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Inhibitory effects of cassiae 
semen extract on the formation 
of 2-amino-1-methyl-6- 
phenylimidazo [4,5-b] pyridine 
(PhIP) in model system
Di Yu *, Youyou Li , Donghua Jiang  and Fanlei Kong *

School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China

Introduction: 2-Amino-1-methyl-6-phenylimidazole [4,5-b] pyridine (PhIP), a 
heterocyclic amine (HAA), is found in meat products heated at high temperatures. 
However, PhIP is a mutagenic and potential carcinogenic compound. Cassiae 
semen, a type of medicine and food homology plant, is abundant in China and 
has been less applied for inhibiting heterocyclic amines.

Methods: To investigate the inhibitory effect of cassiae semen extract on PhIP 
formation within a model system and elucidate the inhibitory mechanism, an 
ultrasonic-assisted method with 70% ethanol was used to obtain cassiae semen 
extract, which was added to a model system (0.6 mmol of phenylalanine: creatinine, 
1:1). PhIP was analyzed by LC–MS to determine inhibitory effect. The byproducts of 
the system and the mechanism of PhIP inhibition were verified by adding the extract 
to a model mixture of phenylacetaldehyde, phenylacetaldehyde and creatinine.

Results: The results indicated that PhIP production decreased as the 
concentration of cassiae semen extract increased, and the highest inhibition rate 
was 91.9%. Byproduct (E), with a mass–charge ratio of m/z 199.9, was detected 
in the phenylalanine and creatinine model system but was not detected in the 
other systems. The cassiae semen extract may have reacted with phenylalanine 
to produce byproduct (E), which prevented the degradation of phenylalanine by 
the Strecker reaction to produce phenylacetaldehyde.

Discussion: Cassiae semen extract consumed phenylalanine, which is the 
precursor for PhIP, thus inhibiting the formation of phenylacetaldehyde and 
ultimately inhibiting PhIP formation. The main objective of this study was to 
elucidate the mechanism by which cassiae semen inhibit PhIP formation and 
establish a theoretical and scientific foundation for practical control measures.
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1 Introduction

Heterocyclic amines (HAAs) are carcinogenic and mutagenic compounds found in meat 
products that are cooked at high temperatures. At present, more than 30 different HAAs have been 
identified and isolated (1). According to formation temperature, HAAs can be classified into 
thermic HAAs (IQ type) and pyrolytic HAAs (non-IQ type), with the IQ type forming at 
temperatures between 100 and 300°C and the non-IQ type forming at temperatures greater than 
300°C (2). Among the HAAs known to data, PhIP has been established to be the most abundant 
and most common (3). PhIP, an IQ type HAAs, is a result of dehydration, cyclization and 
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condensation of creatinine and phenylalanine in a system (4). PhIP is a 
class 2B carcinogen listed by the International Agency for Research on 
Cancer (IARC) (5). Epidemiologic data indicate that PhIP causes 
mutations following metabolic activation, which can result in colon, 
breast, liver, and stomach cancers (6). During the production and 
processing of meat products, the formation of PhIP is almost inevitable. 
Effectively controlling the formation of PhIP is highly important for 
human health and food safety.

