
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is more reliable in detecting causal effects, with smaller bias and lower 
Type I error rates than the MR Egger test. When measurement errors 
occur in the exposure of SNPs, the weighted median allows for accurate 
estimation of causal relationships, even when up to 50% of IVs are 
invalid, thereby reducing bias in the estimation of causal correlations (25).

The reliability of causal relationships was evaluated using four 
methods to obtain an overall estimate of the impact of cis- and trans-
regional gene expressions in whole blood on obesity. Finally, 
we conducted a sensitivity analysis to assess the impact of specific 
genetic variations on the risk of obesity. This method systematically 
excludes each SNP and recalculates the combined effects of the 
remaining SNPs to identify and eliminate those variations that 
significantly impact the overall estimated value. The removal of each 
SNP results in a new point estimate and its 95% confidence interval, 
allowing for the evaluation of its unique contribution and the 
robustness of the overall results. This analysis produces a chart 
summarizing the estimated values after the removal of each SNP, as 
well as the overall estimated values of all SNPs. By comparing these 
estimates, we can observe the impact of removing any single SNP on 
the overall results, thereby determining the robustness of our analysis.

2.1.4 Immune cell infiltration analysis
The single sample gene set enrichment analysis (ssGSEA) is widely 

used to evaluate immune cell types in the microenvironment. This 
method distinguishes 29 human immune cell phenotypes, including 
T cells, B cells, and NK cells. In this study, the ssGSEA algorithm was 
utilized to quantify the immune cells in the expression profile, infer 
the relative proportions of 29 types of immune infiltrating cells, and 
perform Spearman correlation analysis on gene expression and 
content of immune cells.

2.1.5 GSEA pathway enrichment analysis
Gene Set Enrichment Analysis (GSEA) analysis is frequently 

employed in research that closely integrates disease classification with 
biological significance. GSEA was used to further analyze the 
differences in signaling pathways between high- and low-expression 
groups. The background gene sets were version 7.0, downloaded from 
the Molecular Signatures Database (MsigDB, https://www.gsea-
msigdb.org/gsea/msigdb/). These annotated gene sets for subtype 
pathways enabled the differential expression analysis of pathways 
between subtypes. Significantly enriched gene sets were sorted based 
on an adjusted p-value of less than 0.05.

2.1.6 Gene set difference analysis
Gene set variation analysis (GSVA) is a non-parametric, 

unsupervised method for assessing transcriptome gene set 
enrichment. GSVA converts gene-level changes into pathway-level 
changes by comprehensively scoring the gene sets of interest, thereby 
determining the changes in biological function. In this study, 
background gene sets will be downloaded from the MsigDB, and the 
GSVA algorithm will be used to comprehensively score each gene set 
to evaluate potential biological function changes across 
different groups.

2.1.7 Transcriptional regulation analysis of key 
genes

This study utilized the R package “RcisTarget” to predict 
transcription factors, with all calculations performed by RcisTarget 

based on motifs. The normalized enrichment score (NES) of a motif 
depends on the total number of motifs in the database. In addition to 
the motifs annotated by the source data, we  inferred additional 
annotation files based on motif similarity and gene sequence. The first 
step in estimating the overrepresentation of each motif in a gene set is 
to calculate the area under the curve (AUC) for each motif-gene set 
pair. This calculation is based on recovery curves of the gene set 
against the ordered motifs. The NES for each motif is then calculated 
based on the AUC distribution of all motifs in the gene set.

2.1.8 Single-cell analysis
First, the expression profiles were read using the Seurat package, 

and low-expression genes were filtered out. The data were then 
standardized, normalized, and subjected to PCA analysis sequentially. 
The positional relationship between each cluster was determined 
through t-SNE analysis. Each cluster was subsequently annotated and 
analyzed separately. Important cells related to the occurrence of 
diseases were identified and annotated. Finally, marker genes for each 
cell subtype were extracted from the single-cell expression profiles 
using the FindMarkers function.

2.1.9 Candidate drug prediction and molecular 
docking

Assessing protein-drug interactions is crucial for determining 
whether target genes can serve as viable drug targets. In this study, 
we used the Drug-Gene Interaction Database (DGIdb 4.0, https://
www.dgidb.org/) for this purpose. DGIdb is a comprehensive database 
containing over 50,000 drug-gene interactions involving 10,000 genes 
and 15,000 drugs. The identified target genes were uploaded to DGIdb, 
allowing for the prediction of drug candidates to evaluate the 
medicinal potential of these target genes.

To further understand the effect of drug candidates on target 
genes and the druggability of these genes, this study also performed 
molecular docking at the atomic level to evaluate the binding energy 
and interaction patterns between drug candidates and their targets. 
Molecular docking simulations enable us to analyze the binding 
affinity and interaction modes between ligands and drug targets. By 
identifying ligands with high binding affinity and favorable interaction 
patterns, we  can prioritize drug targets for further experimental 
validation and optimize the design of potential drug candidates. In 
this study, Autodock Vina v.1.5.6, a computerized protein-ligand 
docking software, was used to perform molecular docking of the most 
significant drugs and the proteins encoded by the corresponding 
target genes. Drug structure data were obtained from DrugBank 
Online5, and the corresponding IDs are listed in Table  1. Protein 
structure data were downloaded from the Protein Data Bank (PDB, 
http://www.rcsb.org/), with the corresponding PDB IDs also shown in 
Table 1. Final structures were obtained for three proteins and three 
drugs. We removed all water molecules from the protein and ligand 
files and added polar hydrogen atoms. The grid boxes were centered 
to cover the structural domains of each protein, allowing unrestricted 
movement of the molecules. The grid points of the docking pockets 
were spaced at 0.04 nm. The entire molecular docking process was 
visualized using Autodock Vina v.1.5.6.

5 https://go.drugbank.com/
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2.2 Statistical analysis

All data processing, statistical analysis, and plotting were 
conducted in R 4.2.0 software. Correlations between two continuous 
variables were assessed via Pearson’s correlation coefficients. 
Continuous variables were analyzed by Wilcoxon rank-sum test or 
Student’s t-test. Categorical variables were statistically compared using 
Chi-square test or Fisher’s exact test. The C-indices of different 
variables were compared using the CompareC package. The ROC used 
to predict binary categorical variables was implemented via the pROC 
package. The time-dependent area under the ROC curve (AUC) for 
survival variables was conducted by the timeROC package.

We set a Type I  error acceptance threshold of 0.05, whereby 
original p-values obtained from the IVW method underwent FDR 
correction. Corrected p-values <0.05 were deemed indicative of 
significant causal relationships. Results with an uncorrected p-value 
<0.05 but a corrected p-value >0.05 were interpreted as potentially 
suggestive of underlying causal relationships, with causal effect 
estimates presented as OR and accompanied by 95% CI. All statistical 
tests were two-sided. p < 0.05 was regarded as statistically significant.

3 Results

3.1 Selection of characteristic genes via 
machine learning

80 machine-learning algorithm combinations were applied to 
select characteristic genes among DEGs in obesity. The SVM-CV 
(kernel: polynomial) with 10-fold cross-validation yielded the best 
C-index (Figure  2A). Seven characteristic genes were identified: 
PPP1CB, BHLHE40, FTO, CSNK1E, PCSK1, POMC, and LEPR 
(Figure 2B). To evaluate the robustness, we also calculated the F-score 
and accuracy for each model. Additionally, we  used external 
independent datasets (GSE241015, GSE231656, and GSE133666) to 
verify the predictive performance, which demonstrated good results 
(Supplementary Table S1).

3.2 Mendelian randomization analysis

To identify the circadian-related genes in obesity, we downloaded 
circadian-related genes from the Genecard database6 and extracted 
216 circadian rhythm genes (Supplementary Table S2) with relevance 
scores greater than 5. Three key genes identified through machine 

6 https://www.genecards.org/

learning overlapped with the circadian genes (Figure 2C). Using the 
“extract instruments” and “extract outcome data” functions, 
we  determined the causal correlations of three pairs of genes 
corresponding to the positive eQTL outcomes (Figure  3). The 
corresponding genes are BHLHE40, CSNK1E, and PPP1CB. The 
expressions of CSNK1E (OR: 0.922, 95% CI: 0.853–0.997, p = 0.043) 
and PPP1CB (OR: 0.958; 95% CI: 0.922–0.995; p = 0.027) may 
be associated with a lower risk of obesity, while BHLHE40 (OR: 1.093, 
95% CI: 1.010–1.183, p = 0.0028) may be associated with a higher risk 
of obesity (Supplementary Table S3). Sensitivity analysis and reverse 
causality were performed on the causal relationships of the three genes 
to determine their reliability (Supplementary Figure S4). The results 
show that excluding any SNP has no significant impact on the overall 
error bar, indicating that the selected causal relationships are robust 
(Figure 4). Therefore, these three genes are key candidates for our 
subsequent investigation.