A number of studies suggest that PhIP is produced by the reaction 
of phenylalanine with creatinine. The Strecker degradation reaction 
transforms phenylalanine to phenylacetaldehyde. Afterward, an aldol 
condensation reaction with hydrolyzed and cycled creatinine results 
in the formation of a butyl aldol dehydration product. Finally, PhIP is 
formed from the aldol condensation product, which undergoes a 
Schiff base reaction. According to 13C labeling, the benzene ring of 
phenylalanine is a constituent of PhIP, whereas the imidazole ring is 
derived from creatinine (7). In addition, a recent study revealed that 
the main thermal degradation product of creatinine was formamide, 
which reacted with the aldol condensation product to close the 
pyridine ring, leading to the formation of PhIP, and the reaction also 
involved active free radicals (8–14). Studies have shown that the 
addition of fruit extract, rosemary oleoresin or olive oil during beef 
processing can inhibit PhIP formation (12–14). Quelhas et al. (15) 
marinated beef in green tea for several hours before frying and found 
that the content of PhIP decreased significantly compared with that in 
the blank control group. Wong et al. (16) reported that six vitamins, 
including riboflavin (VB2), nicotinic acid (VB3), pantothenic acid 
(VB5), folic acid (VB9), cobalamine (VB12) and pyridoxal 
hydrochloride (VB6), inhibited PhIP formation by more than 40% in 
a simulated system and in fried roasted beef. Linghu et al. (17) studied 
the inhibitory effects of amino acids (tryptophan, lysine, proline, 
leucine, methionine, valine, threonine, phenylalanine, and aspartic 
acid) on PhIP. The results showed that PhIP inhibition and the 
phenylacetaldehyde scavenging activity of amino acids were correlated 
when phenylacetaldehyde and amino acids were heated. On the one 
hand, antioxidants are being added (13, 18) to food products to inhibit 
the formation of HAAs. On the other hand, the precursor of PhIP 
could also inhibit the formation of HAAs. Yu et al. (19) reported that 
creatinine inhibited PhIP formation by forming adducts with 
hydrogen bonds at the N2 and N3 sites.

Cassiae semen, which belongs to Leguminosae, can be divided 
into Cassia obtusifolia L. and Cassia tora L., and its medicinal parts 
mainly consist of the dried, mature seeds (20). Cassiae semen, a type 
of medicine and food homology plant, is abundant in China. This 
plant contains anthraquinone, naphthopyranone, fatty acids, amino 
acids, inorganic elements and other chemical components, among 
which the most important are anthraquinone components (21). The 
plant exhibit antiaging, anti-inflammatory, free radical scavenging and 
antibacterial effects (22–27). Extract of cassiae semen was generated 
in previous studies (28, 29), and it was chemically analyzed and 
standardized. Studies have shown that the main components of cassiae 
semen are better extracted through ultrasonic extraction with ethanol 
as the solvent; compared to traditional methods, this method is less 
time consuming and generates a greater yield (30).

The ultrasonic-assisted method was used to obtain cassiae semen 
extract in this work. Based on the existing research, the inhibitory 
effects of different amounts of cassiae semen extract on the formation 

of PhIP were investigated in phenylalanine and creatinine (1:1) 
model systems. To better characterize the probable inhibitory 
pathway of cassiae semen extract on the formation of PhIP, the effects 
of cassiae semen extract on precursors of PhIP (phenylalanine/
creatinine), intermediates (phenylacetaldehyde), byproduct and PhIP 
were further evaluated in the model system to clarify the underlying 
inhibitory pathways. Therefore, the main objective of this study was 
to elucidate the mechanism by which cassiae semen inhibit PhIP 
formation and establish a theoretical and scientific foundation for 
practical control measures, providing valuable information for 
improving food safety.

2 Materials and methods

2.1 Materials

All the chemicals and solvents used were of mass spectrometry or 
analytical grade. PhIP was purchased from Toronto Research 
Chemicals (North York, Ontario, Canada). Creatinine, 
L-phenylalanine, and phenylacetaldehyde were purchased from 
Shanghai McLean Biochemical Technology Co., Ltd. (Shanghai, 
China). Cassiae semen was purchased from Tongrentang (Bozhou, 
China). All the other chemicals used were purchased from Semerfer 
Technology Co., Ltd. (Shanghai, China), Chengdu Cologne Chemicals 
Co., Ltd. (Chengdu, China), Shanghai Jizhi Biochemical Technology 
Co., Ltd. (Shanghai, China) or Jiangsu Kaiji Biotechnology Co., Ltd. 
(Jiangsu, China). All the solutions were prepared with deionized 
water. Experimental research on plants, including the collection of 
plant material, was carried out in compliance with institutional, 
national or international norms and legislation.