3.3 Immune cell infiltration analysis

The immune microenvironment is composed of immune cells, 
extracellular matrix, various growth factors, inflammatory factors, and 
unique physical and chemical characteristics. It significantly influences 
disease diagnosis and the sensitivity of clinical treatments. This study 
demonstrates the proportion of immune cells in each sample and the 
correlations between different immune cells (Figures  5A,B). The 
results indicate that T cell co-inhibition and Treg cells show statistically 
significant differences in expression between groups (Figure  5C). 
Further analysis revealed that BHLHE40 is significantly positively 
correlated with chemokine receptor (CCR), para-inflammation, and 
inflammation-promoting, and significantly negatively correlated with 
CD8+ T cells and T cell co-stimulation. CSNK1E is significantly 
positively correlated with checkpoint markers, while PPP1CB shows 
a significant positive correlation with APC co-inhibition and a 
significant negative correlation with cytolytic activity, inflammation-
promoting, and mast cells (Figure 5D). Additionally, we obtained 
correlations between key genes and various immune factors, including 
immunosuppressive factors, immunostimulatory factors, chemokines, 
and receptors, from the tumor-immune system interactions database 
(TISIDB, http://cis.hku.hk/TISIDB/) (Figure  6). These analyses 
suggest that key genes are closely related to the level of immune cell 
infiltration and play a crucial role in the immune microenvironment.

3.4 GSEA pathway enrichment analysis

The specific signaling pathways are enriched in three key genes to 
explore the potential molecular mechanisms by which key genes affect 
the progression of obesity. The GSEA results show that the pathways 

TABLE 1 Docking results of available proteins with small molecules.

Target PDB ID Drug DrugBank ID Bingding energy

PPP1CB 1S70 MITOGLITAZONE DB11721 −6.58

CSNK1E 4HNI UMBRALISIB TOSYLATE DB14989 −7.70

BHLHE40 Q6NY50 (UNIPROT) TRICHOSTATIN A DB04297 −5.86

*The lower the binding energy, the better the binding effect and the higher the affinity.
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enriched by BHLHE40 include the Phagosome, Proteasome, and TNF 
signaling pathways (Figures 7A,B). Pathways enriched by CSNK1E 
include DNA replication, Oxidative phosphorylation, and Protein 
export (Figures 7C,D). Pathways related to PPP1CB include the IL-17, 
NF-κB, and P53 signaling pathways (Figures 7E,F).

3.5 GSVA pathway enrichment analysis

GSVA results show that high-expression BHLHE40 is enriched in 
IL6 JAK STAT3, cAMP PKA, and fatty acid metabolism pathways 
(Figure 8A). CSNK1E is mainly enriched in signaling pathways such 
as IL6 JAK STAT3, G2M Checkpoint, and P53 pathways (Figure 8B). 
PPP1CB is enriched in TNFα signaling, IL6 JAK STAT3, and G2M 
Checkpoint, and P53 pathways (Figure 8C). This suggests that key 
genes may influence disease progression through these pathways.

3.6 The relationship between obesity 
regulatory genes and key genes

Obesity-related genes were obtained through the GeneCards 
database. We analyzed the expression levels of obesity-related genes 
with the top  20 relevance score (Supplementary Figure S5) and 
analyzed the expression of genes coding protein between groups. It 
was found that the expressions of ENPP1, MC3R, and SIM1 were 
significantly different between controls and obesity (Figure  9A). 
Pearson correlation analysis was performed and we found that the 
expression levels of key genes were significantly correlated with the 
obesity-related genes. Among them, CSNK1E was significantly 
positively correlated with FTO (R = 0.58, p < 0.05), and PPP1CB was 
negatively correlated with PCSK1 (R = −0.553, p < 0.05) (Figure 9B).

3.7 Transcriptional regulation analysis of 
key genes

We used three key genes (BHLHE40, CSNK1E, and PPP1CB) for 
this analysis and found that they are regulated by common 
mechanisms, including multiple transcription factors. Consequently, 
we performed an enrichment analysis of these transcription factors 
using cumulative recovery curves. Motif-TF annotation and analysis 
results of important genes revealed that the best motif—cisbp_M0332 
and its highest NES is 4.55. We displayed all enriched motifs and 
corresponding transcription factors of key genes using Cytoscape 
(Figures 9C,D).

3.8 Single-cell sequencing analysis

We conducted the single-cell analysis using the Seurat package. 
The clustering of the cells performed by the tSNE algorithm results in 
15 subtypes (Figure 10A). Each subtype was annotated, and the 15 
clusters are categorized into 8 cell types: fibroblasts, T cells, NK cells, 
monocytes, endothelial cells, macrophages, tissue stem cells, and B 
cells (Figure 10B). The expression patterns of key genes across 8 cell 
types are presented in Figure  10C,D. Furthermore, co-expression 
analysis of obesity-regulated genes and key genes in single-cell data 

reveals the correlations among them (Supplementary Figures S6, S7). 
The result of AUCell analysis shows immune and metabolic pathways 
in different cell types and illustrates the associations between key 
genes and immune, metabolic pathways (Figure 10E).

3.9 Candidate drug prediction and 
molecular docking

In this study, the potential compounds were displayed based on 
interaction scores (Figure  11A). Our findings revealed that 
Mitoglitazone and Umbralisib tosylate emerged as the most significant 
drugs associated with PPP1CB and CSNK1E. Additionally, 
Trichostatin A exhibited the strongest interaction with BHLHE40. To 
assess the drug candidates’ affinity for the target and understand the 
druggability of the drug target, this study conducted molecular 
docking experiments. The results yielded three proteins with validated 
docking outcomes for the drugs (Table 1 and Figures 11B–D). Each 
drug candidate formed visible hydrogen bonds and strong electrostatic 
interactions with its protein target. Furthermore, each target’s binding 
pocket was effectively occupied by drug candidates. Mitoglitazone, 
Umbralisib tosylate, and Trichostatin A demonstrated low binding 
energies (−6.58, −7.70, −5.86 kcal/mol), indicating highly 
stable binding.

3.10 Key genes in chronic obese mice 
induced by high-fat diet

We validated the reliability of the model by assessing mouse body 
weight, serum glucose levels, glucose tolerance test, blood 
biochemistry test (total lipid, low-density lipoprotein cholesterol, 
high-density lipoprotein cholesterol, and triglyceride), and classical 
obesity-related genes (Supplementary Figure S8). Subsequently, 
we collected epididymal, mesenteric, perirenal, and retroperitoneal 
adipose tissues for quantitative polymerase chain reaction (qPCR), 
revealing that the expression levels of SERPINE1 (p < 0.05) and FTO 
(p < 0.01) were significantly elevated in the HFD group, while LEPR 
(p < 0.05), POMC (p < 0.01), PPP1CB (p < 0.05), and CSNK1E 
(p < 0.001) were downregulated (Figures 12A,B).

4 Discussion

Obesity, a complex disease influenced by numerous factors such 
as socioeconomic status, lifestyle, genetics, environmental conditions, 
and psychological health, has become a global health concern affecting 
individuals of all ages and regions. The incidence of obesity is steadily 
increasing especially in developed countries. The transformation of 
modern lifestyles, mental disorders, and the interaction of genetic and 
environmental factors play critical roles in the occurrence and 
development of obesity (26). Moreover, obesity and its complications, 
such as diabetes and cardiovascular diseases, increase the risk of 
mortality (27). Current management strategies for obesity include 
lifestyle modifications (28), anti-obesity drugs (29, 74–78), and 
bariatric surgery (30, 79–81). Due to the absence of specific 
pharmacological interventions, lifestyle changes remain crucial in 
managing obesity (31) and reduce the risk of cardiovascular diseases 
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(32). However, irregular lifestyles exacerbate the incidence of obesity. 
Mutations in circadian genes are linked to diet-related obesity, and 
high-fat diets can disrupt normal circadian rhythm and sleep. This 

suggests a bidirectional regulatory relationship between the biological 
clock and metabolism (33). Despite extensive studies on the role of 
circadian rhythm in lipid metabolism at the levels of gene and protein 

FIGURE 2

Selection of characteristic genes among DEGs in obesity via 80 machine-learning algorithm combinations. (A) C-index of estimating diagnostic 
efficacy in the multiple combinations of algorithms. DatasetA (Train set): GSE69039, DatasetB (Test set): GSE55008, DatasetC (Test set): GSE198012. 
(B) The average ranking represents for diagnostic performance of characteristic genes in different models. Model number: the numbers of 80 
machine-learning algorithm combinations. (C) The key circadian genes between characteristic genes of machine learning and circadian rhythm genes. 
Characteristic genes: genes with model number >10 and average rank <6, DEGs, different expression genes.
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in rodents (34), the specific regulatory mechanisms remain largely 
unknown. Therefore, it is essential to delve deeper into the 
pathogenesis of obesity to uncover the molecular regulatory 
mechanisms of key genes involved in obesity development (Figure 13). 
This could shed light on new therapeutic strategies and the 
development of targeted medicines for obesity.