2.2 Preparation of cassiae semen extract

Based on previous extraction methods (31), cassiae semen extract 
was prepared by an ultrasonic-assisted method using ethanol as the 
solvent. A solution of cassiae semen was extracted in an ultrasonicator 
at 70°C for 1 h before 70% ethanol was added at a material to liquid 
ratio of 1:40. The mixture was added and centrifuged at 3500 rpm for 
10 min. The obtained solution was a concentrated solution, which was 
frozen in ice cubes in a refrigerator at −18°C. Finally, the solution was 
evaporated and freeze-dried.

2.3 Preparation of the model reaction 
mixture

The extract (0, 0.01, 0.03, 0.05, 0.10 or 0.15 g) was added to a 
model system composed of phenylalanine (0.6 mmol) and creatinine 
(0.6 mmol) and dissolved in 10 mL of water. The reactants were 
combined in 25 mL PTFE test tubes with a stainless steel exterior liner. 
The reaction mixture was placed in a forced air oven at 200°C for 3.5 h. 
After heating, the containers were placed in a cold-water tank, and the 
water bath was cooled to a normal temperature. The samples were 
filtered through a 0.22 μm pore filter to generate the sample solution. 
The samples were stored at 4°C for further analysis.
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2.4 Preparation of phenylacetaldehyde/
creatinine/cassiae semen extract and 
phenylalanine/cassiae semen extract in the 
reaction mixture

In order to explore the mechanism by which cassiae semen 
inhibits PhIP formation, cassiae semen extract (0.05 g) was added to 
two separate systems composed of phenylacetaldehyde, creatinine 
(0.6 mmol, 1:1) and phenylalanine (0.6 mmol), and dissolved in 
10 mL of water. The reactants were combined in 25 mL PTFE test 
tubes with a stainless steel exterior liner. The reaction mixture was 
placed in a forced air oven at 200°C for 3.5 h. After heating, the 
containers were placed in a cold-water tank, and the water bath was 
cooled to a normal temperature. The samples were filtered through a 
0.22 μm pore filter to generate the sample solution. The samples were 
stored at 4°C for further analysis.

2.5 Determination of the thermal 
degradation components of cassiae semen 
extract

First, 0.05 g of cassiae semen extract was weighed accurately and 
10 mL of water was added. The reactants were combined in 25 mL 
PTFE test tubes with a stainless steel exterior liner. The reaction 
mixture was placed in a forced air oven at 200°C for 3.5 h. After 
heating, the containers were placed in a cold-water tank, and the water 
bath was cooled to a normal temperature. The samples were filtered 
through a 0.22 μm pore filter to generate the sample solution. The 
samples were stored at 4°C for further analysis.

2.6 Preparation of the phenylacetaldehyde 
derivative

Phenylacetaldehyde cannot be directly detected by LC-MS, whereas 
can the derivative of phenylacetaldehyde through derivatization 
reactions. The method used to prepare the phenylacetaldehyde derivative 
was slightly modified according to the methods of Di et  al. (32) 
Phenylacetaldehyde (1 mL) and o-phenylenediamine (1 mL, 1.00 mg/
mL) were mixed and placed in a biochemical incubator at 25°C for 12 h 
to generate benzimidazole (2-PB). The samples were filtered through a 
0.22 μm pore filter membrane to generate a sample solution. The samples 
were stored at 4°C.

The model system reaction solution (1 mL) and 
o-phenylenediamine (1 mL, 1.00 mg/mL) were mixed. Sample 
solutions were obtained according to the above method. The samples 
were stored at 4°C.