Previously, there was limited research utilizing MR analysis to 
explore the relationship between circadian genes and obesity. In our 
study, associations were established between three circadian genes 
and obesity through MR analysis. However, an experimental study 
found that BHLHE40 is closely related to lipid metabolism, with gene 
knockdown significantly reducing lipid levels and oxidative stress 
(35). Additionally, BHLHE40, as an essential transcription factor of 
sterol-responsive element-binding protein (SREBP), regulates fat 
synthesis (36). These studies confirm that high levels of BHLHE40 
expression might increase the risk of obesity. Previous observational 

studies have shown no significant association between the genetic 
variation of CSNK1E and body mass index (BMI) (37). However, our 
forward and reverse MR analyses indicate a significant association 
with obesity and a reduced risk of obesity. We believe this discrepancy 
may be influenced by potential confounding factors, biases in reverse 
causality, and sample size. Regarding PPP1CB, it has been shown to 
impact adipogenesis in mice by regulating the early adipogenesis 
process (38). However, there have been no reports on the association 
between PPP1CB expression levels and obesity in humans. Our MR 
results found a significant causal relationship between PPP1CB and 
obesity, suggesting that inhibition of PPP1CB may reduce the risk of 
obesity. Although the biological rationale for the association between 
disrupted circadian rhythms and obesity risk is sound, more evidence 
is needed to elucidate their mechanisms. This includes preventive 
randomized controlled trials and animal experiments to provide 
insights into molecular biology.

FIGURE 3

(A–C) Scatter plot showing the association of the SNP effects on obesity against the SNP effects on the expression of BHLHE40. The lines indicate the 
estimate of the effect using the inverse-variance weighted, MR-Egger, weighted mode, and weighted median method. Circles indicate marginal 
genetic associations with obesity and risk of BHLHE40, CSNK1E, and PPP1CB expression for each variant. Error bars indicate 95% CIs. SNP, single 
nucleotide polymorphism; eQTL, expression quantitative trait loci.
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The key circadian genes play crucial regulatory roles in lipid 
metabolism. BHLHE40, a transcriptional suppressor, competes for 
the E-box binding site in the promoter of PER1 and inhibits the 
activation of CLOCK-BMAL1/BMAL2 heterodimers (39, 82), which 
activates TAK/STAT pathway and increases the plasma concentration 
of leptin. Patients develop leptin resistance, disrupt neuropeptide 
synthesis, and impair vagus nerve input neuron signaling. This 
disruption leads to altered food intake behavior, energy 
consumption, and lipid metabolism, resulting in type A obesity (6). 
Furthermore, the negative regulation of circadian genes by 
BHLHE40 gradually leads to circadian disruption in central and 
peripheral organs, potentially affecting lifestyle choices and 
exacerbating obesity. BHLHE40 may also contribute to the 

regulation of chondrocyte differentiation via the cAMP pathway 
(40). However, research on the implications of BHLHE40  in the 
pathogenesis of obesity is relatively limited, with most studies 
focusing on the immune response (41, 83, 84). Additionally, 
BHLHE40 contributes to expression of TYR/TRP1/TRP2 and 
melanogenesis by activating the cAMP-regulated melanocortin 
signaling and PI3K/Akt pathways through protein secretion, leading 
to an imbalance in energy homeostasis.

CSNK1E, a serine/threonine protein kinase, determines the 
length of the circadian rhythm by controlling the nuclear transport, 
phosphorylation, and degradation of PER1 and PER2 (42, 85). 
PPP1CB, also a serine/threonine protein kinase, can regulate 
circadian rhythm by modulating the phosphorylation and 

FIGURE 4

(A–C) Leave-one-out permutation analysis of the causal association between BHLHE40, CSNK1E, PPP1CB and obesity. MR, Mendelian randomization; 
SNP, single nucleotide polymorphism.
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FIGURE 5