2.7 LC-MS analysis

Ten microliters of sample were analyzed by an HPLC-MS/MS 
system (Waters Company, United States), which consisted of a Waters 
Quaternary Solvent Manager-R pump, Waters Cortecs C18+ (2.7 μm, 
2.1 mm × 100 mm) column, and Waters XDR and Waters 2,998 PDA 
detectors connected to a triple quadrupole mass spectrometer. A 

positive electrospray ionization interface was used for sample 
detection, mobile phase A was composed of methanol, and mobile 
phase C was composed of water and acetic acid (1,000/1, v/v). The 
elution procedure was as follows: 5–90% A, 0–2 min; 90–80% A, 
2–4 min; 80–70% A, 4–5 min; 70–5% A, 5–6 min; and 5% A, 6–7 min. 
The mobile phase was subsequently transported in isocratic mode at 
a speed of 0.2 mL/min. ESI positive ion mode and selected ion 
monitoring (SIR) or multiple reaction monitoring (MRM) mode were 
used for mass spectrometry. The MS operating conditions were as 
follows: capillary voltage, 0.8 kV; capillary temperature, 300°C; 
desolvation temperature, 550°C; and cone voltage, 30 V. In this study, 
MS/MS fragmentation at m/z 225 to 210 was characterized as PhIP 
(33), MS/MS fragmentation at m/z 199 to 104 was characterized as 
byproduct (E), and the m/z 104 and m/z 78 were secondary fragment 
ions of the phenylalanine standard.

2.8 Data analysis

Statistical analysis of the data was performed using Microsoft 
Excel version 2016, and all tests were carried out three times. The 
AVERAGE function was used to calculate the mean peak area, and 
the STDEV function was used to calculate the standard deviation. 
The experimental results are expressed as the mean and 
standard deviation.

3 Results

3.1 Changes in the phenylalanine, 
phenylacetaldehyde, creatinine, and PhIP 
contents in the model reaction

The retention times of the precursor and product were 
determined based on the standard product. The retention time of 
phenylalanine was 2.38 min and the main product ions were m/z 104 
and m/z 78; the retention time of creatinine was 1.04 min and the 
main product ion was m/z 86; and the retention time of PhIP was 
3.11 min and the main product fragment ion was m/z 209 (Figures 1, 
2). The retention time of 2-PB was 3.16 min in MRM mode, and the 
main product ion was m/z 130 fragment ion. As the amount of 
cassiae semen extract was increased, the levels of the four compounds 
changed to different extents; the level of creatinine increased, while 
the concentrations of the other compounds, phenylalanine, 
phenylacetaldehyde and PhIP decreased (Figure 3). The inhibitory 
effect was gradually enhanced with the addition of cassiae semen 
extract, and the inhibitory rates were 64.7, 68.9, 89.3, and 91.9%, 
respectively. In the model system, cassiae semen extract strongly 
inhibited PhIP formation. When the amount of cassiae semen extract 
was 0.10 g, the rate of ethanol extract inhibition was the greatest, 
reaching 91.9%. The present analysis revealed that the contents of 
phenylalanine and phenylacetaldehyde reached a minimum, when 
PhIP production was minimal, while the content of creatinine 
reached the maximum. It was speculated that the extract of cassiae 
semen might consume phenylacetaldehyde or phenylalanine to 
impede the formation of PhIP, while the consumption of creatinine 
decreased and its content increased.
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FIGURE 1

MRM diagram of the phenylalanine standard (A). Secondary fragment diagram of the phenylalanine standard (B). MRM diagram of the creatinine 
standard (C). Secondary fragment diagram of the creatinine standard (D).
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3.2 Identification of thermal degradation 
products of cassiae semen extract and 
byproduct (E)