Immune cell infiltration in obesity and normal patients. (A) Histogram showing the composition of 29 immune cell phenotypes in each sample. (B) The 
correlations of 29 immune cell phenotypes in obesity. (C) Identifying the significantly different immune cells in obesity and normal patients by 
Wilcoxon test. (D) The correlations of 29 immune cell phenotypes and BHLHE40, CSNK1E, PPP1CB. Red: positive correlation; Blue: negative 
correlation. *p  <  0.05 and **p  <  0.01.
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dephosphorylation of CSNK1E. Abnormal expressions of PPP1CB 
and CSNK1E in obesity directly affect the core clock genes (PER1, 
PER2), and the accumulation of PERs and CRYs in the nucleus 
inhibits the transcription of CLOCK and BMAL1, disrupting energy 
homeostasis and leading to obesity. Considering the correlation 
between CSNK1E and FTO, it is plausible that CSNK1E may disrupt 
normal fat metabolism and energy homeostasis by regulating FTO 

expression (43, 86, 87). These two genes regulate the mitosis of 
adipose precursor cells by affecting the cell cycle and increasing the 
prolipogenic factor RUNX1T1. Besides, the activation of the 
mTORC1 pathway promotes lipid de novo synthesis through SREBP 
transcription factors. Abnormal activation of this pathway stimulates 
the expression of metabolic genes associated with fatty acid and 
cholesterol biosynthesis.

FIGURE 6

(A–E) The correlations of BHLHE40, CSNK1E, PPP1CB and chemokine, immunoinhibitor, immunostimulator, MHC, immunoreceptor. MHC, major 
histocompatibility complex.

https://doi.org/10.3389/fnut.2024.1407265
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Cheng et al. 10.3389/fnut.2024.1407265

Frontiers in Nutrition 12 frontiersin.org

Obesity is characteristically associated with chronic 
inflammation in adipose tissue, which intimately relates to the 
abnormal activation of the infiltration of inflammatory cells. 

Chronic inflammatory diseases observed in cases of severe obesity 
are characterized by persistent activation of the innate immune 
system (44, 88). Several immune molecules have been implicated in 

FIGURE 7

(A,C,E) Enrichment plots for the representative pathways in obesity by GSEA function analysis. (B,D,F) Genes in the representative pathways by GSEA 
function analysis. GSEA, gene set enrichment analysis.
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the pathogenesis of obesity, such as TNFα, which shows elevated 
plasma levels in obese patients (45). Additionally, studies report 
activated complement systems (46, 89) and acute phase proteins 
(c-reactive protein and α1-acid glycoprotein) (47) can be reduced 
after weight loss. The immune cells in obesity significantly contribute 
to the production of inflammatory mediators. Both clinical and 

experimental studies have demonstrated that adipose tissue 
macrophages (ATMs) secrete pro-inflammatory cytokines, including 
interleukin-1β (IL-1β) and IL-18, which are essential factors in the 
progression of obesity-related metabolic disorders (48). Our study 
revealed a significant correlation between key genes and acquired 
immunity, which differs from previous research findings. This 
indicates that circadian genes may influence the development of the 
obesity-related immune infiltration landscape through mechanisms 
other than regulating macrophages.

Studies have indicated that obesity modifies the immune status 
of the body. Researchers observed a notable increase in the count of 
CD4+ T cells, Treg cells, and CD8+ T cells in the obese mice induced 
by high-fat diets. This indicates an escalation in the overall 
inflammatory response (49). These findings align with the results of 
our study. Moreover, our research showed that BHLHE40 amplifies 
the inflammatory response in the pathogenesis of obesity by 
instigating the adaptive immune response of Treg cells and CD4+ T 
cells and promoting the chemotaxis of vital immune molecules, such 
as CCR, CXCL, and TNFRSF, in tissues. The pro-inflammatory 
property of BHLHE40 may also be related to its ability to enhance 
the expression of HIF1α in macrophages, thereby promoting the 
expression and function of inflammatory genes (50). Fujita et al. (35) 
found that knocking out BHLHE40 reduced lipid levels in mice and 
activated lysosomal activity in macrophages, which is involved in 
cholesterol clearance (51). Our study did not find expression 
differences of BHLHE40 in macrophages, suggesting that further 
single-cell studies based on immune cell populations may be needed. 
BHLHE40 expression is reduced in the livers of leptin-deficient and 
leptin receptor-deficient mice, with a significant increase in liver 
triglycerides (52). In contrast, mice with alcohol-induced fatty liver 
showed a slight increase in liver triglyceride as BHLHE40 expression 
increased (53). Additionally, DEC1 inhibits adipocyte differentiation 
by reducing the expression of peroxisome proliferator-activated 
receptor gamma (PPARγ) (54). These animal experiments differ 
from our study results, suggesting that other molecular changes 
regulated by BHLHE40 may contribute to the development 
of obesity.