The thermal degradation product of cassiae semen showed a 
stable peak at 3.09 min, which may have been the main thermal 
degradation product that reacted with phenylalanine, creatinine 
or phenylacetaldehyde, thereby inhibiting PhIP formation. In the 
model systems composed of phenylalanine, creatinine and cassiae 

semen extract, the [M + H]+ peak appeared at 3.04 min with a 
mass-to-charge ratio of m/z 199.9 in the SIR chromatogram. The 
secondary mass spectrometry fragments were m/z 104.6 and 78.6 
and could be used as a qualitative basis for the generation of the 
byproduct (E) (Figure 4). To investigate the relationship between 
the byproduct (E) and PhIP, two systems composed of 
phenylalanine and phenylacetaldehyde/creatinine were reacted 
with cassiae semen extract respectively, and the byproducts 
were monitored.
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FIGURE 2

MRM diagram of the PhIP standard (A), MRM diagram of PhIP in the model system (B), Secondary fragment diagram of PhIP in the model system (C).
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3.3 The relationship between the 
byproduct (E) and PhIP

To explore the correlation between byproduct (E) and PhIP in model 
systems, we generated a scatter plot with the amount of cassiae semen as 
the abscissa and the byproduct content as the ordinate (Figure  4). 
Moreover, using the correlation function in Excel, the correlation 
coefficient between the byproduct (E) change and the PhIP inhibition 
rate was calculated. The variables are more relevant when the correlation 
coefficient is closer to 1. With an increase in cassiae semen extract, the 
byproduct (E) concentration increased, and the inhibitory effect of 
cassiae semen extract on PhIP also increased (Figure 5). The correlation 
coefficient was 0.8, revealing a strong positive correlation between the 

change in byproduct (E) and the inhibition rate of PhIP; therefore, the 
inhibitory effect of the cassiae semen extract on PhIP may be related to 
byproduct (E). In addition, the byproduct (E) was detected only in the 
phenylalanine/creatinine and phenylalanine systems and was not present 
in the phenylacetaldehyde/creatinine system, indicating that 
phenylalanine, the precursor of PhIP, may be  closely related to the 
byproduct (E) (Table 1).

3.4 Formation of byproduct (E)

In two model systems composed of phenylacetaldehyde/creatinine 
and phenylalanine, it was found that byproduct (E) could not 
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FIGURE 3

Effect of adding cassiae semen on phenylalanine or phenylacetaldehyde (A), Effect of adding cassiae semen on creatinine (B). (Means with different 
letters are significantly different p  <  0.05).

TABLE 1 System construction and byproduct detection.

System Phenylalanine Creatinine Phenylacetaldehyde Cassiae 
semen

Byproduct (E)

1 ✓ ✓ ✓ +

2 ✓ ✓ +

3 ✓ ✓ ✓ −
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be detected in the model system of phenylacetaldehyde/creatinine and 
phenylacetaldehyde. However, the byproduct (E) was present in the 
model, which contains phenylalanine. The product ion of the 
byproduct (E) was m/z 104, which was consistent with the product ion 
of phenylalanine. Moreover, the byproduct (E) content increased as 
the dose of the cassiae semen extract increased in the phenylalanine 

and creatinine model system. It was speculated that the formation of 
byproduct (E) might be related to phenylalanine. Byproduct (E) could 
not be produced by the reaction of phenylacetaldehyde with cassiae 
semen extract, but it could be  produced by the reaction of 
phenylalanine with cassiae semen extract, demonstrating that the two 
substances may be the precursors of byproduct (E).
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Byproduct (E) SIR scanning pattern diagram (A), Fragment diagram of byproduct (E) (B), Effect of adding cassiae semen on the byproduct (E) (C). 
(Means with different letters are significantly different p  <  0.05).
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FIGURE 6

Byproduct (E) fragmentation mechanism.

4 Discussion

Many studies have shown that phenylalanine and creatinine are 
precursors of PhIP. Nevertheless, PhIP is not directly produced by 
these two precursors, instead, it is created through the transformation 
of numerous significant intermediates. First, phenylalanine is 
degraded by the Strecker reaction to form phenylacetaldehyde, which 
reacts with creatinine to form intermediates after butyraldehyde is 
produced by aldol condensation. In the subsequent reaction, 
butyraldehyde dehydration products are produced by dehydration and 
converted into PhIP. The different reaction stages of PhIP formation 
involve the phenylalanine, phenylacetaldehyde and butyraldehyde 
removal, important compounds that form PhIP (1, 7–11, 34).

The experimental results showed that phenylalanine and cassiae 
semen extract may be precursors of byproduct (E), and the secondary 
fragment of byproduct (E) at m/z 104.6 may be  related to 
phenylalanine. As shown in Figure 1, the phenylalanine standard ion 
fragment has a m/z 104. The product ion fragment of the byproduct 
(E) was broken and rearranged by the parent ion at m/z 199, and the 
ion fragment at m/z 95 was lost to obtain the compound at m/z 104 
(Figure 6). It was speculated that the byproduct (E) was formed by 
the combination of phenylalanine ion m/z 104 (styrene) and the main 

thermal degradation product of cassiae semen extract. In addition, 
the decreases in phenylalanine and phenylacetaldehyde may 
be  related to the reaction between phenylalanine and the cassiae 
semen extract in the model system, which consumes phenylalanine; 
as a result, the Strecker degradation of phenylalanine to 
phenylacetaldehyde is inhibited. Therefore, the inhibitory effect of 
cassiae semen extract on PhIP may contribute to the inhibition of 
phenylalanine degradation to phenylacetaldehyde, reducing the 
content of phenylacetaldehyde and preventing this compound form 
participatinge in the formation of PhIP (Figure 7). Cassiae semen 
extract reacts with phenylalanine to produce a byproduct (E). Three 
different byproduct (E) can be produced, which are denoted as 1, 2, 
and 3 in Figure 7. As a result of this reaction, some phenylalanine is 
consumed, which blocks the transformation of phenylalanine to 
phenylacetaldehyde and alters the 1:1 ratio of phenylalanine to 
creatinine in the model system. Several studies have shown that 
creatinine (13), a precursor of PhIP, can also inhibit the formation of 
excess PhIP. Similarly, in the phenylalanine-creatinine model system 
with cassiae semen extract, cassiae semen extract inhibited the 
formation of PhIP through phenylalanine; in addition, excess 
creatinine remained in the model system, which also inhibited the 
formation of PhIP. Therefore, combined with previous experimental 
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FIGURE 5

The effect of cassiae semen addition on the inhibition rate of PhIP and the byproducts (E). (Means with different letters are significantly different 
p  <  0.05).
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results, these findings indicate that cassiae semen extract likely 
inhibits the formation of PhIP by combining with phenylalanine to 
form a byproduct (E).

5 Conclusion

The cassiae semen extract prepared by the ultrasonic-assisted 
method exhibited an inhibitory effect on PhIP formation in the model 
system. In the model system composed of phenylalanine and 
creatinine, as the concentration of cassiae semen extract increased, the 
levels of phenylalanine, phenylacetaldehyde and PhIP decreased, but 
the level of creatinine and byproduct (E) increased. With the increase 
in byproduct (E), the PhIP inhibition rate of the cassiae semen extract 
also increased. By using correlation function analysis, a strong positive 
correlation has been found between the change in byproduct (E) 
concentration and the inhibition rate of PhIP. The inhibitory effect of 
cassiae semen extract on PhIP may be related to the byproduct (E) 
with a mass-to-charge ratio of m/z 199.9. The reaction of cassiae 
semen extract with phenylalanine produces a byproduct (E), which 
prevents phenylalanine degradation by the Strecker reaction to 
produce phenylacetaldehyde. Cassiae semen extract consumes 
phenylalanine, which is the precursor of PhIP, thus inhibiting the 
formation of phenylacetaldehyde and ultimately inhibiting 
PhIP formation.
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FIGURE 7

The mechanism by which the extract from cassiae semen inhibits the formation of phenylacetaldehyde.
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