Prior studies have reported that CSNK1E can regulate genes 
controlling T-cell division and promote the transcription and 
expression of cytokine genes by activating either the NF-κB1 or 
NF-κB2 pathway (55). In this study, CSNK1E, as an immune 
checkpoint, modulates the activation of the immune system by 
inhibiting the release of B2M and TNFSF4. Lower expression of 
CSNK1E could accelerate obesity-related inflammation. When 
circadian core genes (CSNK1E, NFKB2, and RORα) are highly 
expressed, they downregulate inflammatory response (IL1B and 
IL8) and lipid metabolism (ABCA1, ABCD1, and ABCG1) by 
NF-κB pathway (56), which aligns with our findings. However, our 
results indicate that CSNK1E primarily affects the immune status 
of obese patients, without direct evidence of its impact on lipid 
metabolism. PPP1 is a serine/threonine-specific protein 
phosphatase involved in regulating various cellular processes (57). 
The human catalytic subunit (PPP1C) is encoded by 3 separate 
genes (PPP1CA, PPP1CB, and PPP1CC). PPP1CB can 
dephosphorylate CSNK1E (58), suggesting that these two genes 
may contribute to the immune landscape in obesity collectively. 
Animal studies have indicated that PPP1CB regulates hepatic fatty 
acid synthesis by phosphorylating WDR6, disrupting triglyceride 

FIGURE 8

Gene sets enriched in samples with the expression of BHLHE40 (A), 
CSNK1E (B), or PPP1CB (C) by GSVA function analysis. Red: High 
expression; Blue: Low expression. GSVA, gene set variation analysis.
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synthesis (59). PPP1CB might inhibit the progression of obesity by 
managing lipid metabolism directly. PPP1CB might exert 
pro-inflammatory effects by activating inflammatory pathways such 

as the IL-17 signaling pathway and NF-κB signaling pathway, which 
activate T cells and monocytes. However, no studies have focused 
on the role of PPP1CB in immune inflammation and pathogenesis 

FIGURE 9

(A) The expression levels of the top 18 obesity-related genes coding protein in obesity and normal patients. (B) The correlations of BHLHE40, CSNK1E, 
PPP1CB and top 18 obesity-related genes by Pearson analysis. (C,D) Transcriptional regulation analysis of key genes using RcisTarget. ns, no 
significance (Student’s t-test). *p  <  0.05 and **p  <  0.01.
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FIGURE 10

(A) tSNE representation of human adipose cells colored into 15 distinct clusters. (B) tSNE plot of human adipose cells colored by 8 major cell types in 
the obesity group by SingleR algorithm. (C,D) The expression levels and distribution of BHLHE40, CSNK1E, and PPP1CB in 8 types of cells. (E) The 
expression levels of BHLHE40, CSNK1E, and PPP1CB in immune, metabolism, signaling, and proliferation pathways on the single-cell data using the 
AUCell function.

https://doi.org/10.3389/fnut.2024.1407265
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Cheng et al. 10.3389/fnut.2024.1407265

Frontiers in Nutrition 16 frontiersin.org

in obesity. We  postulate that obese patients may exhibit high 
expression of PPP1CB in immune cells, which might increase the 
dephosphorylation process of CSNK1E. This could potentially 
mitigate the anti-inflammatory effect of CSNK1E, promoting an 
increase in inflammatory factors and immune cell infiltration. This 
might represent a protective mechanism of the body against obesity. 
Additionally, obese patients often have obstructive sleep apnea 
(OSA) (60, 89, 90), and the expression levels of circadian genes have 
been shown to change in OSA (61, 91–93). This might provide a 
new potential mechanism linking obesity with OSA. Long-term 
sleep disorders in OSA patients disrupt the circadian rhythm, 
affecting normal metabolic pathways and leading to obesity. 
However, this is speculative, and the specific mechanism by which 
OSA leads to obesity is not yet clear.

The relationships between obesity and inflammation were 
first reported nearly 30 years ago (62), revealing that 
inflammatory factors secreted by infiltrating immune cells 
disrupt the function and metabolic dynamics of various metabolic 
cells, exacerbating the progression of obesity and metabolic 
diseases (63, 94–96). More recent studies have focused on the 
molecular changes in obesity-related inflammation, highlighting 
the roles of T cells and macrophages in promoting obesity (64, 
97). These findings align with the results of our study. 
Furthermore, we  analyzed the correlations between circadian 

genes immune cells, and cytokines, discovering that circadian 
genes are directly involved in the chronic inflammatory process 
of obesity. Evidence suggests that circadian disorders lead to 
systemic inflammation, supporting this view (65). Therefore, 
regulating the circadian rhythm can not only prevent and reduce 
obesity but also alleviate inflammatory responses in patients, 
restoring normal immune function and reducing the risk of 
complications such as metabolic disorders. To enhance the 
impact and applicability of our findings, we propose the following 
experiments. C57BL/6 J male mice aged 8–12 weeks will be used 
to create an obese model induced by high-fat diets, ensuring the 
avoidance of diabetes and other accompanying diseases. Daily 
recordings of blood sugar, body length, weight, and Lee’s index 
will be taken, with an index greater than 0.50 indicating obesity. 
Western blotting will be employed to measure the levels of gene-
encoded proteins in the adipose tissue of obese and normal mice. 
We  will also investigate characteristic genes and expression 
products of lipid metabolism pathways, as well as the NF-κB, 
IL-17, and P53 pathways. Correlations between key genes and 
pathways will be calculated to enhance our understanding of the 
molecular mechanisms involved. Additionally, we will explore the 
regulatory networks of genes using RNA pull-down, 
immunoprecipitation, and chromatin immunoprecipitation 
sequencing (ChIP-seq). These techniques will provide further 
insights into the interactions and regulatory mechanisms that 
govern gene expression in the context of obesity 
and inflammation.

So far, observational studies on the association between 
circadian disorders and obesity risk have been insufficient (6, 66, 
98). Our study found significant associations between circadian 
genes and obesity, indicating that circadian disorders may not 
be  conducive to preventing obesity. Therefore, healthcare 
providers should advise patients to maintain good sleep patterns 
and avoid unhealthy lifestyles, such as staying up late and shift 
work. Although meta-analyses have shown that circadian 
disorders increase lipid levels and promote obesity (67, 99), Keith 
et al. found no significant association between circadian disorders 
and BMI (68). Thus, the relationship between circadian rhythm 
and obesity remains controversial. We found that previous meta-
analyses included case–control studies, which are insufficient to 
prove causal relationships due to confounding factors and reverse 
causality bias. In contrast, our MR results are more convincing as 
they avoid these confounding factors and biases. Therefore, the 
relationship between circadian disorders and obesity is 
interconnected and warrants further investigation.

The circadian rhythm and cascade of inflammation lead to 
the development of obesity, and the involvement of cytokines 
represents a complex and potential interaction (Figure  13). 
However, MR analysis can isolate their individual effects and 
evaluate the relationship between obesity and these cytokines 
from a genetic perspective. Despite the robustness of our 
findings, there are limitations to our research. Our results mainly 
derive from statistical analysis, and extensive experiments are 
necessary for future study. Genetic variation usually has a 
minimal impact on most risk factors, which may result in lower 
statistical power of MR analysis and a risk of false negative 
results. By multiple genetic variations related to risk factors, the 
proportion of variance explained can be  increased, thereby 

FIGURE 11

(A) Candidate drug predicted using DGIdb. (B–D) Docking results of 
available proteins and small molecules. (B) PPP1CB docking 
Mitoglitazone, (C) CSNK1E docking Umbralisib tosylate, (D) BHLHE40 
docking Trichostatin A.
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enhancing statistical power. In addition, individuals of European 
ancestry can increase demographic bias and it may restrict the 
generalizability of our findings to other populations. However, 

the extensive genetic diversity in our datasets provides a valuable 
foundation for studying the correlations between circadian 
rhythm, immune cells, and obesity.

FIGURE 12

The expression of key genes related with circadian rhythm and obesity in NC- and HFD-fed mice. (A) The expression pattern of key genes related with 
obesity across different groups in mice (n  =  3). (B) The expression pattern of key circadian genes across different groups in mice (n  =  6). Statistical 
analysis was performed using Student’s t test. Data are expressed as mean  ±  standard deviation. *p  <  0.05, **p  <  0.01, and ***p  <  0.001.

FIGURE 13

Showing the relationship between circadian genes, lipid metabolic pathways in obesity, the immune landscape, and the interactions between them.
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5 Conclusion

Our research findings suggest that the circadian genes 
(BHLHE40, CSNK1E, and PPP1CB) could serve as novel biomarkers 
for understanding the pathogenesis of obesity. Furthermore, we have 
identified potential associations between these core genes and 
infiltrating immune cells. These findings offer new perspectives on 
the prevention and treatment of obesity.
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